
 

 

  

Abstract—In this paper, the process of drug dissolution and 

release from a planar matrix is investigated based on two coupled 

nonlinear partial differential equations proposed by Göran Frenning 

in 2003. In the modelling the process drug adsorption has been 

disregarded, assuming concentration-independent diffusion 

coefficients, using perfect sink conditions, and specializing to a 

planar geometry, The concentration profile of the mobile, or 

diffusing, the resulting model is rather complex and has been 

investigated only numerically and only approximate solution have 

been possible. In this paper it is shown that an analytical solution can 

be obtained exactly in the form of a travelling wave front. We 

describe the method for finding the analytical solutions using the 

travelling wave coordinate when the wave is assumed to be moving at 

constant speed. The model system of partial differential equations is 

transformed into two coupled ordinary differential equations, which 

is analysed interms of the stability of its steady state. Analytical 

solutions are derived in three possible cases, giving travelling wave 

solutions. We then discuss a comparison between the exact solutions 

obtained here and the “analytical short-time approximation” as well 

as the curves obtained from the modified Higuchi formula reported 

by Frenning in 2003. 

 

Keywords—Delay differential equations; omega limit set; 

persistence; signal transduction; stability. 

I. INTRODUCTION 

NE of the most important means of drug-delivery is the 

utilization of the matrix systems. The objectives of 

controlled delivery systems are to reduce the frequency and/or 

to increase the effectiveness of the drug through drug 

localization at the target site, in order to reduce the dose 

required to provide uniform drug delivery. 

Controlled drug delivery requires the knowledge of both 

physical and polymer sciences so that it is possible to produce 

well characterized and reproducible dosage forms, which 
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control drug entry into the body according the specifications of 

the required drug delivery profile [l]. It is well documented 

that in this type of drug delivery, the rate of drug release is 

principally controlled by the delivery system itself, though it 

may be influenced by surrounding conditions, such as pH, 

enzymes, ions, motility and physiological conditions [2]. 

Mathematical modeling and computation has also become 

an important tool in the design of pharmaceutical products 

dealing with controlled-release mechanism. As explained in 

[3], when drug released from a matrix is controlled by 

diffusion through the polymeric matrix, its release kinetics 

obey Fick's 1st and 2nd laws [3]: 

xJ DC= −  (1) 

t xxc DC= −  (2) 

where J represents the diffusional flux of the drug; D the is 

diffusional coefficient; C is the concentration of the drug; and 

x is the distance of diffusion. 

When drug release is dominated by surface erosion, 

Hopfenberg’s equation has been found to give good prediction 

of drug delivery in spherical, cylindrical, and planar 

geometrical forms [4]. 

According to [3], we may distinguish between two 

conceptually different scenarios, depending on the relative 

magnitudes of the drug concentration and solubility in the 

matrix. If the drug concentration is sufficiently low so that all 

drugs can be dissolved, and the dissolution process proceeds 

rapidly enough, we may easily determine the release rate [3]. 

In this type of release, all drugs may be assumed to be 

completely dissolved in before any release has occurred, and 

the drug concentration in the matrix can therefore be solved 

from the heat conduction equation [3]. 

In the second, more general, type of drug release from a 

matrix, where the drug concentrations are higher, or the 

solubility is low, two forms of drugs, namely the solid and 

dissolved forms, coexist, in the matrix and the process 

becomes distinctly more complex. For this more general 

situation when drug loading is much higher than drug 

solubility (
0 s

C C≫ ), the model proposed by Higuchi [5] has 

shown to perform well for planar matrix under the perfect sink 

assumption, although it was originally formulated for drug 

release from ointment bases containing drugs in suspension. 
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The original Higuchi model has been subject to a great deal 

of generalizations and improvements [6-12]. Recently, a 

similar model has been studied by Frenning and Strømme [13], 

who investigated the problem of drug release from spherical 

pellet units into the finite volume of dissolution medium, under 

the assumption that some of the dissolved drug could become 

immobilized by absorption to the pellet constituents. In [14], 

this model was reformulated by disregarding drug absorption, 

and assuming that the diffusion coefficient is concentration-

independent. Using perfect sink conditions, an “analytical 

short-time approximation” to the solution was derived [14]. 

It is the purpose of this paper to show that an exact solution 

can be obtained analytically in the form of a travelling wave 

front. We describe the method for finding the analytical 

solutions using the travelling wave coordinate in the situation 

that the wave is presumably moving at a constant speed. The 

analytical solutions are then discussed in comparison to the 

“analytical short-time approximation” derived in [14]. 

II. REFERENCED MODEL 

In [14], a planar matrix system whose normal is in the x 

direction was investigated. The assumptions are that the lateral 

dimensions of the system are much larger than its thickness L, 

so that the process of drug release could be effectively 
considered to be one-dimensional. The boundary at x = 0 is 

assumed to be impenetrable to the drug, while the matrix is in 

contact with the liquid at x L= . 

The perfect sink condition assumes that the matrix is in 

contact with a well-mixed dissolution medium, the volume of 

which is sufficiently large so that it can be assured that the 

drug concentration is virtually zero at all times. 

In order to simplify the analysis, it was assumed by 

Frenning [14] that liquid absorption occurs at a much faster 

rate than drug dissolution and subsequent release. Thus, the 

matrix which contains finely dispersed solid drug is fully 

wetted in the initial state. Also, in the initial state, entire drug 

is present in the solid form. 

Letting ( , )d t x  be drug concentration in the dissolved 

phase and ( , )s t x  the ‘concentration’ of drug in the solid 

phase, it is then possible to describe drug dissolution and 

release by the following equations [14]. 

t xx td d s= −  (3) 

2 / 3
( )

t d s
s k s c dε= − −  (4) 

where t is the time, cs the saturation constant, ε  the porosity, 

D the drug diffusivity, kd the dissolution rate. 

The initial conditions are 

(0, ) 0d x =  

(0, ) 1s x =  

which means that all drug is assumed to be present in the solid 

form in the initial state [14]. 

Similarly, the boundary conditions are 

0
0x x

d = =  

( , ) 0s t L =  

which follow from the assumption that the interface at x = 0 is 

impenetrable to the drug, while the drug concentration at 

x L=  is kept at zero as a consequence of the sink condition. 

III. MODEL ANALYSIS 

3.1 Traveling wave coordinate 

We introduce the travelling wave coordinate z x tν= − , 

where ν  is the constant velocity at which the wave is assumed 

to be moving. By substituting z in (3) and (4), we obtain a 

coupled system of ordinary differential equations with respect 

to z: 

    vd Dd sν′ ′′ ′− = +  (5) 

2 / 3
( )s ks dν γ′− = − −  (6) 

where ()′  denotes the derivative with respect to z, k  stands for 

dk , and γ  stands for scε . 

Integrating (5) and combining with (6) lead us to a single 

second-order differential equation terms of d as 

( ) ( )2 / 3

2 / 3
0

k
Dd vd vd Dd dγ

ν
′′ ′ ′+ + + − =  (7) 

Now, by letting X d= , and Y X ′= , we can write (7) as 

X Y′ =  (8) 

( ) ( )2 / 3

2 / 3

k
Y vX DY X Y

DD

ν
γ

ν
′ = + − −  (9) 

3.2 Dynamical analysis 

Before we derive the analytical solution, a stability analysis 

may be carried out on the model system written in the form of 

equations (3) and (4). 

The system possess only one nontrivial equilibrium state in 

the feasible region, namely 1 1( , ) ( ,0)X Y γ= . 

The Jacobian matrix of the system (8)–(9) about its steady 

state ( ,0)γ  is 

2/3 1/3

2/3 1/3 2/3 1/3

0 1

( ) 2 ( ) 2 ( )

3 ( ) 3 ( )

J k DY X k X k X

DD D DY X DY X

ν ν γ γ ν

ν ν ν ν

 
 

= + − − + − + + 

 

At 1 1( , ) ( ,0)X Y γ=  the Jacobian becomes 

( ,0) 2 / 3

0 1

J k

D D

γ ν
γ

=
−

 
 
 
 

 

whose eigenvalues are 

2 / 3
2

1,2

1
( ) 4

2

k

D D D

ν ν γ
λ = − ± +

 
 
 
 

 

which are real and opposite in signs. Therefore, the steady 

state 1 1( , ) ( ,0)X Y γ=  is a saddle point. 
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Fig. 1 Phase portrait of the system (8)-(9) in the case 0ν < . 

Here 0.8, 1, 1, 1D k v γ= = = − = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2 Computer simulation of the system (8)-(9), showing the 

solution trajectory in the ( , )X Y -plane in the case that 

0.8, 1,D v= = − 1, 1,k γ= =  (0) 0,X = (0) 0.01Y = . 

In what follows, we are able to derive analytical solutions, 

in terms of the travelling wave coordinate, in 3 of the cases. 

Fig.2 shows the solution trajectory in the phase plane 

starting from the initial point at ( , ) (0,0.1)X Y =  and 

becoming unbounded as time passes. The corresponding plots 

of the concentration of dissolved drug d  and its rate of change 

as functions of z  for the same parameter values as in Fig. 1-2 

are seen in Fig. 3 and 4 respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Plot of d , the dissolved drug concentration, as a 

function of z for the same parameter values as in Fig. 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Plot of d ′  as a function of z  for the same parameter 

values as in Fig. 1-2. 
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IV. ANALYTICAL SOLUTION 

In order to derive an analytic solution for the model 

equation (5), we first let 

3 / 2
 C d Ddν ′= +  (10) 

We will seek a solution of the form 

m n
d AC BC′ = +  (11) 

so that we have 

1/ 23

2
C C d Ddν′ ′ ′′= +  (12) 

Also, Eq. (10) gives 

3 / 21
( )

m nD
d C AC BC

ν ν
= − +  (13) 

Substituting (12) and (13) into (7), we obtain 

1/ 2 3 / 2

2 / 3

3 1
( ) 0

2

m nk D
C C C C AC BCγ

ν νν
′ + − + + = 

 
 

 

Rearranging the above equation yields 

1 / 2 5 / 2 1

2 / 3 5 / 3 5 / 3

3

2

mk k kAD
C C C C C

γ

ν ν ν
+′ + − +  

1

5 / 3
0

nkBD
C

ν
++ =  (14) 

On inspection, we observe that we may find exact solutions in 

the following two possible cases. 

 

Case 1: 
1

0,
2

m n= = −  

For these values of m and n, Eq. (14) becomes 

1/ 2 5 / 2

2 / 3 5 / 3 5 / 3

3

2

k k kAD
C C C C C

γ

ν ν ν
′ + − +  

 
1/ 2

5 / 3
0

kBD
C

ν
+ =  (15) 

By letting 

AD γν= −  (16) 

equation (15) reduces to 

1/ 2 5 / 2 1/ 2

5 / 3 5 / 3

3
0

2

k kBD
C C C C

ν ν
′ − + =  (17) 

 

If we let 

2

5 / 3

1 2
0, 0

3

kBD

BD
α β

ν
= − > = − <  (18) 

we can write Eq. (17) as 

2 2

1

1
C

C
β

α
′ =

+
 

which can be easily solved, yielding 

1
t an( )C z Kαβ α

α
= +  (19) 

where K is the constant of integration. 

Substituting (17) into (13), rearranging and using (16), one 

obtains 

( )3/2 1/2

3/2

1
tan ( ) cot ( )z K z Kd αβ α αβ α

να
γ+ + += +  (20) 

So that we have 
0

0,
z

d = =  the following equation must be 

satisfied. 

3/ 2 1/ 2 3 / 2
tan cotK Kα α γνα+ = −  (21) 

We can then obtain the level of drug in solid form by 

integrating (5) so that 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Travelling wave solution in Case 1 for the concentration 

d of drug in the diluted form, given by (23), plotted as a 

function of x for different time. 

 

3 / 2
s C lν ν= − +  

or, 

3 / 2

3 / 2

1
tan ( )s z K lαβ α

να
= − + +  (22) 

where l is the constant of integration. Thus, a travelling wave 

solution is given as 

( )3/2 1/2

3/2

1
tan ( ( ) ) cot ( ( ) )d x t K x t Kαβ ν α αβ ν α

να
= − + + − +  

γ+  (23) 

3 / 2

3/ 2

1
tan ( ( ) )s x t K lαβ ν α

να
= − − + +  (24) 

where , , ,  and A Bα β  are given by (16) and (18), and (21). 
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Fig. 6 Travelling wave solution in Case 1 for the concentration 

of drug s in the solid form, given by (24), plotted as a function 

of x for different time t. 

 

The analytical travelling wave solution given by (23)-(24) 

is shown in Fig. 5 and 6 to move in the direction of decreasing 

x as time elapses. Here, 

3

π
α = , K =1, l = 0, 1ν = − , k =1, and 2.836γ =  

Case 2: 
3
, 0

2
m n= =  

In this case, equation (14) becomes 

1/ 2 5 / 2

2 / 3 5 / 3

3

2

k k
C C C C

γ

ν ν
′ + −  

 
5 / 2

5 / 3 5 / 3
0

kAD kBD
C C

ν ν
+ + =  (23) 

If we let 

BD γν= −  (24) 

then (23) reduces to 

1/ 2 5 / 2

5 / 3 5 / 3

3
0

2

k kAD
C C C

ν ν
′ − − = 

 
 

 (25) 

or 
2 ,  C JC′ = −  

where 

5 / 3

2 ( 1)
 

3

k AD
J

ν

−
=  (26) 

Solving (26), we obtain 

1
C

Jz K
=

+
 (27) 

where K is the constant of integration. Upon substitution (27) 

into (13) and using (24) we are led to 

3 / 21
( )

AD
d Jz K γ

ν
−−

= + +  (28) 

So that we have 
0

0,
z

d = =  we need the following equation 

to be satisfied. 

3/ 2

1AD

K
γ

ν

−
=  (29) 

Using (5) then gives 

3 / 2

1

( )
s l

Jz Kν
= − +

+
 (30) 

where l is the constant of integration. 

Thus, a travelling wave solution to (3)-(4) is given as 

3 / 21
( ( ) )

AD
d J x t Kν γ

ν
−−

= − + +  (31) 

3 / 2

1

( ( ) )
s l

J x t Kν ν
= − +

− +
 (32) 

where , , ,  and A Bα β  are given by (24), (26), and (29) 

 

 

Fig. 7 Wave front solution in Case 2 for the concentration d of 

drug in the dissolved form, given by (31), plotted as a function 

of x for different time t. 
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Fig. 8 Wave front solution in Case 2 for the concentration of 

drug s in the solid form, given by (32), plotted as a function of 

x for different time t. 

 

The graphs of the wave front solution given in (31)-(32) 

are shown in Fig. (7)-(8) to move in the direction of decreasing 

x as time elapses. Here, 

0.02, 0.4, 1, 1, 0.05,  and 0D K v k lγ= = = − = = = . 

 

Case 3: 
3 1
,

2 2
m n n′= = + . 

For convenience, we let 

3 3
,

2 2

a b
A B= =  

in (11), and drop the prime on the exponent n′ . Thus, we are 
now looking for a solution in the form 

( )3 / 2 1/ 23

2

n
d aC bC

+′ = +  (33) 

such that  

0 0  
n

C A C B C′ = +  (34) 

Differentiating (33) and using (34), we obtain 

( )1/ 2 1/ 2
0 0

3 3 1
( )

2 2 2

n n
d aC b n C A C B C

−′′ = + + + 
 
 

 (35) 

Substituting (33) and (35) in (7), choosing A0 = a, and B0 = b, 

and rearranging, we are led to 

2
1/ 2 3/2

2 2 1/2

2/ 3

5/2 3/2

5/3 5/ 3 5/3

3 3 1 3 3
( )

2 2 2 2 2

3 1
( )

2 2

3 3
0                   (36)

2 2

n

n

n

D b D a a
ab ab n C C

D D

D k
b n C C

k akD kbD
C C

ν ν

γ

ν

ν ν ν

+

−

+

+ + + + +

+ + +

− − + =

  
  

   

 
 
 

 

Upon observation, we see that if we let 
1

2
n = − then Eq. (36) 

can be written as 

0 2 3/2

2/3 5/3

5/2

5/3 5/3

9 3 3 9 3

4 2 4 22

3
                  0                                (37)

2

k kbD
abD b C C a D a C

v v

akD k
C

v v

γ
ν ν+ + + + +

+ − =

    
    
    

 
 
 

 

Thus, if we let 

2 / 3 5 / 3

5 / 3 5 / 3

3 2
0,  or 

32

3 2
0, or 

32

k kbD
b

Dv v

akD k
a

Dv v

γ γν
+ = = −

− = =

 (38) 

then (37) will be satisfied. 

With the above choice in (38), we are in the case where 

1v = − , and (34) becomes 

1/ 2
 C aC bC

−′ = +  

which can be easily solved to yield 

2 / 3
3

2
2 / 3

1
( )

az
k

C z b e
a

+
= −

 
 
 
 

 (39) 

Substituting (39) into (10), we obtain 

3/ 2 3
 

2

z
k

DD
Dd d C eγ

+ 
 
 ′ − = = −  

which can be directly solved, using an integrating factor, with 

0
0,

z
d = =  to yield 

/ /3

2

z D k z D
d ze eγ γ+= − − +  

Therefore, we have derived an analytical solution in terms of 

the travelling wave coordinate as follows. 

( ) ( ) /3

2

x t Dk
d x t e e

νγ ν γ−= − − − 
  

 (40) 

and, similarly to the previous cases, 

( ) /3

2

x t D k
s De l

νγ − += − +  (41) 

l being a constant of integration. 

The graphs of the wave front solution given in (40)-(41) 

are shown in Fig. (9)-(10) with 1,ν = −  

2 23
200,   50 ,   0.2,  and 1

2

k
D e k l Deγγ − += = = − += . 
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Fig. 9 Wave front solution in Case 3 for the concentration d of 

drug in the dissolved form, given by (40), plotted as a function 

of x for different time t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Wave front solution in Case 3 for the concentration d 

of drug in the dissolved form, given by (41), plotted as a 

function of x for different time t. 

 

V. DISCUSSION 

To illustrate that the analytic solution can allow us to 

investigate the impact of different values of the system’s 

physical properties, such as the saturation constant, the 

porosity, the drug diffusivity, or the dissolution rate, on the 

waveform structures, we show in Fig. 11 the plot of the 

travelling wave front of concentration of drug in dissolved 

form for a different set of parametric values, namely, 

200,   2,   0.2,  and 1D kγ ν= = = = − . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Wave front solution in Case 3 for the concentration d 

of drug in the dissolved form, given by (40), plotted as a 

function of x for different time 

t: 200,   2,   0.2, 1D kγ ν= = = = − , and 
0

0.
z

d = =  

 

 

Finally, to put our analytical solution in the context of 

numerical and approximate solutions reported in earlier 

literatures, we refer to the results shown in [5] and [14]. In 

[14], fractions of released drug calculated numerically using 

the model consisting of (3) and (4) is shown for different 

values of saturation constant sc . The curves are compared 

with the “analytical short-time approximation” as well as the 

curves obtained from the modified Higuchi formula.  

We observe that the Higuchi solution and the analytical 

short-time approximation are close to the exact solution only 

during the exponential phase of drug release, but offer quite a 

poor estimate of the released drug near the saturation period.  
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Our exact solution is therefore extremely valuable as it can 

be used to accurately investigate effects of different values of 

physiological or physical factors in the controlled drug release 

system, such as different saturation constants, diffusivity, or 

porosity. These parameters and their impact on drug delivery 

are of great importance in the design of pharmaceutical 

products which are well characterized and in reproducible 

dosage forms, capable of controlling drug entry into the body 

according the specifications of the required drug delivery 

profile. 

VI. CONCLUSION 

Intensive continuing research, both experimentally and 

theoretically, has been on going, especially in the last decade 

or so, on the topic of controlled-release technology, due to its 

crucial role in the formulation of pharmaceutical products [1-

14, 22-25]. 

Here, we have added to the current knowledge by showing 

that an exact solution can be derived for the model of drug 

release formulated by Frenning [14] where the lateral 

dimensions of the system are assumed to be much larger than 

its thickness L. The boundary at x = 0 is assumed to be 

impenetrable to the drug, while the matrix is in contact with 

the liquid at x L= . The matrix is assumed to be in contact 

with a well-mixed dissolution medium, the volume of which is 

large enough to ensure that the drug concentration is virtually 

zero at all times. 

The resulting model is relatively complex, involving a 

nonlinear fractional power of the dependent variable. Previous 

works have been able to obtain numerical solution and, only 

by restriction their attention to the initial phase of drug release, 

an ‘analytical approximate solution’ can be found. 

We have relied on the work in [17-19], using the travelling 

wave coordinate, and appropriate choice of combination of 

powers of the solution and its derivative, we have shown that 

an exact solution for the concentrations of drug in the solid 

and dissolved forms can be found as functions of the travelling 

coordinate, while the travelling wave velocity ν  is found to be 

negative as expected. 
The methodologies for obtaining the exact solution 

presented in this study can be applied to other problems [20, 

21] which admit travelling wave solutions. In the case that the 

system is described by a model consisting of coupled partial 

differential equations, they can be reduced to a single second 

order differential equation which is more easily solved. In Fig. 

1, we can see that the drug concentration in the dissolved form 

increases (as t tends to infinity) while the wave of the 

dissolved drug concentration wave front is moving at a 

constant speed of 1.0. 

It might be wondered whether it would have been better to 

simply solve the model equations for numerical solutions. To 

answer such a question, the model system should be solved 

numerically so that the numerical simulation could be 

compared with the analytical solution, which is the subject for 

our future work. 

It can be argued at this juncture that the ability to derive 

the exact solution could be quite valuable in the investigation 

of impacts of various conditions on drug delivery, since the 

ability to accurately predict the outcome of different choices of 

material, composition, drug properties, and others, on the 

release mechanism and kinetics is of crucial importance in 

terms of medical treatment and health care purposes. 
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