

Abstract— The problem of finding the probability distribution
of the number of zeros in some real interval of a random

polynomial whose coefficients have a given continuous joint

density function is considered. A new simulation algorithm for

solving this problem is presented. The effectiveness of the

presented algorithm for the case where the real interval is small is

proved.

Keywords—Random Polynomial, Monte Carlo Algorithm,

Matlab, Simulation.

I. INTRODUCTION

NALYSIS of the behavior of random polynomials and

their zeros has been a subject of active research for

several decades. Motivation for these studies and most of

the early results in this field were collected and summarized

in the monograph by Bharucha-Reid and Sambandham [1],

where one can find applications in such varied fields as

spectral analysis, statistics, filtering theory and economics.

More recent results appear, for example, in [2],[3],[7]-[11]

among others. Consider a random polynomial

)(...)()(),(1

10

* ωωωω n

nn

n axaxaaF +++= −
 (1)

of degree n, whose coefficients are real-valued random

variables with given continuous joint probability density

function),...,,(10 naaap . An important problem is the

study of the behavior of zeros of the random polynomial (1).

A natural first step in the study of the behavior of such

zeros is to estimate the distribution of the random variable

),(ωBN , which is the number of zeros of the polynomial

),(* ωaF that belong to some arbitrary interval

)]();([BrBlB = on the Euclidean space R. This problem

has been widely studied and has been solved for some

specific cases in which the coefficients

)(),...,(0 ωω naa are distributed according to some given

law or satisfy certain specific conditions. For quadratic

random polynomials the following result has been obtained

and described in [9].

Theorem 1

The probability),(2 glP that two zeros of

)()()(),(2

2 ωωωω cxbxaxF ++=

belong to a real

interval (l,d) equals

Manuscript received February 21.02, 2012.
E. Shmerling, Department of Computer Science and Mathematics, Ariel

University Center of Samaria, Science Park ,Ariel 44837, Israel. (e-mail:

efraimsh@ariel.ac.il; efraimsh@yahoo.com).

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∞−

+−

−

−−

∞

+−

−−

∞ +−

− −−

∞ −

+− −−

+

+

+

0)(

2 4/

0

2

)(4/

0

)(

2

4/

0

2

)(

4/

2

2

2

2

2

2

2

2

),,(

),,(

),,(

),,(

dla

al

blal

ab

ad

dla

bdad

ab

dla

ad

b

bdad

al

dla

ab

blal

dcdbdacbap

dcdbdacbap

dcdbdacbap

dcdbdacbap

The probability),(dlPl that exactly one zero of),(2 ωxF

belongs to an interval (l,d) equals

∫ ∫ ∫

∫ ∫ ∫

∞

∞−

∞

−−

−−

−−

∞

∞−

−−

∞−

−−

−−

+
adal

blal

bdad

adal bdad

bdal

dcdbdacbap

dcdbdacbap

2

2

2

2

),,(

),,(

Analogous formulas have been obtained for random

polynomials of degree n>2, all the coefficients of which

equal zero except)(),(10 ωω aa and)(ωna . It is shown

that for this type of random polynomials the problem of

defining the distribution of),(ωBN can be reduced to

calculating multiple integrals. In order to calculate these

intervals recently developed highly efficient multiple

integration algorithms and

software routines based on Monte Carlo simulation can be

utilized (some of these algorithms and routines are described

in [4],[5],[6]). The classical method for estimating the

probability that exactly k zeroes of),(ωaF
�

belong to B,

that has been actively used during the last decades, includes

the following steps:

• generating a set of random points),...,,(10 naaa ,

distributed according to),...,,(10 naaap , the

coordinates of which are the coefficients of the

polynomial

• for each generated point, calculating the zeros of
the corresponding polynomial and checking

whether exactly k zeros belong to B.

• calculating the proportion of generated

polynomials which have k zeros in B.

 If a set is big enough, the proportion of generated

polynomials which have k zeros in B is a sufficiently good

estimate for the desired probability.

 The algorithm requires generation of a big number of

points in order to achieve the desired rate of accuracy of the

estimate and is, therefore, time-expensive. On the other

Distribution of Number of Roots of Random

Polynomial Equations in Small Intervals

E. Shmerling

A

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 397

hand, the classical method requires generating random

vectors distributed according to the given joint probability

density function of the coefficients, and such generators may

not be available in some specific cases.

 The above mentioned disadvantages of the classical

method make the development of more effective algorithms

highly desirable. This motivated us to develop a new

simulation algorithm, which is more effective for the case

where the interval B is small. The algorithm is presented in

this article.

II. DESCRIPTION OF THE ALGORITHM

Let),(ωBN designate the number of real zeros of a

random polynomial of n-th order

)(...)(),(1

1 ωωω n

nn

n axaxaF +++= −

The problem of estimating P(N(B,ω)=i) with a given rate

of accuracy ε can be reduced to calculating the probabilities

P(i,m,B)=P(N(B,ω)=i∩N(R,ω)=m) that the polynomial has

exactly m real zeros, from which exactly i belong to B.

Let 1N designate a constant which satisfies the following

condition: the probability 1ε that

}|)(|1{max 11 Naini >+≤≤ ω is negligible with respect

toε . Obviously, the probability that real and imaginary
parts of all complex zeros of are smaller than 1N in

absolute value and the moduli of all real zeros of),(ωaFn

�

are smaller than 1N is greater than 11 ε− .

Let Q(i,m,B) denote the set consisting of all points
nRa ∈

�
 such that the corresponding polynomial)(aF

�
 has

exactly n-m distinct complex zeros and exactly m distinct

real zeros, from which exactly i belong to B. It can be easily

shown that Q(i,m,B) consists of a finite number of non-

intersecting semi-algebraic sets which can be properly

defined, therefore

∫= adapBmiQBmiP
��

),,(),,((2)

All the polynomials),,(),(BmiQaaF ∈
��

have k

complex zeros klzl ,1, = with positive imaginary parts

0>lip and real parts klrpl ,1, = such that

krprprp <<< ...21 , and m real zeros

nrrrrrr << ...21 such that mrrrrrr << ...21 , m=n-2k.

We utilize the expression

njSa j

k

j ,1,)1(=⋅−= , (3)

where the polynomials jS are elementary symmetric

functions of the roots nxxx ,...,, 21 of the equation

0)(=aF
�

. jS designates the sum of
j

nC products of j

factors ix with distinct indices:

...,

...,

,...

4213213

31212

211

++=

++=

+++=

xxxxxxS

xxxxS

xxxS n

 …

....21 nn xxxS =

Substituting

2

1

2

1 −− ⋅+ jj ipirp instead of jx , where j is

an odd integer less or equal to k ,
22

jj ipirp ⋅+ instead of

jx , where j is an even integer less or equal to 2/k ,

jrr instead of jx , where njk <<2 , in (3), we obtain

expressions for ja , 1=j , n as polynomial functions

() () ()()mrrkpikprf j

���
,, of variables ,,...,1 krprp

,,...,1 kipip .,...,1 mrrrr In order to calculate the integral

(2), we utilize the following change of variables from the

initial set of variables ()naaaa ,...,, 21=
�

 to a new set of

variables

() () ()()
().,...,,,...,,,...,,

,,

1121 mkk rrrripiprprprp

mrrkpikpr =
���

The integral (2) equals

() () ()()()
() () ()()

() () ()()()
() () ()(),,,

.,,,

.,,

,...,,,1

mrrkpikprd

mrrkpikpraJ

mrrkpikprf

mrrkpikprfp

n

D

���

����

���

���
∫

 (4)

where () () ()()()mrrkpikpraJ
����

,,, designates the

determinant of the matrix

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
()

() () ()()
() 














































m

n

m

n

k

n

k

n

k

n

k

n

rrd

mrrkpikprdf

rrd

mrrkpikprdf

rrd

mrrkpikprdf

rrd

mrrkpikprdf

ipd

mrrkpikprdf

ipd

mrrkpikprdf

ipd

mrrkpikprdf

ipd

mrrkpikprdf

rpd

mrrkpikprdf

rpd

mrrkpikprdf

rpd

mrrkpikprdf

rpd

mrrkpikprdf

������
⋮⋮

������

������
⋮⋮

������

������
⋮⋮

������

,,,,

,,,,

,,
...

,,

,,
...

,,

,,
...

,,

,,
...

,,

1

11

1

1

11

1

1

11

1

() () ()()()mrrkpikprad
����

,,, designates

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 398

() () ()
() ()
() () () (),...

...

......

111

1

11

ipdrpdrpdipd

ipdipd

rrdrrdrrd

mm

kk

mm

⋅⋅⋅⋅⋅

⋅⋅⋅

⋅⋅⋅⋅

−

−

−

 the integration domain D is a union of 1+− im sets

n

s RD ⊂ , ims −= ,0 ,defined as

()
()

() () ()
() () () ()

() ()
).;[)...;[

);[];[

...];[];[];[

];[...];[...];[

];[];0[...);0[

);[...);[;

11

1

21

121

1

∞×∞×

∞××

××××

××××

×−∞×∞××∞

×∞××∞×∞∞−

−++

−+

++

−

nis

is

ss

s

timesk

k

rrr

BrBrrr

BrrrBrrrBrBl

BlrrBlrrBlrr

Bl

rprp

�� ��� ��

Integral

() () ()()()
() () ()() () () ()()

() () ()()

() () ()()mrrkpikprd

mrrkpikprIntegrand

mrrkpikprdmrrkpikprJ

mrrkpikprfp

s

s

D

D

���

���

������

����

,,

,,

,,,,

.,,

⋅=

⋅

∫

∫

gives us the probability that),(ωaFn has exactly m real

zeros, from which exactly i belong to B and exactly s belong

to ()];(Bl−∞ .

Let's define bounded domains

() ()
() ()

() () ()
() ()

()
],;[

...];[];[

];[...];[

];[];[

];[...];[

];[];[

];0[...];0[];[

...];[];[

11

111

12

1

12

11

1111

1111

*

Nrr

NrrNBr

BrrrBrrr

BrrrBrBl

BlrrBlrr

BlrrBlN

NNNrp

NrpNND

n

is

iss

s

s

timesk

k

s

−

++

−++

+

−

−

×

×××

×××

×××

××××

××−×

×××××

××−=

��� ���� ��

ims −= ,0 , ∪
im

s

sDD
−

=

=
0

**

Obviously, in view of the definition of 1N , the difference

between the integral (4) over D and the integral over
*D is

negligible with respect to ε , which enables one to calculate
the integral over

*D instead of (4) in order to obtain an

approximation with the desired rate of accuracy ε .
Since

*D is an extremely convenient domain from the

point of view of generating random tuples uniformly

distributed in it (such tuples can be generated utilizing

standard uniform random number generator), classical

Monte Carlo algorithm can be used for numerical

calculation of the integral

() () ()()
() () ()().,,

,,
*

mrrkpikprd

mrrkpikprIntegrand
D

���

���
⋅∫

Let us formulate a theorem that proves the superior

efficiency of the presented method for defining the

distribution of the number of real zeros of random

polynomials that belong to sufficiently small intervals.

Let),(ωaFn
be a random polynomial with uniformly

bounded continuous joint probability density function of its

coefficients. Let),,(1NBmP designate the probability

that all the zeros of),(ωaFn are less than 1N in absolute

value and exactly m of them belong to a real interval

11],;[NrlNrlB <<<−= .

Let ()*1,,,_ NNBmpresstd designate the standard

deviation of the estimate of),,(1NBmP based on the

presented method, and let ()*1,,,_ NNBmclassstd

designate the standard deviation of the estimate of

),,(1NBmP based on the classical method. Both

estimates are obtained by generating
*N random tuples.

The following theorem is true.

Theorem 2 For any positive number g , 10 << g ,

there exists a positive number ()gl such that the following

condition is satisfied: for any real interval in];[11 NN− ,

the length of which ()Blen is less than ()gl , the ratio

() ()*1

*

1 ,,,_/,,,_ NNBmclassstdNNBmpresstd

 is less than g .

Proof: The estimate est_pres of),,(1NBmP based on

the presented method is ()()∑
=

*

1

*

*

1 N

i

itupDIntegrand
N

,

where ()itupD*

designates a random tuple uniformly

distributed in
*D , and the standard deviation of est_pres is

calculated via formula

()

()()()

(),

_
1

,,,_

*

1

2*

*

*

1

*

DV

presestitupDIntegrand
N

NNBmpresstd

N

i

⋅

⋅−=

=

∑
=

where ()*DV designates the volume of
*D . Assume

that numbers 01 >G and 02 >G exist such that

21)(GdIntegrandG << for any
*Dd ∈ .

We have the following inequality:

() ()*2*

*

1

1
,,,_ DVG

N
NNBmpresstd ⋅⋅<

.

On the other hand, we have the following formula for the

standard deviation of the estimate est_class of

),,(1NBmP based on the classical method

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 399

()

()

() ,)),,(1(
1

)),,(1(,,
1

,,,_

1

*

1*

11*

*

1

NBmPDVG
N

NBmPNBmP
N

NNBmclassstd

−⋅⋅⋅>

−⋅⋅≈

≈

which proves the theorem since

() ()() () .2 2

1

* km
NBlenDV <

At 3=n , we have a random polynomial),(3 ωaP

() () ()ωωω 32

2

1

3 axaxax +++ . Let's calculate the

probability that the polynomial has a unique real zero

belonging to the interval B=[l;r]. We have

() ()
() ()
() ()22

3

22

2

1

,,

2,,

2,,

iprprrrriprpf

iprprprrrriprpf

rprrrriprpf

+−≡

++⋅≡

+−≡

The Jacobian of transformation has the form

()()
()

()

() ()()

()

)()()()84

44()),

2,2(

1,1,

8444

21

220

222

det

,,,

2

32222

2

232

22

1

1

1

rpdipdrrdrriprprrip

ipiprprriprrrpip

rprrrprrrpp

RNBNPP

rriprprripipiprp

iprprp

iprrip

rprrrprr

rriprpaJ

N

N

N

l

r

l

c

⋅⋅−⋅+

+⋅⋅−⋅−+

++⋅+−

≈===

⋅⋅−⋅++⋅=

=
















+−−

⋅−

⋅−+−

=

=

∫ ∫ ∫
−

ωω ∩

�

For the case where we need to calculate the probability

that random polynomial has 3 real zeros satisfying certain

conditions, we have

() ()
()
() 3213213

3231213212

3213211

,,

,,

,,

rrrrrrrrrrrrf

rrrrrrrrrrrrrrrrrrf

rrrrrrrrrrrrf

−=

++=

++−=

and the Jacobian of transformation),,,(321 rrrrrraJ

has the form ()()()122313 rrrrrrrrrrrr −−− . In order to

calculate the probability that),(3 ωaP has 3 real roots, one

of which belongs to];[rl , we have to summarize 3

probabilities: the probability 0P that exactly one zero of

),(3 ωaP

belongs to];[rl and 2 zeros are greater than r,

the probability 1P that one real zero of),(3 ωaP is less

than l, another is between l and r, and the third is greater

than r, and the probability 2P that),(3 ωaP has 3 real

zeros , one of which belongs to];[rl and two others are

greater than r.

The probabilities 0P , 1P
and 2P can be calculated via

formulas

()

)()()()(

)()()

,

,(

12312

2313321

323121

3210

1 1

1

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrpP

r

l

N

r

N

rr

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−= ∫ ∫ ∫
 (5)

()

)()()()(

)()()

,

,(

12312

2313321

323121

3211

1

1

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrpP

l

N

r

l

N

r

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−= ∫ ∫ ∫
−

 (6)

()

)()()()(

)()()

,

,(

12312

2313321

323121

3212

1 1

2

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrpP

r

l

N

r

N

rr

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−= ∫ ∫ ∫
 (7)

In order to calculate the probability that),(3 ωaP has 3

real roots, two of them belonging to];[rl , we need to

calculate the probability that 2 zeros belong to];[rl and

one zero is less than l which equals

()

)()()()(

)()()

,

,(

12312

2313321

323121

321

1

1

2

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrp

l

N

N

l

N

rr

r

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−∫ ∫ ∫
−

 (8)

and the probability that),(3 ωaP has 2 zeros in];[rl

and one zero greater than r which equals

()

)()()()(

)()()

,

,(

12312

2313321

323121

1

0

1

1

321

1

1

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrp
rr

N

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−∫ ∫ ∫
 (9)

The probability that),(3 ωaP has 3 zeros belonging to

];[rl , can be found by calculating the following integral

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 400

()

)()()()(

)()()

,

,(

12312

2313321

323121

321

1

1

2

rrdrrdrrdrrrr

rrrrrrrrrrrrrr

rrrrrrrrrrrr

rrrrrrp

r

l

r

rr

r

rr

−⋅

−⋅−⋅⋅⋅−

⋅+⋅+⋅

++−∫ ∫ ∫
 (10)

Thus the problem of defining the distribution of

),(3 ωBN is reduced to calculating the 6 integrals

mentioned above. In order to calculate each of these

integrals numerically via classical Monte Carlo method we

need to generate a sequence of random tuples uniformly

distributed in its integration domain. For 2P the integration

domain is integral defined by the system of double

inequalities









<<

<<

<<

132

12

1

Nrrrr

Nrrr

rrrl

a sequence of random tuples

),(),(),(()(21 irrirrirrirr r=
�

Ni ,1=

uniformly distributed in the domain can be sampled in the

following way









−⋅+=

−⋅−+=

−⋅+=

)()(3)(

)()(21()(

)()(1)(

2123

12

1

rrNiunifrrirr

rNiunifrirr

lriuniflirr

 ,

where)(1 iunif ,)(2 iunif ,)(3 iunif),1(ni =

designate numbers in [0;1] sampled by the standard uniform

random number generator. The volume V of the integration

domain equals 2/)()(2 lrrN −⋅− . The Monte Carlo

estimate for 2P obtained via generating
*N tuples is given

by

.))()(())()((

))()(())()(

)(),()(

)()((),((

)(()(((
1

1223

1332

132

31213

1

21*

*

Virrirrirrirr

irrirrirrirr

irrirrirr

rrirrrrirrirr

irrirrp
N

N

⋅−⋅−

⋅−⋅⋅⋅

−⋅+

+⋅+⋅+

++−∑

Random tuples uniformly distributed in the domains

defined by systems of inequalities









<<

<<

<<

13

21

1

Nrrr

rrrrr

rrrl

 and








<<

<<

<<

rrrl

lrrrr

lrrN

3

21

11

can be sampled in an analogous way, integration domains

defined by systems of inequalities









<<

<<

<<−

rrrl

Nipl

NrpN

1

11

 and








<<

<<

<<−

13

2

11

Nrrr

rrrl

lrrN

are three-dimensional cubes, generating random tuples in

which is trivial. The integration domain defined by the

system









<<

<<

<<

rrrrr

rrrrr

rrrl

32

21

1

is a three-dimensional simplex with vertices (l;l;l), (l;l;r),

(l;r;r) and (r;r;r). It is well-known that generation of random

tuples uniformly distributed in a simplex is simple and fast

(see, for example [6]). In order to generate random tuple in a

simplex with (n+1) vertices 0V , 1V ,…, nV one has to

sample uniformly n random numbers in (0,1), sort them in

ascending order, thus obtaining n numbers nuu ,...,1 , and

set 1,0 10 == +nuu . The random tuple is given by

∑
=

+ −⋅
n

i

ii uuV
0

11)(.

III. RESULTS OF EXPERIMENTAL CALCULATIONS

In order to illustrate the effectiveness of the presented

method we obtained two estimates of the probability

),(1 rlP that random polynomial of order 3 whose

coefficients)(1 ωa ,)(2 ωa ,)(2 ωa ,are independent

standard Gaussian random variables, has exactly one zero in

certain intervals. One estimate was obtained by the

developed software based on the presented method (function

est_pres_meth), another was obtained by the developed

software based on the classical one (function

est_class_meth). The developed software enables one to

calculate standard deviations of both estimates which makes

it possible to compare the effectiveness of the classical

method and the presented one. The function est_pres_meth

calls four auxiliary functions:

• unique_real_zero

which gives an estimate for cP calculated via

presented method and the standard deviation of

the estimate

• two_zeros_greater_r

which gives an estimate for 0P

calculated via

presented method and the standard deviation of

the estimate

• two_zeros_less_l

which gives an estimate for 2P calculated via

presented method and the standard deviation of

the estimate

• one_zero_less_l

which gives an estimate for 1P calculated via

presented method and the standard deviation of

the estimate

The MATLAB code of the programs with comments is

presented in Appendix.

 The results of experimental calculations are given in the

following table.

TABLE 1

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 401

Interval

B=[l;r]

Std_pres Std_class Ratio

classStd

presStd

_

_

[0; 0.5]

[0; 0.25]

[0; 0.1]

[0; 0.05]

0.001904

0.000857

0.000332

0.000168

0.00120

0.000864

0.000553

0.001173

1.5866

0.9918

0.6003

0.14358

The estimates were based on the same number of

generated tuples)10(5
. Results of experimental

calculations presented in Table 1 illustrate that the ratio of

standard deviations of estimates obtained via presented

method and via classical one decreases as the length of

interval B decreases, therefore the presented method is

relatively more efficient than the classical one for small

intervals and much more efficient for extremely small

intervals.

IV. CONCLUSIVE REMARKS

 Let us stress the two main advantages of the presented

method. The first advantage is its superior efficiency for

small intervals proved in previous sections. The second

advantage of the presented method is that it enables one to

develop the software which can be implemented for

counting the zeros of random polynomials with arbitrary

joint probability density function of its coefficients, while

software routines based on the classical method can't be

universal since they have to incorporate a specific random

number generator for each type of random polynomials.

Program 2 described above with minor modifications can be

utilized for defining the distribution of the number of real

zeros in a given interval for any random polynomial of order

3 with continuous joint probability density function of its

coefficients. Software based on the presented method for

polynomials of higher order has to be developed, which is

one of the directions of further work.

In order to utilize the presented method for defining the

distribution of the number of real zeros of a random

polynomial),(* ωaFn

�
, all the coefficients of which are

random variables, the algorithm should be slightly modified.

The change of variables from),...,(0 naa to

))(),(),(,(0 mrrkpikpra
���

 should be utilized for

calculating integrals (2). The Jacobian of transformation

equals the corresponding Jacobian for the case where the

first coefficient equals one, multiplied by
na0 . For example,

we have the following formula for calculating the

probability that),(*3 ωaF has one real zero belonging to

];[rl and 2 complex zeros.

),()()()()84

44()

),2(

),2(,(

)1),(1),((

0

2

323

0

2

0

2

0

22

0

)(

)(0

00

1

1

1

adrpdipdrrdrriprprrip

ipiprparriparrrpa

iprprrrpa

rrrpaap

RNBNP

rN

lN

N

N

N r

l

⋅⋅−⋅+

+⋅⋅⋅⋅−⋅⋅−

++⋅

+−

≈≡=

∫ ∫ ∫ ∫
−

ωω ∩

where)(lN ,)(rN , 1N

are constants which satisfy the

condition: the probability 1ε that at least one of the

inequalities)()()(0 rNalN << ω

and

10
1

})(/)(1{max Naai
ni

<+
≤≤

ωω is not satisfied is

negligible with respect to ε .

APPENDIX

Function est_class_meth

function [p,std]=...

est_class_meth(l,r,n)

%input :

%l,r - left and right boundaries of the

%interval n - number of generated tuples

%output : p- estimate of proportion

% std - standard deviation of the estimate

counter=0;

for i=1:n

%generating the coefficients of the polynomial

pol=[1 [randn(1,3)]];

%finding the zeros of the polynomial

rt=roots(pol);

%finding the real zeros of the polynomial

rr= rt(imag(rt)==0);

%checking whether exactly one zero

%belongs to interval [l,r]

if sum(rr>l &rr< r)==1

counter=counter+1;

end

end

%calculating the proportion of generated

%polynomials having

%exactly one zero in [l,r]

p=counter/n;

%calculating the standard

%deviation of the estimate

std=sqrt(p*(1-p)/n);

function [m,std]=est_pres_meth(n,n1,l,r)

%input parameters :

% n- number of tuples;

% n1-upper bound for the moduli of all the zeros

% l,r- the left and right bounds

% of the interval

%output : m - estimate of P1([l;r]),

% std - standard deviation

 [m1,s1]=unique_real_zero(n,n1,l,r);

 [m2,s2]=two_zeros_greater_r(n,n1,l,r);

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 402

 [m3,s3]=two_zeros_less_l(n,n1,l,r);

 [m4,s4]=one_zero_less_l(n,n1,l,r);

% calculating estimate of P1([l;r])

 m=m1+m2+m3+m4;

%calculating standard deviation

 std=sqrt(s1^2+s2^2+s3^2+s4^2);

 Function unique_real_zero

function [est_prob,est_std]=...

 unique_real_zero(n,n1,l,r)

%function for calculating unique real zero

%input: n-number of generated tuples,

% n1-upper bound for the moduli of all the zeros

% l,r-left and right bounds of interval

%output: est_prob,est_std - estimate of

% the probability

% and standard deviation of the estimate

 integrand1=[];

 for i=1:n

 %generating the coefficients of the polynomial

 rp=-n1+rand*(2*n1);

 ip=rand*n1;

 rr=l+rand*(r-l);

 %calculating the integrand

 integrand1=...

 [integrand1 (1/sqrt(2*pi))^3*...

 exp(-((rr+2*rp)^2+(2*rr*rp+rp^2+ip^2)^2...

 +(rr*rp^2+rr*ip^2)^2)/2)*...

 (4*rp^2*ip+4*ip^3+4*ip*rr^2-8*rp*ip*rr)];

 end

%calculating the volume

 v=2*n1^2*(r-l);

%calculating the estimate for Pc

 est_prob=mean(integrand1)*v;

%calculating sample standard deviation

 est_std=std(integrand1)*v/sqrt(n);

Function one_zero_less_l

function [est_prob,est_std]=...

 one_zero_less_l(n,n1,l,r)

%input: n-number of generated tuples,

% n1-upper bound for the moduli of all the zeros

% l,r-left and right bounds of interval

%output: est_prob,est_std - estimate of

% the probability

% and standard deviation of the estimate

 integrand2=[];

 for i=1:n

 %generating the coefficients of the polynomial

 rr1=-n1+rand*(l+n1);

 rr2=l+rand*(r-l);

 rr3=r+rand*(n1-r);

% calculating the integrand

 integrand2=...

 [integrand2 (1/sqrt(2*pi))^3*...

 exp(-((rr1*rr2*rr3)^2+...

 (rr1*rr2+rr1*rr3+rr2*rr3)^2+...

 (rr1+rr2+rr3)^2)/2)*(rr3-rr1)*...

 (rr3-rr2)*(rr2-rr1)];

 end

%calculating the volume

 v=(l+n1)*(r-l)*(n1-r);

%calculating the estimate for P1

 est_prob=mean(integrand2)*v;

%calculating standard deviation

 est_std=std(integrand2)*v/sqrt(n);

Function two_zeros_greater_r

function [est_prob,est_std]=...

 two_zeros_greater_r(n,n1,l,r)

%function for finding two real zeros

% greater than the right bound

%input: n-number of tuples,

% n1-upper bound for the moduli of all the zeros

% l,r-left and right bounds of interval

%output: est_prob,est_std - estimate of

% the probability

% and standard deviation of the estimate

 integrand2=[];

 for i=1:n

%generating the coefficients of the polynomial

 rr1=l+rand*(r-l);

 rr2=r+(1-sqrt(rand))*(n1-r);

 rr3=rr2+rand*(n1-rr2);

%calculating the integrand

 integrand2=...

 [integrand2 (1/sqrt(2*pi))^3*...

 exp(-((rr1*rr2*rr3)^2+(rr1*rr2+...

 rr1*rr3+rr2*rr3)^2+(rr1+rr2+rr3)^2)/2)*...

 (rr3-rr1)*(rr3-rr2)*(rr2-rr1)];

 end

%calculating the volume

 v=(n1-r)^2*(r-l)/2;

%calculating the estimate for P1

 est_prob=mean(integrand2)*v;

%calculating standard deviation

 est_std=std(integrand2)*v/sqrt(n);

Function two_zeros_less_l

function [est_prob,est_std]=...

 two_zeros_less_l(n,n1,l,r)

%input: n-number of generated tuples,

% n1-upper bound for the moduli of all the zeros

% l,r-left and right bounds of interval

%output: est_prob,est_std - estimate of

% the probability

% and standard deviation of the estimate

integrand2=[]; for i=1:n

%generating the coefficients of the polynomial

 rr1=-n1+(1-sqrt(rand))*(l+n1);

 rr2=rr1+rand*(l-rr1);

 rr3=l+rand*(r-l);

%calculating the integrand

 integrand2=...

 [integrand2 (1/sqrt(2*pi))^3*...

 exp(-((rr1*rr2*rr3)^2+...

 (rr1*rr2+rr1*rr3+rr2*rr3)^2+...

 (rr1+rr2+rr3)^2)/2)*(rr3-rr1)*...

 (rr3-rr2)*(rr2-rr1)];

end

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 403

%calculating the volume

 v=(l+n1)^2*(r-l)/2;

%calculating the estimate for P2

 est_prob=mean(integrand2)*v;

%calculating standard deviation

 est_std=std(integrand2)*v/sqrt(n);

REFERENCES

[1] A.T. Bharucha-Reid and M. Sambandham, Random Polynomials,
Academic Press, Orlando/London, 1986.

[2] A. Edelman and E. Kostlan, ''How many zeros of a random
polynomial are real?'', Bull. Amer. Math. Soc. (N.S), Vol 32,1995,pp.

1-37.

[3] Y. Castin, Z. Hadzibabic, S. Stock, J. Dalibard and S. Stringari,
Quantized Vortices in the Ideal Bose Gas: A Physical Realization of

Random Polynomials. Phys. Rev. Lett. 96,04005,2006.

[4] Elise de Doncker, Shujun Li and Karlis Kaugars. Error Distribution
for Iterated Integrals, Proceedings of the 10th WSEAS International

Confenrence on Applied Mathematics, Dallas, Texas, USA,

November 2006, pp. 371-375.
[5] J. Kulhanec, R. Farana. Distributed simulation with SIPRO program.

Proceedings of the 7th WSEAS International Conference on

Automatic Control, Modeling and Simulation, ACMOS'05, Prague,
Czech Republic, 2005, pp. 6-9.

[6] R.L Rubinshtein, D.P. Kroese, Simulation and the Monte Carlo

Method, Wiley-Interscience, 2007.
[7] B. Shiffman and S. Zelditch, Equilibrium distribution of zeros of

random polynomials, International Math. Res. Notes, Vol. 2003, pp.

25-49, 2003
[8] E. Shmerling and K.J. Hochberg, Asymptotic behavior of roots of

random polynomial equations, Proc. Amer. Math. Soc., Vol.130,

2002, pp. 2761--2770.
[9] E. Shmerling and K.J. Hochberg, Sturm's Method in Counting Roots

of Random Polynomial Equations. Methodology and Computing in

Applied Probability, No.6, 2004, pp. 203--218.
[10] E. Shmerling. Algorithm for Defining the Distribution of Zeros of

Random Polynomials, Proceedings of the 11-th WSEAS International

Conference of Computers, Vol. 4,2007, pp. 657--660.
[11] M. Sodin, Zeros of Gaussian analytic functions, Math. Res. Lett.,

Vol.7, 2000, pp. 371-381.

[12] C. Stocker, S. Vey, A. Voigt. AMDiS-Adaptive multidimensional
simulations: adaptive finite elements for complex domain.

Proceedings of the 7th WSEAS International Conference on

Automatic Control, Modeling and Simulation, ACMOS'05, Prague,
Czech Republic, 2005, pp. 385-388

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 6, 2012 404

