

Abstract—Evolutionary computation (EC) algorithms have been

successfully applied to hard optimization problems. In this very

active research area one of the newest EC algorithms is a cuckoo

search (CS) metaheuristic for unconstrained optimization problems

which was developed by Yang and Deb in MATLAB software. This

paper presents our software implementation of CS algorithm which

we called CSApp. CSApp is an object-oriented system which is fast,

robust, scalable and error prone. User friendly graphical user

interface (GUI) enables simple adjustment of algorithm’s control

parameters. The system was successfully tested on standard

benchmark functions for unconstrained problems with various

number of parameters. CSApp software, as well as experimental

results are presented in this paper.

Keywords—Cuckoo search, Metaheuristic optimization, Software

system, Nature inspired algorithms.

I. INTRODUCTION

ANY practical, real life, problems belong to a class of

intractable combinatorial (discrete) or numerical

optimization problems because they are often highly nonlinear.

Optimization, or mathematical programming, refers to

choosing the best element from some set of available

alternatives. This means solving problems in which one seeks

to minimize or maximize a real function by systematically

choosing the values of real or integer variables from an

allowed set of values. This formulation, using a scalar, real-

valued objective function, is probably the simplest example.

The generalization of optimization theory and techniques to

other formulations comprises a large area of applied

mathematics.

In order to solve such problems, many methods for

continuous optimization and heuristics for discrete problems

were developed. Fitness landscape for such problems is

multimodal because of its nonlinear nature. Subsequently,

local search algorithms such as hill-climbing and its

modifications are not suitable, only global algorithms can

obtain optimal solutions [1].

Manuscript received December 25, 2011.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III-44006

N. Bacanin is with the Faculty of Computer Science, Megatrend

University, Belgrade, Serbia, e-mail: nbacanin@megatrend.edu.rs

Modern metheuristic algorithms (typically high-level

strategies which guide an underlying subordinate heuristic to

efficiently produce high quality solutions and increase their

performance) can be applied to both problem domains [2].

They include population based, iterative based, stochastic,

deterministic and other approaches.

Population based algorithms are working with a set of

solutions and trying to improve them. By the nature of

phenomenon simulated by the algorithm, population based

algorithms can be divided into two groups: evolutionary

algorithms (EA) and swarm intelligence based algorithms. The

most prominent representative of the first group is genetic

algorithms (GA). GA is a method for moving a population of

candidate solutions through fitness landscape using nature

inspired operators: selection, crossover and mutation. But,

second group of algorithms is of our particular interest in this

paper.

Researchers` attention has been attracted by the collective

intelligent behavior of insects or animal groups such as flocks

of birds, schools of fish, colonies of ants or bees and groups of

other animals/insects. The aggregate behavior of insects or

animals is called swarm behavior and the branch of artificial

intelligence which deals with the collective behavior of

swarms through complex interactions of individuals without

centralized supervision component is referred to as swarm

intelligence. Swarm intelligence has some advantages such as

scalability, fault tolerance, adaptation, speed, modularity,

autonomy, and parallelism [3].

Key factors for optimizing capability of swarm intelligence

systems are self-organization and division of labor. In such

self-organized system, each component (agent) may respond

efficiently to local stimuli individually, but they also can act

together to accomplish global task via labor division. Entire

system is fully adaptive to internal and external changes. Four

basic properties on which self-organization rely are: positive

feedback, negative feedback, fluctuations and multiple

interactions [4]. Positive feedback refers to a situation when

and individual recruits other individuals (agents) by some

directive. For example, positive feedback is when bees dance

in order to lead other bees to a specific food source site.

Negative feedback retracts individuals from bad solution for

the problem. Fluctuations are random behaviors of individuals

in order to explore new states, such as random flights of scouts

Implementation and performance

of an object-oriented software system

for cuckoo search algorithm

Nebojsa Bacanin

M

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 185

in a bee swarm. Multiple interactions are the basis of the tasks

to be carried out by certain rules.

A lot of swarm intelligence algorithms have been

developed. For example, ant colony optimization (ACO) is a

technique that is quite successful in solving many

combinatorial optimization problems. The inspiring source of

ACO was the foraging behavior of real ants which enables

them to find shortest paths between food sources and their

nests. While working from their nests to food source, ants

deposit a substance called pheromone. Paths that contain more

pheromone concentrations are chosen with higher probability

by ants than those that contain lower pheromone

concentrations. Thus, ants exchange information indirectly by

depositing pheromones. This system is called stigmergy, and it

is common among many insect societies.

The core philosophy of ACO algorithm involves the

movement of an ant colony through different locations which

is directed by two local decision policies: pheromone trails and

its attractiveness. This algorithm uses two more mechanisms in

order to balance exploitation – exploration tradeoff. These are

trail evaporation and daemon actions. First mechanism reduces

all trail values over time and decreases possibility of getting

stuck in local optima. The daemon actions are used to bias a

search process from non-local perspective.

Artificial bee colony algorithm (ABC) models intelligent

behavior of honey bee swarm. This algorithm produces

enviable results in optimization problems. Here, a possible

solution to a problem represents a food source (flower). Nectar

amount of flower designates the fitness of a solution. There are

three types of artificial bees (agents): employed, onlookers and

scouts [3]. They all work together in order to gain optimal

solution (find appropriate food source). Employed and

onlooker bees conduct exploitation process by generating

neighborhood solution of a chosen solution. Solution which

cannot be improved by employed and onlooker bees within

certain number of trials are considered to be exhausted and

they are abandoned. Abandoned solutions are replaced with

randomly generated solutions. This is exploration process and

it is guided by scout bee.

Besides ABC, there are also other algorithms which

simulate behavior of bees, such as: bee colony optimization

(BCO) and chaotic bee swarm optimization algorithm.

Particle swarm optimization (PSO) algorithm is another

example of swarm intelligence algorithms. PSO simulates

social behavior of bird flocking or fish schooling. PSO is a

stochastic optimization technique which is well adapted to the

optimization of nonlinear functions in multidimensional space

and it has been applied to several real-world problems. A basic

variant of the PSO algorithm operates by having a population

(swarm) of candidate solutions (particles). Particles are moved

within the search space according to trivial equitation. The

movements of the particles are guided by their own best

known position in the search space as well as the entire

swarm's best known position. This process is repeated until the

stopping criteria are met or the optimal solution is found.

Improved version of the PSO algorithm is particle swarm

inspired evolutionary algorithm (PS-EA) which is a hybrid

model of EA and PSO. PS-EA incorporates PSO with

heuristics of EA in the population generator and mutation

operator while retaining the workings of PSO.

Recently, a novel metaheuristic search algorithm has been

developed by Yang and Deb [5]. It is called cuckoo search

(CS) algorithm. It has been shown that it is very promising

algorithm which could outperform existing algorithms such as

PSO.

In this paper, we will present our implementation of CS

algorithm. In order to see its robustness and efficiency, we

developed object-oriented CS software, named CSApp, for

solving combinatorial and numeric optimization problems in

JAVA programming language. This software will be in detail

presented in this paper as well as testing results on four

standard benchmark functions with varying parameters.

II. CUCKOO BEHAVIOR

Cuckoos are special because they have many characteristics

that differentiate them from other birds. Their major

distinguishing feature is aggressive reproduction strategy.

Some species such as the Ani and Guira cuckoos lay their eggs

in communal nests, though they may remove others’ eggs to

increase the hatching probability of their own eggs [6].

Cuckoos are brood parasites. They use a kind of klepto-

parasitism which involves the use and manipulation of host

individuals, either of the same (intraspecific brood-parasitism)

or different species (interspecific brood-parasitism) to raise the

young of the brood parasite. Brood parasitism in which host

birds do not behave friendly against intruders, and throw alien

eggs away is called nest takeover. On the other hand, less

aggressive hosts will simply abandon its nest and build a new

nest at other location or will help care for young that are not

their own, at the expense of their own reproduction. This type

of bird parasitism is known as cooperative breeding.

Some parasite cuckoo species lay eggs that, to the human

eye, appear to mimic the appearance of the eggs of their

favorite hosts, which hinders discrimination and removal of

their eggs by host species. This cuckoos` feature increases

their fertility by reducing the probability of their eggs being

discovered by the host bird. One example of such behavior is

brood-parasitic Tapera [6].

 In general, cuckoo`s eggs hatch earlier than their host eggs.

As soon as the cuckoo chicks have hatched (and before they

can even see), they lift any other eggs they find in the nest onto

their backs and then throw them overboard. Hatching early

means that cuckoo chicks can oust other birds' eggs so that

they get all the food their foster parents bring home. Studies

also show that a cuckoo chick can also mimic the call of host

chicks to gain access to more feeding opportunity [5].

Described cuckoo characteristics, as well behavior model of

other animals have widespread use in computational

intelligence systems [7].

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 186

A. Lévy flights

By observing animals foraging behavior, it can be

concluded that animals search for food in a random or quasi-

random manner. The foraging trajectory of an animal is a

random walk because the next step is based on the current

location and the probability of moving to the next location.

 One type of random walk is Lévy flights in which the

step-lengths are distributed according to a heavy-tailed

probability distribution. Specifically, the distribution used is a

power law of the form y = x
-α

 , where 1 < α < 3, and therefore

has an infinite variance. According to conducted studies,

foraging behavior of many flying animals and insects show

typical characteristics of these flights [8].

Some flies use a series of straight flight paths with sudden

90
0
 turn, which leads to a Lévy-flight-style intermittent scale

free search pattern [5]. Another example from nature would be

when sharks and other sea predators cannot find food for some

time. In this situation, they abandon Brownian motion (random

motion seen in swirling gas molecules) and their trajectory

manifests Lévy-flight – a mix of long and short trajectories,

random movements found in turbulent fluids. This data

showed that Lévy-flights interspersed with Brownian motion

can describe the animals` hunting patterns. Two examples of

Lévy-flight path are shown in Fig 1.

Fig. 1. Lévy flight path example

Besides studies carried on animals, studies on human

behavior such as the hunter-gatherer foraging patterns also

show the typical feature of Lévy flights. Such behavior has

been applied to optimization and optimal search, and

preliminary results show its promising capability [5], [6].

Many population based methods use random search similar to

Lévy flight [9]

III. CUCKOO SEARCH ALGORITHM

In order to simplify the description of novel CS algorithm,

three idealized rules can be used [5]:

• Only one egg at a time is laid by cuckoo; Cuckoo dumps

its egg in a randomly chosen nest;

• Only the best nests with high quality eggs will be passed

into the next generation;

• The number of available host nests is fixed. Egg laid by a

cuckoo bird is discovered by the host bird with a probability

pd. In this case, the host bird has two options. It can either

throw the egg away, or it may abandon the nest, and build a

brand new nest at nearby location.

To make the things even simpler, the last assumption can be

approximated by the fraction of pd of n nests are replaced by

new nests with new random solutions. Considering

maximization problem, the quality (fitness) of a solution can

simply be proportional to the value of its objective function.

Other forms of fitness can be defined in a similar way to the

fitness function in genetic algorithms and other evolutionary

computation algorithms.

A simple representation where one egg in a nest represents a

solution and a cuckoo egg represent a new solution is used

here. The aim is to use the new and potentially better solutions

(cuckoos) to replace worse solutions that are in the nests. It is

clear that this algorithm can be extended to the more

complicated case where each nest has multiple eggs

representing a set of solutions.

When generating new solutions x
(t+1)

 for a cuckoo i, a Lévy

flight is performed using the following equation:

 xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ) (1)

where α (α>0) represents a step size. This step size should

be related to the scales of problem the algorithm is trying to

solve. In most cases, α can be set to the value 1. The above

expression is in essence stochastic equation for a random walk

which is a Markov chain whose next location (status) depends

on two parameters: current location (first term in Eq. 1) and

probability of transition (second term in the same expression).

The product ^ represents entry-wise multiplications.

Something similar to entry-wise product is seen in PSO

algorithm, but random walk via Lévy flight is much more

efficient in exploring the search space as its step length is

much longer in the long run [5].

The random step length is drawn from a Lévy distribution

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 187

which has an infinite variance with an infinite mean (see

equitation 2).

Lévy ~ u = t
 -λ

 (2)

where λ(0,3].

Here the consecutive jumps (steps) of a cuckoo essentially

form a random walk process which obeys a power-law step

length distribution with a heavy tail.

Taking into account basic three rules described above, the

pseudo code for CS algorithm is:

 Start

 Objective function f(x), x= (x1,x2…xu)
T

 Generating initial population of n host nests xi

 (i=1,2,…n)

 While (t<MaxGenerations) and (! termin.condit.)

 Move a cuckoo randomly via Lévy flights

 Evaluate its fitness Fi

 Randomly choose nest among n available nests

 (for example j)

 If(Fi > Fj) Replace j by the new solution;

 Fraction pd of worse nests are abandoned and

 new nests are being built;

 Keep the best solutions or nests with quality

 solutions;

 Rank the solutions and find the current best

 End while

 Post process and visualize results

 End

At a first glance, it seems that there are some similarities

between CS and hill-climbing [10] in respect with some large

scale randomization. But, these two algorithms are in essence

very different. Firstly, CS is population-based algorithm in a

way similar to GA and PSO, but it uses some sort of elitism

and/or selection similar to that used in harmony search.

Secondly, the randomization is more efficient as the step

length is heavy-tailed, and any large step is possible. And

finally, the number of tuning parameters is less than in GA and

PSO, and thus CS can be much easier adapted to a wider class

of optimization problems.

Applications of CS in engineering optimization problems

have shown its promising efficiency. For example, for spring

design and welded beam design problems, CS achieved better

results than other algorithms known in literature. New discrete

cuckoo search algorithm has recently been proposed to solve

nurse scheduling problem (NSP) [11]. Nurse scheduling

concepts are varied due to sophisticated and challenging real

world scenarios in nurse management system [11]. Also, an

efficient CS based approach has been implemented for data

fusion in wireless sensor networks [12]. In this work, Cuckoo

Based Particle Approach (CBPA) is used for formulation of

optimization network which nodes are deployed randomly and

organized as static clusters by CS algorithm.

IV. CSAPP SOFTWARE

We have developed our software system for the CS

algorithm. It is possible to use existing implementation in

MATLAB 7 [7] which can be found at http://www.mathworks.-

com/matlabcentral/fileexchange/29809-cuckoo-search-cs-

algorithm, but we chose to develop a new version because we

wanted to implement few improvements. Firstly, in order to

make algorithm execute faster, we developed our framework.

Secondly, our software is object-oriented. With object-

oriented concept, software scalability and maintenance is much

easier. As an object’s interface provides a roadmap for reusing

the object in new software, it also provides all the information

needed to replace the object without affecting other code. This

makes it easy to replace old and aging code with faster

algorithms and newer technology. So, if we want to implement

new logic for different optimization problems, it will take

substantially less time. On the other side, with object-oriented

approach, identifying the source of errors becomes easier

because objects are self-contained (encapsulation).

We chose to develop CSapp in JAVA programming

languages because of its many advantages over C, C++ and

other modern programming languages. For example, JAVA

does not support features like pointers, multiple inheritance,

goto statement and operator overloading, all of which slow

application development cycle. Unlike C++, JAVA has

garbage collector, so programmers do not need to reallocate

the memory or to worry about memory fragmentations. But,

the greatest features which motivates us to use JAVA is its

portability and JAVA`s APIs (Application Programming

Interface). JAVA supports three types of portability: source

code portability, CPU architecture portability, and OS/GUI

portability. Owing to portability feature, we can use our code

on different processors and operating systems with less

programming effort.

We used newest JDK (Java Development Kit) version 7 and

NetBeans IDE (Integrated Development Environment) version

6.9.1, which makes us up to date with the newest software

development concepts.

Thus, using previously described environment makes our

code more robust, scalable, less error prone and performance

is much better.

Screenshot of basic Graphical user interface (GUI) of

CSapp while testing Sphere function can be seen in Fig. 2. As

we can see form the picture, user can adjust multiple

parameters for CS algorithm. Adjustable parameters are:

• Runtime defines the number of times to run the algorithm.

• Max Cycle defines the number of cycles for

improvements. This is a stopping criterion.

• N defines the number of nests. Each nest represents one

problem solution.

• D is the number of parameters of a problem. Functions

can be optimized using different set of parameters.

• Pd is discovering probability. This is the probability that a

host bird can find an egg laid by cuckoo bird.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 188

Fig. 2: Screenshot of CSapp GUI while testing Sphere

function

In order to show how our software performs, we used four

standard benchmark functions [11]:

 Griewank

 Sphere

 Rastrigin

 Ackley

Griewank. The global minimum value for this function is 0

and the corresponding global optimum solution is xopt =(x1, x2,

. . . , xn) = (0, 0, . . . , 0). Since the number of local optima

increases with the dimensionality, this function is strongly

multimodal. The multimodality disappears for sufficiently high

dimensionalities (n > 30) and the problem seems unimodal.

Because of its interesting surface plot, Griewank is depicted in

Fig 3. Definition of the function is:

1)/cos(
4000

)(
11

2

ixf

n

i i

n

i

i

x
x

Sphere. The function is continuous, convex and unimodal.

Global minimum value 0 and optimum solution is xopt =(x1,

x2,…,xn) = (0, 0, . . . , 0). Definition:

n

i iXxf
1

2
)(

Rastrigin. It is based on Sphere function with the addition of

cosine modulation to produce many local minima. Thus the

function is multimodal. The locations of the minima are

regularly distributed. The difficult part about finding optimal

solutions to this function is that an optimization algorithm can

easily be trapped in a local optimum on its way towards the

global optimum The global minimum value for this function is

0 and the corresponding global optimum solution is xopt =(x1,

x2, . . . , xn) = (0, 0, . . . , 0). Definition:

))2cos(10(10)(
1

2

XX i

n

i i
nxf

Fig. 3: Surface plot and contour lines of Rastrigin function

Ackley function is a continuous, multimodal function

obtained by modulating an exponential function with a cosine

wave of moderate amplitude. Originally, it was formulated by

Ackley only for the two – dimensional case. It is presented

here in a generalized, scalable version. Its topology is

characterized by an almost flat (due to the dominating

exponential) outer region and a central hole or peak where the

modulations by the cosine wave become more and more

influential. The global minimum value for this function is 0

and the corresponding global optimum solution is xopt =(x1,

x2,…,xn) = (0, 0, . . . , 0). Because of its surface plot (Fig. 4),

with rise in parameter number, optimization results are getting

significantly worse, as will be showed in Section 5. Definition:

e
n

n
xf

n

i i

n

i i

X

X

20)2cos(
1

(

exp)
1

2,0exp(20)(

1

1

2

Fig. 4: Surface plot and contour lines of Ackley function

We wanted to see how our software optimizes these four

unconstrained benchmark functions. Quick summary of test

functions is given in Table 1, while testing results for our

algorithm are presented in the following section.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 189

TABLE I

QUICK SUMMARY OF TEST FUNCTIONS

Function Range Formulation

Griewank

[-600,600]
n

Sphere

[-100,100]
n

Rastrigin

[-5.12,5.12]
n

10n +

Ackley

[-32,32]

n

- 20exp –

exp

V. TESTS AND RESULTS

CFor all benchmark functions we set the parameters as

shown in Table 2. All tests were done on Intel Core2Duo

T8300 mobile processor on 2.4 MHZ with 4GB of RAM on

Windows 7 x64 Operating System and NetBeans 6.9.1 IDE.

As mentioned in Section 4, we used newest JDK Version 7 in

order to achieve competitive performance.

As can be seen from the Table 2, we tested all functions six

times with 5,10, 50, 100, 500 and 1000 parameters

respectively. We wanted to see how algorithm performs with

extremely low, moderate and high number of parameters. We

printed out best, mean and worst results as well the standard

deviation for 30 runs with 500 cycles per each run.

TABLE II

PARAMETER VALUES FOR BENCHMARK FUNCTIONS

Parameter Value

Runtime 30

Max Cycle 500

N 25

D 5/10/50/100/500/1000

Pd 0.25

We divided tests into two groups. First group comprises

tests with 5,10 and 50 parameters, while second group refers to

tests with 100, 500 and 1000 parameters. This division enables

easier comparison of obtained results.

In Tables 3, 4 and 5 are shown testing results for Griewank,

Sphere, Rastrigin and Ackley functions with 5,10 and 50

parameters, respectively. Due to most of the results are small

numbers close to zero, we used exponential notation.

TABLE III

RESULTS FOR FUNCTION OPTIMIZATION WITH 5 PARAMETERS

Function D=5

Griewank

Best

Mean

Worst

Stdev.

1.32E-28

6.72E-26

1.65E-23

3.26E-24

Sphere

Best

Mean

Worst

Stdev.

5.25E-26

2.50E-22

3.75E-21

7.88E-22

Rastrigin

Best

Mean

Worst

Stdev.

3.33E-22

1.77E-18

5.32E-16

9.56E-16

Ackley

Best

Mean

Worst

Stdev.

1.17E-12

8.52E-11

1.24E-09

2.23E-10

As we can see from Table 3, for all test functions CS

algorithm gained outstanding results. The best value is

acquired for Griewank function (10
-28

), which is very close to

the optimum. If we compare test results with 5 and 10

parameters (Table 3 and Table 4), we can see that results with

ten parameters for the same number of cycles are somewhat

worse but again very close to the optimum (error 10
-18

compared to 10
-28

).

TABLE IV

RESULTS FOR FUNCTION OPTIMIZATION WITH 10 PARAMETERS

Function D=10

Griewank

Best

Mean

Worst

Stdev.

9.18E-18

5.03E-15

4.82E-14

9.89E-15

Sphere

Best

Mean

Worst

Stdev.

4.29E-15

6.04E-13

5.12E-12

9.66E-13

Rastrigin

Best

Mean

Worst

Stdev.

1.77E-15

4.72E-09

4.54E-08

1.16E-08

Ackley

Best

Mean

Worst

Stdev.

1.65E-07

1.10E-06

3.85E-06

9.30E-07

From Table 5, which is listed below, it is interesting to

notice that performance penalty when going from 10 to 50

parameters is similar to the one when going from 5 to 10

parameters. Again, all results are very close to optimal value

and for some reasonable threshold, for example 10
-5

, all results

are perfect.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 190

TABLE V

RESULTS FOR FUNCTION OPTIMIZATION WITH 50 PARAMETERS

Function D=50

Griewank

Best

Mean

Worst

Stdev.

1.58E-9

1.60E-8

1.10E-7

2.50E-8

Sphere

Best

Mean

Worst

Stdev.

2.36E-8

4.64E-6

4.28E-5

8.43E-6

Rastrigin

Best

Mean

Worst

Stdev.

8.53E-8

8.01E-6

5.48E-5

1.23E-5

Ackley

Best

Mean

Worst

Stdev.

3.91E-5

5.39E-4

1.25E-3

4.19E-4

In another test set, we used much larger number of

parameters. Tests on the same benchmark functions with 100,

500 and 1000 parameters are shown on Tables 6, 7 and 8

respectively.

TABLE VI

RESULTS FOR FUNCTION OPTIMIZATION WITH 100 PARAMETERS

Function D=100

Griewank

Best

Mean

Worst

Stdev.

3.62E-9

2.81E-8

3.30E-6

3.11E-7

Sphere

Best

Mean

Worst

Stdev.

3.12E-6

4.62E-5

1.85E-4

5.28E-5

Rastrigin

Best

Mean

Worst

Stdev.

4.45E-6

1.31E-4

7.00E-4

1.64E-4

Ackley

Best

Mean

Worst

Stdev.

1.93E-4

0.002

0.003

0.002

If we compare results between last test in first set and first

test in second set (with 50 and 100 parameters, Tables 5 and

6), it is interesting to notice that Griewank's function best

solution in test with 100 parameters is just slightly worse than

the best solution in the test with 50 parameters (in both cases,

error is 10
-9

). Despite, doubled numbers of parameters in the

second test, results are practically the same. This is also the

case in mean results comparison. Only in worst results test,

Griewank function optimization showed smoothly worse result

in 100 parameter test, by factor of 10
-1

.

 For all other test functions, best solutions in 100 parameter

test are worse than those in 50 parameter test by approximately

the factor of 10
-2

. Similar situation is in mean and worse

results comparison with exception of Ackley function, where

mean and worst results are penalized by 10
-4

 and 10
-3

respectively.

As we can see from Table 7, results with 500 parameters are

noticeable worse than those with 100 parameters (Table 6).

For mean, worst and standard deviation, for all test functions

with exception of Griewank, exponential inscription of

decimal number which represents result is no longer needed.

For example, even best result for Ackley function is noticeably

greater than zero (0.002). For all other functions, best results

are still smaller than zero (error 10
-4

 or 10
-6

).

TABLE VII

RESULTS FOR FUNCTION OPTIMIZATION WITH 500 PARAMETERS

Function D=500

Griewank

Best

Mean

Worst

Stdev.

3.68E-6

1.07E-4

0.001

2.63E-4

Sphere

Best

Mean

Worst

Stdev.

5.91E-4

0.004

0.014

0.004

Rastrigin

Best

Mean

Worst

Stdev.

4.74E-4

0.010

0.085

0.017

Ackley

Best

Mean

Worst

Stdev.

0.002

0.449

5.419

1.257

Finally, as expected, with 1000 parameters tests (Table 8),

satisfying results are obtained only for Griewank function

whose best is within the value of 10
-5

. Even for Griewank,

worst result is noticeable greater than zero (0.001). If we

would run tests with more than 1000 parameters, Griewank

function results would become dissatisfactory. For the

remaining three benchmark functions, best, mean and worst

values are unsatisfying (in the range of [0.003, 11.469]).

Ackley`s function worst value is even 11.459, which is far

away from real optimum.

According to test results, it can be concluded that Griewank

function is the easiest for optimization by CSapp, while at the

other hand, Ackley is the hardest for optimization. Also, for

Ackley function it is interesting to notice performance penalty

with the rise in parameter numbers in all, best, mean, worst

and standard deviation results.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 191

TABLE VIII

RESULTS FOR FUNCTION OPTIMIZATION WITH 1000 PARAMETERS

Function D=1000

Griewank

Best

Mean

Worst

Stdev.

3.82E-5

3.30E-4

0.001

3.02E-4

Sphere

Best

Mean

Worst

Stdev.

0.002

0.028

0.112

0.027

Rastrigin

Best

Mean

Worst

Stdev.

0.003

0.032

0.176

0.043

Ackley

Best

Mean

Worst

Stdev.

0.005

2.426

11.469

3.559

In order to visualize test results changes of best, mean,

worst and standard deviation results for Griewank and Ackley

functions, summary of results for both functions are shown in

Tables 9 and 10 respectively. From presented tables, it can

clearly be seen difference in optimization results between

Griewank and Ackley functions.

TABLE IX

RESULTS SUMMARY FOR GRIEWANK FUNCTION

 Best Mean Worst Stdev

D=5 1.32E-28 6.72E-26 1.65E-23 3.26E-24

D=10 9.18E-18 5.03E-15 4.82E-14 9.89E-15

D=50 1.58E-9 1.60E-8 1.10E-7 2.50E-8

D=100 3.62E-9 2.81E-8 3.30E-6 3.11E-7

D=500 3.68E-6 1.07E-4 0.001 2.63E-4

D=1000 3.82E-5 3.30E-4 0.001 3.02E-4

TABLE X

RESULTS SUMMARY FOR ACKLEY FUNCTION

 Best Mean Worst Stdev

D=5 1.17E-12 8.52E-11 1.24E-09 2.23E-10

D=10 1.65E-07 1.10E-06 3.85E-06 9.30E-07

D=50 3.91E-5 5.39E-4 1.25E-3 4.19E-4

D=100 1.93E-4 0.002 0.003 0.002

D=500 0.002 0.449 5.419 1.257

D=1000 0.005 2.426 11.469 3.559

Sphere and Rastrigin functions` optimization showed

similar results for all test cases. In some tests Sphere is slightly

better, while in others Rastrigin obtained better results. For

easier comparison, collectively results (best, mean, worst and

standard deviation values) for Sphere and Rastrigin functions

are put in Tables 11 and 12, respectively.

TABLE XI

RESULTS SUMMARY FOR SPHERE FUNCTION

 Best Mean Worst Stdev

D=5 5.25E-26 2.50E-22 3.75E-21 7.88E-22

D=10 4.29E-15 6.04E-13 5.12E-12 9.66E-13

D=50 2.36E-8 4.64E-6 4.28E-5 8.43E-6

D=100 3.12E-6 4.62E-5 1.85E-4 5.28E-5

D=500 5.91E-4 0.004 0.014 0.004

D=1000 0.002 0.028 0.112 0.027

As we can see from Tables 11 and 12, in almost all testing

scenarios (different parameter set), result difference between

corresponding best, mean and worst values is less than 10
-1

.

The only exception is test with 5 parameter tests, where Sphere

function substantially outperformed Rastrigin (relative 10
-4

).

 TABLE XII

RESULTS SUMMARY FOR RASTRIGIN FUNCTION

 Best Mean Worst Stdev

D=5 3.33E-22 1.77E-18 5.32E-16 9.56E-16

D=10 1.77E-15 4.72E-09 4.54E-08 1.16E-08

D=50 8.53E-8 8.01E-6 5.48E-5 1.23E-5

D=100 4.45E-6 1.31E-4 7.00E-4 1.64E-4

D=500 4.74E-4 0.010 0.085 0.017

D=1000 0.003 0.032 0.176 0.043

VI. CONCLUSION

We designed, developed and tested a software system in

JAVA for unconstrained optimization problems based on Yan

and Deb`s CS algorithm. Because of its flexible object-

oriented design, our software can be modified to accommodate

large number of different optimization problems in both,

function optimization and engineering domain. Benchmark

tests show that superior results can be generated and system is

ready to be applied to new problems and used as a valuable

tool for further research.

REFERENCES

[1] Yang, X. S., Nature-Inspired Metaheuristic Algorithms, Luniver Press,

2008, pp. 128.

[2] T. Y. Chen, Y. L. Cheng, Global optimization using hybrid approach,

WSEAS Transactions on Mathematics, Vol. 7, Issue 6, 2008, pp. 254-

262.

[3] Behriye Akay, Dervis Karaboga, A modified Artificial Bee Colony

algorithm for real-parameter optimization, Information Sciences, Article

in Press, doi:10.1016/j.ins.2010.07.015, 2010.

[4] L. Jiann-Horng, H. Li-Ren, Chaotic bee swarm optimization algorithm

for path planning of mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary computing, 2009, pp. 84-89.

[5] Yang, X. S. and Deb, S., Cuckoo search via Lévy flights, in: Proc. of

World Congress on Nature & Biologically Inspired Computing (NaBIC

2009), 2009, pp. 210-214.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 192

[6] Yang, X.S., and Deb, S. Engineering Optimization by Cuckoo Search,

Int. J. of Mathematical Modeling and Numerical Optimization, Vol. 1,

No. 4, 2010, pp. 330–343.

[7] Tricia Rambharose, Alexander Nikov, Computational intelligence-based

personalization of interactive web systems, WSEAS Transactions on

Information Science and Applications, Vol. 7, Issue 4, 2010, pp. 484-

497.

[8] Pavlyukevich I. J. ,Cooling down Lévy flights, J. of Physics A:

Mathematical and Theoretical, Vol. 40, No. 41, 2007, pp. 225-232.

[9] M. Ettaouil, C. Loqman: Constraint satisfaction problems solved by

semidefinite relaxations, WSEAS Transactions on Computers, Vol. 7,

Issue 9, 2008, pp. 951-961.

[10] Mahmood M. Nesheli, Othman C., Arash Moradkhani R., Optimization

of Traffic Signal Coordination System on Congestion: A Case Study,

WSEAS Transactions on Advances in Engineering Education, Vol. 6,

Issue 7, 2009, pp. 203-212.

[11] Tein L. H. and Ramli R., Recent advancements of nurse scheduling

models and a potential path, in: Proc. 6th IMT-GT Conference on

Mathematics, Statistics and its Applications (ICMSA), 2010, pp. 395-

409.

[12] M. Dhivya, Energy Efficient Computation of Data Fusion in Wireless

Sensor Networks Using Cuckoo Based Particle Approach (CBPA), Int.

J. of Communications, Network and System Sciences, Vol. 4, No. 4,

2011, pp. 249-255.

[13] Dervis Karaboga, Bahriye Basturk, A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm, Journal of Global Optimization, Vol. 39, Issue 3, 2007, pp.

459-471.

Nebojsa Bacanin received B.S. and M.S. in

economics and computer science in 2006 and 2008

from Megatrend University of Belgrade and also

M.S. in computer science in 2008 from University

of Belgrade

 He is currently a Ph.D. student at Faculty of

Mathematics, Computer Science department,

University of Belgrade and works as teaching

assistant at Faculty of Computer Science, Megatrend

University of Belgrade. He is the author or coauthor

of five papers. His current research interest includes nature inspired

metaheuristics.

 Mr. Bacanin participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 193

