INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Distribution of Number of Roots of Random
Polynomial Equations in Small Intervals

E. Shmerling

Abstract— The problem of finding the probability distribution
of the number of zeros in some real interval of a random
polynomial whose coefficients have a given continuous joint
density function is considered. A new simulation algorithm for
solving this problem is presented. The effectiveness of the
presented algorithm for the case where the real interval is small is
proved.
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A NALYSIS of the behavior of random polynomials and
their zeros has been a subject of active research for
several decades. Motivation for these studies and most of
the early results in this field were collected and summarized
in the monograph by Bharucha-Reid and Sambandham [1],
where one can find applications in such varied fields as
spectral analysis, statistics, filtering theory and economics.
More recent results appear, for example, in [2],[3],[7]-[11]
among others. Consider a random polynomial

1. INTRODUCTION

F(a,0) = ay(0)x" +a,(0)x"" +...+a,(0) (

of degree n, whose coefficients are real-valued random
variables with given continuous joint probability density
function p(a,,a,,...,a,). An important problem is the
study of the behavior of zeros of the random polynomial (1).

A natural first step in the study of the behavior of such
zeros is to estimate the distribution of the random variable

N(B,®) , which is the number of zeros of the polynomial

F’ (a,®) that belong to some arbitrary interval
B =[Il(B);r(B)] on the Euclidean space R. This problem

has been widely studied and has been solved for some
specific cases in which the coefficients
a,(®),...,a, (o) are distributed according to some given
law or satisfy certain specific conditions. For quadratic
random polynomials the following result has been obtained
and described in [9].

Theorem 1

The probability P, (/,g) that two zeros of
F,(x,0) = a(@)x” + b(w)x +c(w) belong to a real
interval (/,d) equals
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The probability P, (/,d) that exactly one zero of F, (x, ®)

belongs to an interval (/,d) equals
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Analogous formulas have been obtained for random
polynomials of degree n>2, all the coefficients of which

equal zero except a,(®),a,(w) and a,(®). It is shown

that for this type of random polynomials the problem of
defining the distribution of N(B,®) can be reduced to

calculating multiple integrals. In order to calculate these
intervals recently developed highly efficient multiple
integration algorithms and

software routines based on Monte Carlo simulation can be
utilized (some of these algorithms and routines are described
in [4],[5],[6]). The classical method for estimating the

probability that exactly k zeroes of F'(d,w)belong to B,

that has been actively used during the last decades, includes
the following steps:

e generating a set of random points (ao, a,...,a,),

distributed according to p(a,,da,,...,a,), the

coordinates of which are the coefficients of the
polynomial

o for each generated point, calculating the zeros of

the corresponding polynomial and checking

whether exactly k£ zeros belong to B.

e calculating the proportion of

polynomials which have k zeros in B.

If a set is big enough, the proportion of generated

polynomials which have k zeros in B is a sufficiently good
estimate for the desired probability.

The algorithm requires generation of a big number of

points in order to achieve the desired rate of accuracy of the

estimate and is, therefore, time-expensive. On the other
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hand, the classical method requires generating random
vectors distributed according to the given joint probability
density function of the coefficients, and such generators may
not be available in some specific cases.

The above mentioned disadvantages of the classical
method make the development of more effective algorithms
highly desirable. This motivated us to develop a new
simulation algorithm, which is more effective for the case
where the interval B is small. The algorithm is presented in
this article.

II. DESCRIPTION OF THE ALGORITHM

Let N(B, ) designate the number of real zeros of a
random polynomial of n-th order

F, (a,0)=x"+a,(0)x"" +..+a,(o)

The problem of estimating P(N(B,w )=i) with a given rate
of accuracy ¢ can be reduced to calculating the probabilities
P(i,m,B)=P(N(B,w)=iNN(R,w)=m) that the polynomial has
exactly m real zeros, from which exactly i belong to B.

Let IV, designate a constant which satisfies the following

condition: the probability & that
max,__ {I+|a,(®)[> N,} is negligible with respect
to & . Obviously, the probability that real and imaginary

parts of all complex zeros of are smaller than N in
absolute value and the moduli of all real zeros of F, (a,®)

are smaller than N, is greater than 1 —¢&.

Let Q(i,m,B) denote the set consisting of all points
@ € R" such that the corresponding polynomial F'(@) has
exactly n-m distinct complex zeros and exactly m distinct
real zeros, from which exactly i belong to B. It can be easily
shown that Q(i,m,B) consists of a finite number of non-

intersecting semi-algebraic sets which can be properly
defined, therefore

P(i.m.B) = [ Q(i,m. B) pada @

All the polynomials F'(a),a € Q(i,m,B)have k
complex zeros Z,,l = I,_k with positive imaginary parts

rpl,IZI,_k

rp, <rp, <..<rp,, and m

ip; >0and real parts such  that

real ZEros

rry <rr,...<rr, suchthat rr; <rr,...<rr, , m=n-2k.

We utilize the expression

a,=(-D*-S,, j=Ln, 3

where the polynomials S ;are elementary symmetric

functions of the roots Xx,,X,,...,x, of the equation

F(a)=0. S, designates the sum of C! products of j

factors X, with distinct indices:
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S =x+x,+...+x,,
S, =X, + X%+,

Sy = XXX, + XXX, + ..,

S, =xX,..x,.
Substituting 7p T i-ip o instead of X ; , where j is
2 2

an odd integer less or equal to &, rp; +i-ip; instead of
2 2

X ., where j is an even integer less or equal to k/2,

j?

1T instead of X, where 2k < j<m, in (3), we obtain

expressions for a,, j=1, n as polynomial functions

£, Bk ),ip(k),r7(m))  of

variables

TP sees TP
IDyseeesiDys TTy,e., 1T, In order to calculate the integral
(2), we utilize the following change of variables from the
initial set of variables d = (al’aZ"“’an) to a new set of

variables
(rplk) (), (m)) =

(rp1 TPy s DS D 5eees D 5 T 5oy 1T, )
The integral (2) equals

[ PR 7).

fn(”ﬁ(k ), iﬁ(k )> r (m)) 4)
J(a,(rp (k) ip (k). r7 (m)))

d(rp(k).ip(k),r(m)),

J (c_i , (rﬁ (k ), ip (k ), v (m ))) designates  the

determinant of the matrix

where

df, (k). ip(k)ri(m) - df, (rplk).ip(k),r7(m))

d (1:pl ) d (’:P1 )
d(pl) k)7 () df(plk)ip(k)r7(m))
d(rp,) d(rp,)
df (B ip(k)r7(m) (k) iplk), 7 (m))
d (1;191 ) d (l;pl )

df(pk)iplk)ri(m)  df, (k) ip(k)rF(m))

S (i,
SO M)

d(rm) d(rn)

PR Fm) A plk)Bk ()

d(rr,) d(rr,)

d (5 , (l’ﬁ (k ), ip (k ), v (m ))) designates
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d(rr,))-d(rr,_)-...-d(rr)-...
'd(ipk)'d(ipkfl).'“
-d(ip,)-d(rp,,)-d(p, ). dlip,)

the integration domain D is a union of m —1i + 1 sets
D cR', s=0,m—
(= 00300)x [1py;00) x...X[1p, 3 0)
[O;w)x...x[O;oo]x[—oo;l(B) X
[rrl;l(B)]x...x[rrz,( )]x X[rr, I(B)]
X[(BYr(B))x (17,57 (B)Ix[rr i r(B)]x..
x[rry.; 437 (B)]x (B o)

).

I ,defined as

X,

;00)...X[rr,

[ v+1+1’ n— 1’

Integral
J, PA7CB(0 (k) r7(m))

J(rplk).ip(k), 17 (m))- d(rp (k). ip (k). 17 (m))
= J‘DS Integrand (rp(k ), ip(k ), 77 (m))-

d(rp(k ). ip(k ), r7(m))

gives us the probability that ) (a,®) has exactly m real

zeros, from which exactly i belong to B and exactly s belong
to (—o0;1(B)].
Let's define bounded domains
D] =[-N;;N,1x[rp,;; N,]%...
x[rp, s N, 1x[0; N, ]x...x[0; N, ] x
k times
x[=N,; [(B)]x[rr;; 1(B)]x
x[rry 1(B)]x...x[rr, 3 1(B)] %
x[U(B)r(B)Ix[rr,,:r(B)Ix
[y i (BN X[y r(B))
[(BEN X173 Ny ]
X[rrnfl;Nl]a

DUD

Obviously, in view of the definition of NV, | » the difference

S—Om

between the integral (4) over D and the integral over D is
negligible with respect to &, which enables one to calculate

the integral over D’ instead of (4) in order to obtain an
approximation with the desired rate of accuracy & .

Since D" is an extremely convenient domain from the
point of view of generating random tuples uniformly
distributed in it (such tuples can be generated utilizing
standard uniform random number generator), classical
Monte Carlo algorithm can be used for numerical
calculation of the integral
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J‘D* Integrand (rp(k ), ip(k ), 77 (m))-
d(rp(k),ip k), (m))

Let us formulate a theorem that proves the superior
efficiency of the presented method for defining the
distribution of the number of real zeros of random
polynomials that belong to sufficiently small intervals.

Let F, (;,w) be a random polynomial with uniformly
bounded continuous joint probability density function of its
coefficients. Let P(m,B,N,) designate the probability
that all the zeros of F, (;, @) are less than N in absolute
value and exactly m of them belong to a real interval
B=[lir],-N<l<r<N,.

Let std preS(m, B,N,,N *) designate the standard
deviation of the estimate of P(m,B,N,) based on the
presented method, and let std _Class(m,B ,N,,N *)

designate the standard deviation of the estimate of
P(m,B,N,) based on the classical method. Both

estimates are obtained by generating N )
The following theorem is true.

random tuples.

Theorem 2 For any positive number g, 0< g <1,
there exists a positive number [ (g) such that the following
condition is satisfied: for any real interval in [—N,;N,],
the length of which len(B) is less than l(g), the ratio

std pres(m,B, NI,N*)/ std _class(m,B, NI,N*)
is less than g .

Proof: The estimate est_pres of P(m, B, N,) based on

(mupD’ (1))

where tupD*(i) designates a random tuple uniformly

distributed in D" , and the standard deviation of est pres is
calculated via formula

std_pres(m,B,NpN*):

the presented method i

. i (Integrand (tupD* (i ))— est _ pres)2 .

i-1
v(D")

where V(D*) designates the volume of D" . Assume
G, >0 and G,>0

G, < Integrand(d) < G, forany d € D" .
We have the following inequality:

std_pres(m,B, N15N*)< \/E.Gz .V(D*).

On the other hand, we have the following formula for the
standard deviation of the estimate est class of

P(m, B, N,) based on the classical method

that numbers exist such that
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std_class(m,B, Nl,N*)z

\/ P, BN,)-(1- PO, BN))

>\/%-G1 V(D")-(1= P(m, B,N,)),
which proves the theorem since
V(D)< (ten(B))" (2N? ) .
At n=3, we have a random polynomial P,(a, )

X+ a (a))x2 +a, (a))x +a, (a)) Let's calculate the

probability that the polynomial has a unique real zero
belonging to the interval B=[1;r]. We have

ji(rpaip,l"l")E—(rr_i_zrp)
]Z(Vp,lp,rr)z(zrr.rp+rp2 +l.p2)
firpaip.rr)=—rr(rp® +ip?)

The Jacobian of transformation has the form

J(@.(p.ip.rr))=

-2 2(rr + rp) —2rr-rp
=det| 0 2ip —2rr-ip |=
-1 2rp —(rp2 +1p2)

=4rp” -ip+4ip” +4ip-rr* —8rp-ip-rr
P.=P(N(B,0)=1NN(R,0)=1)~
Ny Nir

j ij(_(zrp+rr),2rp.rr+rp2+

Ny 11
+ip® —rp” rr—ip’rr))-(4rp* -ip + 4ip’
+4ip-rr* =8rp-ip-rr)d(rr)d(ip)d (rp)
For the case where we need to calculate the probability

that random polynomial has 3 real zeros satisfying certain
conditions, we have

filrm, ey, rry)=~(rm + 1y + 11y
/s (rrl L HTy, T, ) =FIIT, + T1IF + 1T,
/s (rrl LIy, T, ) =—TKIT, 1T,
and the Jacobian of transformation J (5, rh,rr, rr3)
has the form (I”V3 -y )(}’l”3 —rr, )(rr2 -y ) In order to
calculate the probability that 1’3(5, @) has 3 real roots, one

of which belongs to [/;7], we have to summarize 3

probabilities: the probability F, that exactly one zero of
P,(a,w) belongs to [/;7] and 2 zeros are greater than r,

the probability F, that one real zero of P (a,®) is less
than [, another is between / and r, and the third is greater
than r, and the probability P, that P,(a,®) has 3 real

zeros , one of which belongs to [/;7] and two others are
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greater than 7.
The probabilities £, £, and P, can be calculated via

formulas
r Ni N,

B =[ [ [ p(rm +rry+ )

I rm
FE - FEy +FF - FE + 1Ty - 1T, 6))
=1 vy 1) (rry = rn) - (11 =1y

(rry = r)d(rry)d (rr,)d (1)

1 er

= _[ J-J'p(_(”’”l +rry 17y,
A
FE - PEy +FF PR T 1T, (6)
=71y rry 1) - (17 =) - (1 = 7y )
(=) ) r7)d ;)
NN,

P, = J- J- J-p(—(rrl +rr, +rr3),

1
FE - PEy +FF PR T 1T, (7

=11y -1y 1) - (rry —rn) - (rry =)

Ly~ ) ) ) )

In order to calculate the probability that })3(2, ®) has 3
real roots, two of them belonging to [/;7], we need to

calculate the probability that 2 zeros belong to [/;7] and

one zero is less than / which equals
N, N,

_1[ _[ J‘p(—(rrl +rr, 11 ),

=Ny L,
FE - FEy +FF - FE + Ty 1T, ®)
=1 vy 1) (rry = rn) - (11 =1y

(rry = r)d(rry)d (rr,)d (1)

and the probability that P (a,®) has 2 zeros in [/;7]

and one zero greater than » which equals
11N,

[ oo s,

01

FE PPy +FF - FE + 1Ty - 1T, (€))

=1 vy 1) (rry =) - (11 = 1ry)

(= 1) (), ()

The probability that P (a,®) has 3 zeros belonging to

[/;7], can be found by calculating the following integral

400
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rrn

1 [ pton e sm),

[ rryrr
FF - FEy +FF - FE Ty 1T, (10)

=1 vty 1) (rry = rn) - (11 = 1)

(= 1) (), ()

Thus the problem of defining the distribution of
N,(B,®) is reduced to calculating the 6 integrals

mentioned above. In order to calculate each of these
integrals numerically via classical Monte Carlo method we
need to generate a sequence of random tuples uniformly

distributed in its integration domain. For P, the integration
domain is integral defined by the system of double
inequalities
I<rm<r
r<rr, <N,
rry, <rry < N,
a sequence of random tuples
rr (i) = (rn (i), rry (@), rr. (i), i=1,N

uniformly distributed in the domain can be sampled in the
following way

rr (i) =1 +unif 1(i)-(r =1)

11y (i) = r+ (1= Junif 2(7) - (N, = r)

rry (i) = rr, +unif 3(i)- (N, —rr,)

unif (i), unif 2(i), unif3({) (@(=1n)

designate numbers in [0;1] sampled by the standard uniform
random number generator. The volume V of the integration

domain equals (N—r)2 -(r—1)/2. The Monte Carlo

>

where

estimate for P, obtained via generating N " tuples is given
by
1 ¥ . .
= D, (= (i) + (rry (D) +

N 7

+(rry (@), (rr, (@) -1y + 11 (0) -1y +

+rry (@) 115 (8),=rr (0)

11y (@) 113 (D)) - (r (0) = 17, (0)) -

(rr3 () =rry () - (rry (1) = 7 (D) -V

Random tuples uniformly distributed in the domains
defined by systems of inequalities

[<m<r N, <rm <l
e <rr, <r e <rr, <l
1 2 and 1 2
r<rr; <N, [<rr,<r

can be sampled in an analogous way, integration domains
defined by systems of inequalities

- N, <rp<N, -N, <<l

[<ip <N, [<rr,<r

and

[<rr<r r<rry<N,
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are three-dimensional cubes, generating random tuples in
which is trivial. The integration domain defined by the
system

[<m<r
1y <rr, <r
rr, <rr, <r

is a three-dimensional simplex with vertices (/;/;]), ([;[;r),
(L;r;r) and (r;r;r). 1t is well-known that generation of random
tuples uniformly distributed in a simplex is simple and fast
(see, for example [6]). In order to generate random tuple in a

.V, one has to

simplex with (nt+1) vertices V, V...
sample uniformly » random numbers in (0,1), sort them in

ascending order, thus obtaining » numbers #,,...,u4,, and

n°

set u,=0,u,,, =1. The random tuple is given by
ZVz (U —uy).
i=0

III. RESULTS OF EXPERIMENTAL CALCULATIONS

In order to illustrate the effectiveness of the presented
method we obtained two estimates of the probability

B(l,r) that random polynomial of order 3 whose

a,(®), a,(®),
standard Gaussian random variables, has exactly one zero in
certain intervals. One estimate was obtained by the
developed software based on the presented method (function
est_pres_meth), another was obtained by the developed
software based on the classical one (function
est_class_meth). The developed software enables one to
calculate standard deviations of both estimates which makes
it possible to compare the effectiveness of the classical
method and the presented one. The function est pres_meth
calls four auxiliary functions:
e unique real zero

coefficients a,(®) ,are independent

which gives an estimate for P, calculated via

presented method and the standard deviation of
the estimate

® [wo_zeros_greater r
which gives an estimate for F, calculated via

presented method and the standard deviation of
the estimate

e two zeros less |
which gives an estimate for P, calculated via
presented method and the standard deviation of
the estimate

e one_zero less |
which gives an estimate for P, calculated via

presented method and the standard deviation of
the estimate
The MATLAB code of the programs with comments is
presented in Appendix.
The results of experimental calculations are given in the
following table.

TABLE 1



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Interval Std_pres Std_class Ratio
B:[l;r] Std _ pres
Std _class
[0; 0.5] 0.001904 0.00120 1.5866
[0; 0.25] 0.000857 0.000864 0.9918
[0; 0.1] 0.000332 0.000553 0.6003
[0; 0.05] 0.000168 0.001173 0.14358

The estimates were based on the same number of
(10°). Results of

calculations presented in Table 1 illustrate that the ratio of
standard deviations of estimates obtained via presented
method and via classical one decreases as the length of
interval B decreases, therefore the presented method is
relatively more efficient than the classical one for small
intervals and much more efficient for extremely small
intervals.

generated  tuples experimental

IV. CONCLUSIVE REMARKS

Let us stress the two main advantages of the presented
method. The first advantage is its superior efficiency for
small intervals proved in previous sections. The second
advantage of the presented method is that it enables one to
develop the software which can be implemented for
counting the zeros of random polynomials with arbitrary
joint probability density function of its coefficients, while
software routines based on the classical method can't be
universal since they have to incorporate a specific random
number generator for each type of random polynomials.
Program 2 described above with minor modifications can be
utilized for defining the distribution of the number of real
zeros in a given interval for any random polynomial of order
3 with continuous joint probability density function of its
coefficients. Software based on the presented method for
polynomials of higher order has to be developed, which is
one of the directions of further work.

In order to utilize the presented method for defining the
distribution of the number of real zeros of a random

polynomial Fn*(ﬁ, ), all the coefficients of which are
random variables, the algorithm should be slightly modified.
The (ay,...,a,) to
(ay, rp(k),ip(k),77(m))  should be

calculating integrals (2). The Jacobian of transformation
equals the corresponding Jacobian for the case where the

change of variables from

utilized for

first coefficient equals one, multiplied by ag . For example,

we have the following formula for calculating the
probability that £} (a,®) has one real zero belonging to

[/;7] and 2 complex zeros.
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P(N(B,w)=1NN(R,w)=1) ~
N(r) Ny N, r

[ p(ay—a,2rp+rr),

N()-N, 01

a,2rp-rr+rp’ +ip*),

—a, - rp’rr—ay-ip® rr)-a,(4rp’ -ip +4ip’

+4ip-rr’ =8rp-ip-rr)d(rr)d(ip)d(rp)d (a,),
where N(I), N(r), N, are constants which satisfy the
condition: the probability &, that at least one of the
N()<ay(w)<N(r)

max{1+|al.(a))|/|a0(a))|}<N1 is not satisfied is
1<i<n

inequalities and

negligible with respect to & .

APPENDIX

Function est_class_meth

Sfunction [p,std]=...

est_class_meth(l,r,n)

%input :

%l,r - left and right boundaries of the
%interval n - number of generated tuples
%output : p- estimate of proportion

% std - standard deviation of the estimate
counter=0;

fori=I:n

%generating the coefficients of the polynomial
pol=[1 [randn(1,3)]];

%finding the zeros of the polynomial
rt=roots(pol);

%finding the real zeros of the polynomial
rr=rt(imag(rt)==0),

%checking whether exactly one zero
%belongs to interval [1r]

if sum(rr>1 &rr<r)==
counter=counter+1;

end

end

%calculating the proportion of generated
%polynomials having

%exactly one zero in [Lr]

p=counter/n;

%calculating the standard

%deviation of the estimate

std=sqrt(p*(1-p)/n);

function [m,std]=est_pres_meth(n,nl,l,r)

%input parameters :

% n- number of tuples;

% nl-upper bound for the moduli of all the zeros
% Lr- the left and right bounds

% of the interval

%output : m - estimate of P1([l;r]),

% std - standard deviation
[ml,sl]=unique real zero(n,nl,lr);

[m2,s2] =two_zeros_greater r(n,nl,Lr);

402
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[m3,s3]=two_zeros less I(n,nl,lr);
[m4,s4]=one_zero less I(nnl,lr);
% calculating estimate of P1([1;r])
m=ml+m2+m3+m4,

%calculating standard deviation
std=sqrt(s1"2+s2"2+s3"2+s54"2);

Function unique_real_zero
function [est_prob,est std]=...
unique_real zero(n,nl,lr)
%function for calculating unique real zero
%input: n-number of generated tuples,
% nl-upper bound for the moduli of all the zeros
% L r-left and right bounds of interval
%output: est_prob,est_std - estimate of
% the probability
% and standard deviation of the estimate
integrandl=[];

fori=I:n
%generating the coefficients of the polynomial
rp=-nl+rand*(2*nl);
ip=rand*nl;
rr=I+rand*(r-1);
%calculating the integrand
integrandl =...
[integrandl (1/sqrt(2*pi))"3*...
exp(-((rr+2%rp) 2+ (2*rr¥rp+rp"2+ip"2)"2...
+(rr¥rp 2+rr¥ip~2)"2)/2)*...
(4*rp"2*ip+4*ip"3+4*ip*rr2-8*rp*ip*rr)];
end
%calculating the volume
v=2*nl"2*(r-1);
%calculating the estimate for Pc
est_prob=mean(integrandl)*v;
%calculating sample standard deviation
est_std=std(integrandl)*v/sqrt(n);

Function one_zero_less 1
function [est_prob,est_std]=...
one_zero less I(n,nl,lr)
%input: n-number of generated tuples,
% nl-upper bound for the moduli of all the zeros
% L r-left and right bounds of interval
%output: est_prob,est std - estimate of
% the probability
% and standard deviation of the estimate
integrand2={],;
fori=I:n
%generating the coefficients of the polynomial
rrl=-nl+rand*(l+nl);
rr2=Il+rand*(r-1);
rr3=r+rand*mnli-r);
% calculating the integrand
integrand2=...
[integrand?2 (1/sqrt(2*pi))"3*...
exp(-((rrl*rr2*rr3)"2+...
(rrd *rr2+rrl *rr3+rr2*rr3)"2+..
(rrl+rr2+rr3)"2)/2)*(rr3-rrl)*...
(rr3-rr2)*(rr2-rrl)];
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end

%calculating the volume
v=(l+nl)*(r-)*(ni-r),

%calculating the estimate for Pl
est_prob=mean(integrand2)*v;

%calculating standard deviation
est_std=std(integrand2)*v/sqrt(n);

Function two_zeros_greater_r
function [est_prob,est std]=...
two_zeros_greater_r(n,nl,lr)
%function for finding two real zeros
% greater than the right bound
%input: n-number of tuples,
% nl-upper bound for the moduli of all the zeros
% L r-left and right bounds of interval
%output: est_prob,est std - estimate of
% the probability
% and standard deviation of the estimate
integrand2={],
fori=I:n
%generating the coefficients of the polynomial
rri=I+rand*(r-1);
rr2=r+(Il-sqrt(rand))*(nl-r);
rr3=rr2+rand*mli-rr2);
%calculating the integrand
integrand2=...
[integrand?2 (1/sqrt(2*pi))"3*...
exp(-((rrl *rr2*rr3) 2+ @rrl*rr2+...
rrl *rr3+rr2 *rr3) 2+ rrl +rr2+rr3) 2)/2) *...
(rr3-rrl)*(rr3-rr2) *(rr2-rrl)];
end
%calculating the volume
v=(nl-r)"2*(r-1)/2;
%calculating the estimate for Pl
est_prob=mean(integrand2)*v;
%calculating standard deviation
est_std=std(integrand2)*v/sqrt(n);

Function two_zeros_less 1
function [est_prob,est_std]=...
two_zeros_less I(m,nl,lr)

%input: n-number of generated tuples,
% nl-upper bound for the moduli of all the zeros
%  Lr-left and right bounds of interval
%output: est_prob,est std - estimate of
% the probability

% and standard deviation of the estimate
integrand2=[], for i=1I1:n

%generating the coefficients of the polynomial
rrl=-nl+(1-sqrt(rand))*(+nl);
rr2=rrl+rand*(l-rrl);
rr3=Il+rand*(r-1);

%calculating the integrand
integrand2=...
[integrand?2 (1/sqrt(2*pi))"3*...
exp(-((rrl*rr2*rr3)"2+...
(rrl*rr2+rrl ¥rr3+rr2*rr3) 2 +...
(rri+rr2+rr3)"2)/2)*(rr3-rri)*...
(rr3-rr2)*(rr2-rrl)];

end
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%calculating the volume
v=+n1)"2*@r-1)/2;

%calculating the estimate for P2
est_prob=mean(integrand2)*v;
%calculating standard deviation
est_std=std(integrand2)*v/sqrt(n);
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