
 

 

  

Abstract— The problem of finding the probability distribution 
of the number of zeros in some real interval of a random 

polynomial whose coefficients have a given continuous joint 

density function is considered. A new simulation algorithm for 

solving this problem is presented. The effectiveness of the 

presented algorithm for the case where the real interval is small is 

proved. 

 

Keywords—Random Polynomial, Monte Carlo Algorithm, 

Matlab, Simulation.  

I. INTRODUCTION 

NALYSIS of the behavior of random polynomials and 

their zeros has been a subject of active research for 

several decades. Motivation for these studies and most of 

the early results in this field were collected and summarized 

in the monograph by Bharucha-Reid and Sambandham [1], 

where one can find applications in such varied fields as 

spectral analysis, statistics, filtering theory and economics. 

More recent results appear, for example, in [2],[3],[7]-[11] 

among others. Consider a random polynomial  
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of degree n, whose coefficients are real-valued random 

variables with given continuous joint probability density 

function ),...,,( 10 naaap . An important problem is the 

study of the behavior of zeros of the random polynomial (1). 

A natural first step in the study of  the behavior of such 

zeros is to estimate the distribution of the random variable 

),( ωBN , which is the number of zeros of the polynomial 

),(* ωaF  that belong to some arbitrary interval 

)]();([ BrBlB =  on the Euclidean space R. This problem 

has been widely studied and has been solved for some 

specific cases in which the coefficients 

)(),...,(0 ωω naa are distributed according to some given 

law or satisfy certain specific conditions. For quadratic 

random polynomials the following result has been obtained 

and described in [9]. 

Theorem 1 

The probability ),(2 glP  that two zeros of  

)()()(),( 2

2 ωωωω cxbxaxF ++=
 
belong to a real 

interval (l,d) equals  
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The probability ),( dlPl that exactly one zero of ),(2 ωxF  

belongs to an interval (l,d) equals 
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Analogous formulas have been obtained for random 

polynomials of degree n>2, all the coefficients of which 

equal zero except )(),( 10 ωω aa  and )(ωna . It is shown 

that for this type of random polynomials the problem of 

defining the distribution of ),( ωBN can be reduced to 

calculating multiple integrals. In order to calculate these 

intervals recently developed highly efficient multiple 

integration algorithms and 

software routines based on Monte Carlo simulation can be 

utilized (some of these algorithms and routines are described 

in [4],[5],[6]). The classical method for estimating the 

probability that exactly k zeroes of ),( ωaF
�

belong to B, 

that has been actively used during the last decades, includes 

the following steps: 

• generating a set of random points ),...,,( 10 naaa , 

distributed according to ),...,,( 10 naaap , the 

coordinates of which are the coefficients of the 

polynomial 

• for each generated point, calculating the zeros of 
the corresponding polynomial and checking 

whether exactly k  zeros belong to B. 

• calculating the proportion of generated 

polynomials which have k zeros in B. 

   If a set is big enough, the proportion of generated 

polynomials which have k zeros in B is a sufficiently good 

estimate for the desired probability. 

  The algorithm requires generation of a big number of 

points in order to achieve the desired rate of accuracy of the 

estimate and is, therefore, time-expensive. On the other 
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hand, the classical method requires generating random 

vectors distributed according to the given joint probability 

density function of the coefficients, and such generators may 

not be available in some specific cases. 

   The above mentioned disadvantages of the classical 

method make the development of more effective algorithms 

highly desirable. This motivated us to develop a new 

simulation algorithm, which is more effective for the case 

where the interval B is small. The algorithm is presented in 

this article. 

II. DESCRIPTION OF THE ALGORITHM 

Let ),( ωBN designate the number of real zeros of a 

random polynomial of n-th order 
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nn

n axaxaF +++= −
 

The problem of estimating P(N(B,ω )=i) with a given rate 

of accuracy ε can be reduced to calculating the probabilities 

P(i,m,B)=P(N(B,ω)=i∩N(R,ω)=m) that the polynomial has 

exactly m real zeros, from which exactly i belong to B. 

Let 1N  designate a constant which satisfies the following 

condition: the probability 1ε  that 

}|)(|1{max 11 Naini >+≤≤ ω  is negligible with respect 

toε . Obviously, the probability that real and imaginary 
parts of all complex zeros of  are smaller than 1N in 

absolute value and the moduli of all real zeros of ),( ωaFn

�
 

are smaller than 1N is greater than 11 ε− . 

Let Q(i,m,B) denote the set consisting of all points 
nRa ∈

�
 such that the corresponding polynomial )(aF

�
 has 

exactly n-m distinct complex zeros and exactly m distinct 

real zeros, from which exactly i belong to B. It can be easily 

shown that Q(i,m,B) consists of a finite number of non-

intersecting semi-algebraic sets which can be properly 

defined, therefore  

∫= adapBmiQBmiP
��

),,(),,(  (2) 

All the polynomials ),,(),( BmiQaaF ∈
��

have k 

complex zeros klzl ,1, =  with positive imaginary parts 

0>lip and real parts klrpl ,1, =  such that 

krprprp <<< ...21 , and m real zeros 

nrrrrrr << ...21  such that mrrrrrr << ...21 , m=n-2k. 

We utilize the expression  

njSa j

k
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where the polynomials jS are elementary symmetric 

functions of  the roots nxxx ,...,, 21  of the equation 

0)( =aF
�

. jS designates the sum of 
j

nC  products of  j  

 

factors ix with distinct indices: 
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Substituting 

2

1

2

1 −− ⋅+ jj ipirp   instead of jx , where j  is 

an odd integer less or equal to k , 
22

jj ipirp ⋅+  instead of 

jx , where j is an even integer less or equal to 2/k , 

jrr instead of jx , where njk <<2 , in (3), we obtain 

expressions for ja , 1=j , n  as polynomial functions 

( ) ( ) ( )( )mrrkpikprf j

���
,,  of variables ,,...,1 krprp  

,,...,1 kipip  .,...,1 mrrrr In order to calculate the integral 

(2), we utilize the following change of  variables from the 

initial set of variables ( )naaaa ,...,, 21=
�

 to a new set of 

variables 

( ) ( ) ( )( )
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The integral (2) equals 
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where ( ) ( ) ( )( )( )mrrkpikpraJ
����

,,, designates the 

determinant of the matrix  
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( ) ( ) ( )( )( )mrrkpikprad
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 the integration domain D is a union of 1+− im sets 

n

s RD ⊂ , ims −= ,0 ,defined as 
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Integral 
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gives us the probability that ),( ωaFn  has exactly m real 

zeros, from which exactly i belong to B and exactly s belong 

to ( )];( Bl−∞ . 

Let's define bounded domains 
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Obviously, in view of the definition of 1N , the difference 

between the integral (4) over D and the integral over 
*D  is 

negligible with respect to ε , which enables one to calculate 
the integral over 

*D  instead of (4) in order to obtain an 

approximation with the desired rate of accuracy ε . 
Since 

*D  is an extremely convenient domain from the 

point of view of generating random tuples uniformly 

distributed in it (such tuples can be generated utilizing 

standard uniform random number generator), classical 

Monte Carlo algorithm can be used for numerical 

calculation of the integral  
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Let us formulate a theorem that proves the superior 

efficiency of the presented method for defining the 

distribution of the number of real zeros of random 

polynomials that belong to sufficiently small intervals. 

Let ),( ωaFn  
be a random polynomial with uniformly 

bounded continuous joint probability density function of its 

coefficients. Let ),,( 1NBmP  designate the probability 

that all the zeros of ),( ωaFn  are less than 1N  in absolute 

value and exactly m of them belong to a real interval 

11],;[ NrlNrlB <<<−= . 

Let ( )*1,,,_ NNBmpresstd  designate the standard 

deviation of  the estimate of ),,( 1NBmP  based on the 

presented method, and let ( )*1,,,_ NNBmclassstd  

designate the standard deviation of the estimate of 

),,( 1NBmP  based on the classical method. Both 

estimates are obtained by generating 
*N  random tuples. 

The following theorem is true. 

Theorem 2  For any positive number g , 10 << g , 

there exists a positive number ( )gl  such that the following 

condition is satisfied: for any real interval in ];[ 11 NN− , 

the length of which ( )Blen  is less than ( )gl , the ratio 

( ) ( )*1

*

1 ,,,_/,,,_ NNBmclassstdNNBmpresstd

 is less than g . 

Proof: The estimate est_pres of ),,( 1NBmP  based on 

the presented method is ( )( )∑
=
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where  ( )itupD*

 
designates a random tuple uniformly 

distributed in 
*D , and the standard deviation of est_pres is 

calculated via formula 
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where ( )*DV  designates the volume of 
*D . Assume 

that numbers 01 >G  and 02 >G  exist such that 

21 )( GdIntegrandG << for any 
*Dd ∈ . 

We have the following inequality: 

( ) ( )*2*
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1
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N
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. 

On the other hand, we have the following formula for the 

standard deviation of the estimate est_class of 

),,( 1NBmP  based on the classical method 
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which proves the theorem since  
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At 3=n , we have a random polynomial ),(3 ωaP
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1

3 axaxax +++ . Let's calculate the 

probability that the polynomial has a unique real zero 

belonging to the interval B=[l;r]. We have 
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The Jacobian of transformation has the form 
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For the case where we need to calculate the probability 

that random polynomial has 3 real zeros satisfying certain 

conditions, we have 
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and the Jacobian of transformation ),,,( 321 rrrrrraJ
 

has the form ( )( )( )122313 rrrrrrrrrrrr −−− . In order to 

calculate the probability that ),(3 ωaP  has 3 real roots, one 

of which belongs to ];[ rl , we have to summarize 3 

probabilities: the probability 0P   that exactly one zero of 

),(3 ωaP
 
belongs to ];[ rl  and 2 zeros are greater than r, 

the probability 1P  that one real zero of ),(3 ωaP  is less 

than l, another is between l and r, and the third is greater 

than r, and the probability 2P  that ),(3 ωaP  has 3 real 

zeros , one of which belongs to ];[ rl  and two others are 

greater than r. 

The probabilities 0P , 1P  
and 2P  can be calculated via 

formulas  
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In order to calculate the probability that ),(3 ωaP has 3 

real roots, two of them belonging to ];[ rl , we need to 

calculate the probability that 2 zeros belong to ];[ rl  and 

one zero is less than l which equals 
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 (8) 

and the probability that ),(3 ωaP  has 2 zeros in ];[ rl  

and one zero greater than r which equals 
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The probability that ),(3 ωaP  has 3 zeros belonging to 

];[ rl , can be found by calculating the following integral 
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Thus the problem of defining the distribution of 

),(3 ωBN  is reduced to calculating the 6 integrals 

mentioned above. In order to calculate each of these 

integrals numerically via classical Monte Carlo method we 

need to generate a sequence of random tuples uniformly 

distributed in its integration domain. For 2P the integration 

domain is integral defined by the system of double 

inequalities 
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a sequence of random tuples 
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uniformly distributed in the domain can be sampled in the 

following way 
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where )(1 iunif , )(2 iunif , )(3 iunif  ),1( ni =  

designate numbers in [0;1] sampled by the standard uniform 

random number generator. The volume V of the integration 

domain equals 2/)()( 2 lrrN −⋅− . The Monte Carlo 

estimate for 2P  obtained via generating 
*N  tuples is given 

by 
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Random tuples uniformly distributed in the domains 

defined by systems of inequalities 
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can be sampled in an analogous way, integration domains 

defined by systems of inequalities 
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are three-dimensional cubes, generating random tuples in 

which is trivial. The integration domain defined by the 

system 
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is a three-dimensional simplex with vertices (l;l;l), (l;l;r), 

(l;r;r) and (r;r;r). It is well-known that generation of random 

tuples uniformly distributed in a simplex is simple and fast 

(see, for example [6]). In order to generate random tuple in a 

simplex with (n+1) vertices 0V , 1V ,…, nV  one has to 

sample uniformly n random numbers in (0,1), sort them in 

ascending order, thus obtaining n numbers nuu ,...,1 , and 

set 1,0 10 == +nuu . The random tuple is given by 

∑
=

+ −⋅
n

i

ii uuV
0

11 )( . 

III. RESULTS OF EXPERIMENTAL CALCULATIONS 

In order to illustrate the effectiveness of the presented 

method we obtained two estimates of the probability 

),(1 rlP  that random polynomial of order 3 whose 

coefficients )(1 ωa , )(2 ωa , )(2 ωa ,are independent 

standard Gaussian random variables, has exactly one zero in 

certain intervals. One estimate was obtained by the 

developed software based on the presented method (function 

est_pres_meth), another was obtained by the developed 

software based on the classical one (function 

est_class_meth). The developed software enables one to 

calculate standard deviations of both estimates which makes 

it possible to compare the effectiveness of the classical 

method and the presented one. The function est_pres_meth 

calls four auxiliary functions: 

• unique_real_zero 

which gives an estimate for cP calculated via 

presented method and the standard deviation of 

the estimate 

• two_zeros_greater_r 

which gives an estimate for 0P
 
calculated via 

presented method and the standard deviation of 

the estimate 

• two_zeros_less_l 

which gives an estimate for 2P  calculated via 

presented method and the standard deviation of 

the estimate 

• one_zero_less_l 

which gives an estimate for 1P  calculated via 

presented method and the standard deviation of 

the estimate 

The MATLAB code of the programs with comments is 

presented in Appendix. 

   The results of experimental calculations are given in the 

following table. 

 
TABLE 1 
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Interval 

B=[l;r] 

Std_pres Std_class Ratio 

classStd

presStd

_

_  

[0; 0.5] 

[0; 0.25] 

[0; 0.1] 

[0; 0.05] 

0.001904 

0.000857  

0.000332  

0.000168  

0.00120    

0.000864  

0.000553  

0.001173  

1.5866 

0.9918 

0.6003 

0.14358 

 

The estimates were based on the same number of 

generated tuples )10( 5
. Results of experimental 

calculations presented in Table 1 illustrate that the ratio of 

standard deviations of estimates obtained via presented 

method and via classical one decreases as the length of 

interval B decreases, therefore the presented method is 

relatively more efficient than the classical one for small 

intervals and much more efficient for extremely small 

intervals. 

IV. CONCLUSIVE REMARKS 

 Let us stress the two main advantages of the presented 

method. The first advantage is its superior efficiency for 

small intervals proved in previous sections. The second 

advantage of the presented method is that it enables one to 

develop the software which can be implemented for 

counting the zeros of random polynomials with arbitrary 

joint probability density function of its coefficients, while 

software routines based on the classical method can't be 

universal since they have to incorporate a specific random 

number generator for each type of random polynomials. 

Program 2 described above with minor modifications can be 

utilized for defining the distribution of the number of real 

zeros in a given interval for any random polynomial of order 

3 with continuous joint probability density function of its 

coefficients. Software based on the presented method for 

polynomials of higher order has to be developed, which is 

one of the directions of further work. 

In order to utilize the presented method for defining the 

distribution of the number of real zeros of a random 

polynomial ),(* ωaFn

�
, all the coefficients of which are 

random variables, the algorithm should be slightly modified. 

The change of variables from ),...,( 0 naa  to 

))(),(),(,( 0 mrrkpikpra
���

 should be utilized for 

calculating integrals (2). The Jacobian of transformation 

equals the corresponding Jacobian for the case where the 

first coefficient equals one, multiplied by 
na0 . For example, 

we have the following formula for calculating the 

probability that ),(*3 ωaF  has one real zero belonging to 

];[ rl  and 2 complex zeros. 

),()()()()84

44()

),2(

),2(,(

)1),(1),((
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where )(lN , )(rN , 1N
 
are constants which satisfy the 

condition: the probability 1ε  that at least one of the 

inequalities )()()( 0 rNalN << ω
 

and 

10
1

})(/)(1{max Naai
ni

<+
≤≤

ωω  is not satisfied is 

negligible with respect to ε . 

APPENDIX 

Function est_class_meth 

function [p,std]=... 

est_class_meth(l,r,n) 

%input : 

%l,r - left and right boundaries of the 

%interval n - number of generated tuples 

%output : p- estimate of proportion 

% std - standard deviation of the estimate 

counter=0; 

for i=1:n 

%generating the coefficients of the polynomial 

pol=[1 [randn(1,3)]]; 

%finding the zeros of the polynomial 

rt=roots(pol); 

%finding the real zeros of the polynomial 

rr= rt(imag(rt)==0); 

%checking whether exactly one zero 

%belongs to interval [l,r] 

if sum(rr>l &rr< r)==1 

counter=counter+1; 

end 

end 

%calculating the proportion of generated 

%polynomials having 

%exactly one zero in [l,r] 

p=counter/n; 

%calculating the standard 

%deviation of the estimate 

std=sqrt(p*(1-p)/n); 

 

function [m,std]=est_pres_meth(n,n1,l,r) 

%input parameters : 

%   n- number of tuples; 

% n1-upper bound for the moduli of all the zeros 

%   l,r- the left and right  bounds 

%   of the interval 

%output : m  - estimate of P1([l;r]), 

%          std - standard deviation 

 [m1,s1]=unique_real_zero(n,n1,l,r); 

 

 [m2,s2]=two_zeros_greater_r(n,n1,l,r); 
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 [m3,s3]=two_zeros_less_l(n,n1,l,r); 

 [m4,s4]=one_zero_less_l(n,n1,l,r); 

% calculating estimate of P1([l;r]) 

 m=m1+m2+m3+m4; 

%calculating standard deviation 

 std=sqrt(s1^2+s2^2+s3^2+s4^2); 

 

 Function unique_real_zero 

function [est_prob,est_std]=... 

  unique_real_zero(n,n1,l,r) 

%function for calculating unique real zero 

%input: n-number of generated tuples, 

% n1-upper bound for the moduli of all the zeros 

% l,r-left and right bounds of interval 

%output: est_prob,est_std - estimate of 

% the probability 

% and standard deviation of the estimate 

 integrand1=[]; 

 

 for i=1:n 

 %generating the coefficients of the polynomial 

  rp=-n1+rand*(2*n1); 

  ip=rand*n1; 

  rr=l+rand*(r-l); 

 %calculating the integrand 

  integrand1=... 

   [integrand1 (1/sqrt(2*pi))^3*... 

  exp(-((rr+2*rp)^2+(2*rr*rp+rp^2+ip^2)^2... 

  +(rr*rp^2+rr*ip^2)^2)/2)*... 

  (4*rp^2*ip+4*ip^3+4*ip*rr^2-8*rp*ip*rr)]; 

 end 

%calculating the volume 

 v=2*n1^2*(r-l); 

%calculating the estimate for Pc 

 est_prob=mean(integrand1)*v; 

%calculating sample standard deviation 

 est_std=std(integrand1)*v/sqrt(n); 

 

Function one_zero_less_l 

function [est_prob,est_std]=... 

           one_zero_less_l(n,n1,l,r) 

%input: n-number of generated tuples, 

% n1-upper bound for the moduli of all the zeros 

% l,r-left and right bounds of interval 

%output: est_prob,est_std - estimate of 

% the probability 

% and standard deviation of the estimate 

 integrand2=[]; 

 for i=1:n 

  %generating the coefficients of the polynomial 

  rr1=-n1+rand*(l+n1); 

  rr2=l+rand*(r-l); 

  rr3=r+rand*(n1-r); 

% calculating the integrand 

  integrand2=... 

   [integrand2 (1/sqrt(2*pi))^3*... 

   exp(-((rr1*rr2*rr3)^2+... 

   (rr1*rr2+rr1*rr3+rr2*rr3)^2+... 

   (rr1+rr2+rr3)^2)/2)*(rr3-rr1)*... 

   (rr3-rr2)*(rr2-rr1)]; 

 end 

%calculating the volume 

  v=(l+n1)*(r-l)*(n1-r); 

%calculating the estimate for P1 

  est_prob=mean(integrand2)*v; 

%calculating standard deviation 

  est_std=std(integrand2)*v/sqrt(n); 

 

Function two_zeros_greater_r 

function [est_prob,est_std]=... 

    two_zeros_greater_r(n,n1,l,r) 

%function for finding two real zeros 

% greater than the right bound 

%input: n-number of tuples, 

% n1-upper bound for the moduli of all the zeros 

% l,r-left and right bounds of interval 

%output: est_prob,est_std - estimate of 

% the probability 

% and standard deviation of the estimate 

 integrand2=[]; 

 for i=1:n 

%generating the coefficients of the polynomial 

   rr1=l+rand*(r-l); 

   rr2=r+(1-sqrt(rand))*(n1-r); 

   rr3=rr2+rand*(n1-rr2); 

%calculating the integrand 

   integrand2=... 

   [integrand2 (1/sqrt(2*pi))^3*... 

   exp(-((rr1*rr2*rr3)^2+(rr1*rr2+... 

   rr1*rr3+rr2*rr3)^2+(rr1+rr2+rr3)^2)/2)*... 

   (rr3-rr1)*(rr3-rr2)*(rr2-rr1)]; 

 end 

%calculating the volume 

 v=(n1-r)^2*(r-l)/2; 

%calculating the estimate for P1 

 est_prob=mean(integrand2)*v; 

%calculating standard deviation 

 est_std=std(integrand2)*v/sqrt(n); 

 

Function two_zeros_less_l 

function [est_prob,est_std]=... 

        two_zeros_less_l(n,n1,l,r) 

%input: n-number of generated tuples, 

% n1-upper bound for the moduli of all the zeros 

%     l,r-left and right bounds of interval 

%output: est_prob,est_std - estimate of 

% the probability 

% and standard deviation of the estimate 

integrand2=[]; for i=1:n 

%generating the coefficients of the polynomial 

 rr1=-n1+(1-sqrt(rand))*(l+n1); 

 rr2=rr1+rand*(l-rr1); 

 rr3=l+rand*(r-l); 

%calculating the integrand 

 integrand2=... 

 [integrand2 (1/sqrt(2*pi))^3*... 

 exp(-((rr1*rr2*rr3)^2+... 

 (rr1*rr2+rr1*rr3+rr2*rr3)^2+... 

 (rr1+rr2+rr3)^2)/2)*(rr3-rr1)*... 

 (rr3-rr2)*(rr2-rr1)]; 

end 
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%calculating the volume 

 v=(l+n1)^2*(r-l)/2; 

%calculating the estimate for P2 

 est_prob=mean(integrand2)*v; 

%calculating standard deviation 

 est_std=std(integrand2)*v/sqrt(n); 
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