
 

 

 

Abstract—Evolutionary computation (EC) algorithms have been 

successfully applied to hard optimization problems. In this very 

active research area one of the newest EC algorithms is a cuckoo 

search (CS) metaheuristic for unconstrained optimization problems 

which was developed by Yang and Deb in MATLAB software. This 

paper presents our software implementation of CS algorithm which 

we called CSApp. CSApp is an object-oriented system which is fast, 

robust, scalable and error prone. User friendly graphical user 

interface (GUI) enables simple adjustment of algorithm’s control 

parameters. The system was successfully tested on standard 

benchmark functions for unconstrained problems with various 

number of parameters. CSApp software, as well as experimental 

results are presented in this paper. 

 

Keywords—Cuckoo search, Metaheuristic optimization, Software 

system, Nature inspired algorithms.  

I. INTRODUCTION 

ANY practical, real life, problems belong to a class of 

intractable combinatorial (discrete) or numerical 

optimization problems because they are often highly nonlinear. 

Optimization, or mathematical programming, refers to 

choosing the best element from some set of available 

alternatives. This means solving problems in which one seeks 

to minimize or maximize a real function by systematically 

choosing the values of real or integer variables from an 

allowed set of values. This formulation, using a scalar, real-

valued objective function, is probably the simplest example. 

The generalization of optimization theory and techniques to 

other formulations comprises a large area of applied 

mathematics.  

In order to solve such problems, many methods for 

continuous optimization and heuristics for discrete problems 

were developed. Fitness landscape for such problems is 

multimodal because of its nonlinear nature. Subsequently, 

local search algorithms such as hill-climbing and its 

modifications are not suitable, only global algorithms can 

obtain optimal solutions [1]. 
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Modern metheuristic algorithms (typically high-level 

strategies which guide an underlying subordinate heuristic to 

efficiently produce high quality solutions and increase their 

performance) can be applied to both problem domains [2]. 

They include population based, iterative based, stochastic, 

deterministic and other approaches. 

Population based algorithms are working with a set of 

solutions and trying to improve them. By the nature of 

phenomenon simulated by the algorithm, population based 

algorithms can be divided into two groups: evolutionary 

algorithms (EA) and swarm intelligence based algorithms. The 

most prominent representative of the first group is genetic 

algorithms (GA). GA is a method for moving a population of 

candidate solutions through fitness landscape using nature 

inspired operators: selection, crossover and mutation. But, 

second group of algorithms is of our particular interest in this 

paper. 

Researchers` attention has been attracted by the collective 

intelligent behavior of insects or animal groups such as flocks 

of birds, schools of fish, colonies of ants or bees and groups of 

other animals/insects. The aggregate behavior of insects or 

animals is called swarm behavior and the branch of artificial 

intelligence which deals with the collective behavior of 

swarms through complex interactions of individuals without 

centralized supervision component is referred to as swarm 

intelligence. Swarm intelligence has some advantages such as 

scalability, fault tolerance, adaptation, speed, modularity, 

autonomy, and parallelism [3]. 

Key factors for optimizing capability of swarm intelligence 

systems are self-organization and division of labor. In such 

self-organized system, each component (agent) may respond 

efficiently to local stimuli individually, but they also can act 

together to accomplish global task via labor division. Entire 

system is fully adaptive to internal and external changes. Four 

basic properties on which self-organization rely are: positive 

feedback, negative feedback, fluctuations and multiple 

interactions [4]. Positive feedback refers to a situation when 

and individual recruits other individuals (agents) by some 

directive. For example, positive feedback is when bees dance 

in order to lead other bees to a specific food source site. 

Negative feedback retracts individuals from bad solution for 

the problem. Fluctuations are random behaviors of individuals 

in order to explore new states, such as random flights of scouts 
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in a bee swarm. Multiple interactions are the basis of the tasks 

to be carried out by certain rules. 

A lot of swarm intelligence algorithms have been 

developed. For example, ant colony optimization (ACO) is a 

technique that is quite successful in solving many 

combinatorial optimization problems. The inspiring source of 

ACO was the foraging behavior of real ants which enables 

them to find shortest paths between food sources and their 

nests. While working from their nests to food source, ants 

deposit a substance called pheromone. Paths that contain more 

pheromone concentrations are chosen with higher probability 

by ants than those that contain lower pheromone 

concentrations. Thus, ants exchange information indirectly by 

depositing pheromones. This system is called stigmergy, and it 

is common among many insect societies.  

The core philosophy of ACO algorithm involves the 

movement of an ant colony through different locations which 

is directed by two local decision policies: pheromone trails and 

its attractiveness. This algorithm uses two more mechanisms in 

order to balance exploitation – exploration tradeoff. These are 

trail evaporation and daemon actions. First mechanism reduces 

all trail values over time and decreases possibility of getting 

stuck in local optima. The daemon actions are used to bias a 

search process from non-local perspective.  

Artificial bee colony algorithm (ABC) models intelligent 

behavior of honey bee swarm. This algorithm produces 

enviable results in optimization problems. Here, a possible 

solution to a problem represents a food source (flower). Nectar 

amount of flower designates the fitness of a solution. There are 

three types of artificial bees (agents): employed, onlookers and 

scouts [3]. They all work together in order to gain optimal 

solution (find appropriate food source). Employed and 

onlooker bees conduct exploitation process by generating 

neighborhood solution of a chosen solution. Solution which 

cannot be improved by employed and onlooker bees within 

certain number of trials are considered to be exhausted and 

they are abandoned. Abandoned solutions are replaced with 

randomly generated solutions. This is exploration process and 

it is guided by scout bee.  

Besides ABC, there are also other algorithms which 

simulate behavior of bees, such as: bee colony optimization 

(BCO) and chaotic bee swarm optimization algorithm. 

Particle swarm optimization (PSO) algorithm is another 

example of swarm intelligence algorithms. PSO simulates 

social behavior of bird flocking or fish schooling. PSO is a 

stochastic optimization technique which is well adapted to the 

optimization of nonlinear functions in multidimensional space 

and it has been applied to several real-world problems. A basic 

variant of the PSO algorithm operates by having a population 

(swarm) of candidate solutions (particles). Particles are moved 

within the search space according to trivial equitation. The 

movements of the particles are guided by their own best 

known position in the search space as well as the entire 

swarm's best known position. This process is repeated until the 

stopping criteria are met or the optimal solution is found.   

Improved version of the PSO algorithm is particle swarm 

inspired evolutionary algorithm (PS-EA) which is a hybrid 

model of EA and PSO. PS-EA incorporates PSO with 

heuristics of EA in the population generator and mutation 

operator while retaining the workings of PSO. 

Recently, a novel metaheuristic search algorithm has been 

developed by Yang and Deb [5]. It is called cuckoo search 

(CS) algorithm. It has been shown that it is very promising 

algorithm which could outperform existing algorithms such as 

PSO.  

In this paper, we will present our implementation of CS 

algorithm. In order to see its robustness and efficiency, we 

developed object-oriented CS software, named CSApp, for 

solving combinatorial and numeric optimization problems in 

JAVA programming language. This software will be in detail 

presented in this paper as well as testing results on four 

standard benchmark functions with varying parameters.  

II. CUCKOO BEHAVIOR 

Cuckoos are special because they have many characteristics 

that differentiate them from other birds. Their major 

distinguishing feature is aggressive reproduction strategy. 

Some species such as the Ani and Guira cuckoos lay their eggs 

in communal nests, though they may remove others’ eggs to 

increase the hatching probability of their own eggs [6].  

Cuckoos are brood parasites. They use a kind of klepto-

parasitism which involves the use and manipulation of host 

individuals, either of the same (intraspecific brood-parasitism) 

or different species (interspecific brood-parasitism) to raise the 

young of the brood parasite.  Brood parasitism in which host 

birds do not behave friendly against intruders, and throw alien 

eggs away is called nest takeover. On the other hand, less 

aggressive hosts will simply abandon its nest and build a new 

nest at other location or will help care for young that are not 

their own, at the expense of their own reproduction. This type 

of bird parasitism is known as cooperative breeding.  

Some parasite cuckoo species lay eggs that, to the human 

eye, appear to mimic the appearance of the eggs of their 

favorite hosts, which hinders discrimination and removal of 

their eggs by host species. This cuckoos` feature increases 

their fertility by reducing the probability of their eggs being 

discovered by the host bird. One example of such behavior is 

brood-parasitic Tapera [6].   

 In general, cuckoo`s eggs hatch earlier than their host eggs. 

As soon as the cuckoo chicks have hatched (and before they 

can even see), they lift any other eggs they find in the nest onto 

their backs and then throw them overboard. Hatching early 

means that cuckoo chicks can oust other birds' eggs so that 

they get all the food their foster parents bring home. Studies 

also show that a cuckoo chick can also mimic the call of host 

chicks to gain access to more feeding opportunity [5]. 

Described cuckoo characteristics, as well behavior model of 

other animals have widespread use in computational 

intelligence systems [7]. 
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A. Lévy flights 

By observing animals foraging behavior, it can be 

concluded that animals search for food in a random or quasi-

random manner. The foraging trajectory of an animal is a 

random walk because the next step is based on the current 

location and the probability of moving to the next location.  

    One type of random walk is Lévy flights in which the 

step-lengths are distributed according to a heavy-tailed 

probability distribution. Specifically, the distribution used is a 

power law of the form y = x
-α

 , where 1 < α < 3, and therefore 

has an infinite variance. According to conducted studies, 

foraging behavior of many flying animals and insects show 

typical characteristics of these flights [8].  

Some flies use a series of straight flight paths with sudden 

90
0
 turn, which leads to a Lévy-flight-style intermittent scale 

free search pattern [5]. Another example from nature would be 

when sharks and other sea predators cannot find food for some 

time. In this situation, they abandon Brownian motion (random 

motion seen in swirling gas molecules) and their trajectory 

manifests Lévy-flight – a mix of long and short trajectories, 

random movements found in turbulent fluids. This data 

showed that Lévy-flights interspersed with Brownian motion 

can describe the animals` hunting patterns. Two examples of 

Lévy-flight path are shown in Fig 1.    

 

 
Fig. 1. Lévy flight path example 

 

Besides studies carried on animals, studies on human 

behavior such as the hunter-gatherer foraging patterns also 

show the typical feature of Lévy flights. Such behavior has 

been applied to optimization and optimal search, and 

preliminary results show its promising capability [5], [6]. 

Many population based methods use random search similar to 

Lévy flight [9] 

III. CUCKOO SEARCH ALGORITHM 

In order to simplify the description of novel CS algorithm, 

three idealized rules can be used [5]: 

 

• Only one egg at a time is laid by cuckoo; Cuckoo dumps 

its egg in a randomly chosen nest; 

• Only the best nests with high quality eggs will be passed 

into the next generation; 

• The number of available host nests is fixed. Egg laid by a 

cuckoo bird is discovered by the host bird with a probability 

pd. In this case, the host bird has two options. It can either 

throw the egg away, or it may abandon the nest, and build a 

brand new nest at nearby location.  

 

To make the things even simpler, the last assumption can be 

approximated by the fraction of pd of n nests are replaced by 

new nests with new random solutions. Considering 

maximization problem, the quality (fitness) of a solution can 

simply be proportional to the value of its objective function. 

Other forms of fitness can be defined in a similar way to the 

fitness function in genetic algorithms and other evolutionary 

computation algorithms. 

A simple representation where one egg in a nest represents a 

solution and a cuckoo egg represent a new solution is used 

here. The aim is to use the new and potentially better solutions 

(cuckoos) to replace worse solutions that are in the nests. It is 

clear that this algorithm can be extended to the more 

complicated case where each nest has multiple eggs 

representing a set of solutions. 

When generating new solutions x
(t+1)

 for a cuckoo i, a Lévy 

flight is performed using the following equation: 

 

              xi
(t+1)

 = xi
(t)

 + α ^ Lévy (λ)               (1) 

 

where α  (α>0) represents a step size. This step size should 

be related to the scales of problem the algorithm is trying to 

solve. In most cases, α can be set to the value 1. The above 

expression is in essence stochastic equation for a random walk 

which is a Markov chain whose next location (status) depends 

on two parameters: current location (first term in Eq. 1) and 

probability of transition (second term in the same expression). 

The product ^ represents entry-wise multiplications. 

Something similar to entry-wise product is seen in PSO 

algorithm, but random walk via Lévy flight is much more 

efficient in exploring the search space as its step length is 

much longer in the long run [5].  

The random step length is drawn from a Lévy distribution 
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which has an infinite variance with an infinite mean (see 

equitation 2).  

 

Lévy ~ u = t
 -λ

                                      ( 2) 

 

where λ(0,3]. 
 

Here the consecutive jumps (steps) of a cuckoo essentially 

form a random walk process which obeys a power-law step 

length distribution with a heavy tail. 

Taking into account basic three rules described above, the 

pseudo code for CS algorithm is:   
 

   Start 

       Objective function f(x), x= (x1,x2…xu)
T
 

       Generating initial population of n host nests xi 

              (i=1,2,…n) 

   While (t<MaxGenerations) and (! termin.condit.) 

       Move a cuckoo randomly via Lévy flights 

       Evaluate its fitness Fi   

       Randomly choose nest among n available nests    

         (for example j)  

       If(Fi > Fj) Replace j by the new solution; 

       Fraction pd  of worse nests are abandoned and    

         new nests are being built; 

       Keep the best solutions or nests with quality  

         solutions; 

       Rank the solutions and find the current best  

   End while 

   Post process and visualize results 

   End  
 

At a first glance, it seems that there are some similarities 

between CS and hill-climbing [10] in respect with some large 

scale randomization. But, these two algorithms are in essence 

very different. Firstly, CS is population-based algorithm in a 

way similar to GA and PSO, but it uses some sort of elitism 

and/or selection similar to that used in harmony search. 

Secondly, the randomization is more efficient as the step 

length is heavy-tailed, and any large step is possible. And 

finally, the number of tuning parameters is less than in GA and 

PSO, and thus CS can be much easier adapted to a wider class 

of optimization problems. 

Applications of CS in engineering optimization problems 

have shown its promising efficiency. For example, for spring 

design and welded beam design problems, CS achieved better 

results than other algorithms known in literature. New discrete 

cuckoo search algorithm has recently been proposed to solve 

nurse scheduling problem (NSP) [11]. Nurse scheduling 

concepts are varied due to sophisticated and challenging real 

world scenarios in nurse management system [11]. Also, an 

efficient CS based approach has been implemented for data 

fusion in wireless sensor networks [12]. In this work, Cuckoo 

Based Particle Approach (CBPA) is used for formulation of 

optimization network which nodes are deployed randomly and 

organized as static clusters by CS algorithm. 

IV. CSAPP SOFTWARE 

We have developed our software system for the CS 

algorithm. It is possible to use existing implementation in 

MATLAB 7 [7] which can be found at http://www.mathworks.-

com/matlabcentral/fileexchange/29809-cuckoo-search-cs-

algorithm, but we chose to develop a new version because we 

wanted to implement few improvements. Firstly, in order to 

make algorithm execute faster, we developed our framework. 

Secondly, our software is object-oriented. With object-

oriented concept, software scalability and maintenance is much 

easier. As an object’s interface provides a roadmap for reusing 

the object in new software, it also provides all the information 

needed to replace the object without affecting other code. This 

makes it easy to replace old and aging code with faster 

algorithms and newer technology. So, if we want to implement 

new logic for different optimization problems, it will take 

substantially less time. On the other side, with object-oriented 

approach, identifying the source of errors becomes easier 

because objects are self-contained (encapsulation).  

We chose to develop CSapp in JAVA programming 

languages because of its many advantages over C, C++ and 

other modern programming languages. For example, JAVA 

does not support features like pointers, multiple inheritance, 

goto statement and operator overloading, all of which slow 

application development cycle. Unlike C++, JAVA has 

garbage collector, so programmers do not need to reallocate 

the memory or to worry about memory fragmentations. But, 

the greatest features which motivates us to use JAVA is its 

portability and JAVA`s APIs (Application Programming 

Interface). JAVA supports three types of portability: source 

code portability, CPU architecture portability, and OS/GUI 

portability. Owing to portability feature, we can use our code 

on different processors and operating systems with less 

programming effort.  

We used newest JDK (Java Development Kit) version 7 and 

NetBeans IDE (Integrated Development Environment) version 

6.9.1, which makes us up to date with the newest software 

development concepts.  

Thus, using previously described environment makes our 

code more robust, scalable, less error prone and performance 

is much better.  

Screenshot of basic Graphical user interface (GUI) of 

CSapp while testing Sphere function can be seen in Fig. 2. As 

we can see form the picture, user can adjust multiple 

parameters for CS algorithm. Adjustable parameters are:  

 

• Runtime defines the number of times to run the algorithm. 

• Max Cycle defines the number of cycles for 

improvements. This is a stopping criterion. 

• N defines the number of nests. Each nest represents one 

problem solution.  

• D is the number of parameters of a problem. Functions 

can be optimized using different set of parameters.  

• Pd is discovering probability. This is the probability that a 

host bird can find an egg laid by cuckoo bird. 
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Fig. 2: Screenshot of CSapp GUI while testing Sphere 

function 

 

In order to show how our software performs, we used four 

standard benchmark functions [11]: 

 

 Griewank   

 Sphere 

 Rastrigin  

 Ackley  

 

Griewank. The global minimum value for this function is 0 

and the corresponding global optimum solution is  xopt =(x1, x2, 

. . . , xn) = (0, 0, . . .  , 0). Since the number of local optima 

increases with the dimensionality, this function is strongly 

multimodal. The multimodality disappears for sufficiently high 

dimensionalities (n > 30) and the problem seems unimodal. 

Because of its interesting surface plot, Griewank  is depicted in 

Fig 3.  Definition of the function is:  
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Sphere. The function is continuous, convex and unimodal. 

Global minimum value 0 and optimum solution is xopt =(x1, 

x2,…,xn) = (0, 0, . . .  , 0). Definition: 
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Rastrigin. It is based on Sphere function with the addition of 

cosine modulation to produce many local minima. Thus the 

function is multimodal. The locations of the minima are 

regularly distributed. The difficult part about finding optimal 

solutions to this function is that an optimization algorithm  can 

easily be trapped in a local optimum on its way towards the 

global optimum The global minimum value for this function is 

0 and the corresponding global optimum solution is xopt =(x1, 

x2, . . . , xn) = (0, 0, . . .  , 0). Definition:  
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Fig. 3: Surface plot and contour lines of Rastrigin function 

 

Ackley function is a continuous, multimodal function 

obtained by modulating an exponential function with a cosine 

wave of moderate amplitude. Originally, it was formulated by 

Ackley only for the two – dimensional case. It is presented 

here in a generalized, scalable version. Its topology is 

characterized by an almost flat (due to the dominating 

exponential) outer region and a central hole or peak where the 

modulations by the cosine wave become more and more 

influential.  The global minimum value for this function is 0 

and the corresponding global optimum solution is xopt =(x1, 

x2,…,xn) = (0, 0, . . .  , 0). Because of its surface plot (Fig. 4), 

with rise in parameter number, optimization results are getting 

significantly worse, as will be showed in Section 5. Definition: 
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Fig. 4: Surface plot and contour lines of Ackley function 

 

We wanted to see how our software optimizes these four 

unconstrained benchmark functions. Quick summary of test 

functions is given in Table 1, while testing results for our 

algorithm are presented in the following section. 
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TABLE I 

QUICK SUMMARY OF TEST FUNCTIONS 

 

Function Range Formulation 

 

Griewank 

 

[-600,600]
n
 

 

 

Sphere 

 

[-100,100]
n
 

 

 

Rastrigin 

 

[-5.12,5.12]
n
 

10n + 

 

Ackley 

 
[-32,32]

n
 

- 20exp  – 

exp  

 

 

V. TESTS AND RESULTS 

CFor all benchmark functions we set the parameters as 

shown in Table 2. All tests were done on Intel Core2Duo 

T8300 mobile processor on 2.4 MHZ with 4GB of RAM on 

Windows 7 x64 Operating System and NetBeans 6.9.1 IDE. 

As mentioned in Section 4, we used newest JDK Version 7 in 

order to achieve competitive performance.   

As can be seen from the Table 2, we tested all functions six 

times with 5,10, 50, 100, 500 and 1000 parameters 

respectively. We wanted to see how algorithm performs with 

extremely low, moderate and high number of parameters. We 

printed out best, mean and worst results as well the standard 

deviation for 30 runs with 500 cycles per each run. 

 

TABLE II 

PARAMETER VALUES FOR BENCHMARK FUNCTIONS 

 

Parameter Value 

Runtime 30 

Max Cycle 500 

N 25 

D 5/10/50/100/500/1000 

Pd 0.25 

 

We divided tests into two groups. First group comprises 

tests with 5,10 and 50 parameters, while second group refers to 

tests with 100, 500 and 1000 parameters. This division enables 

easier comparison of obtained results.  

In Tables 3, 4 and 5 are shown testing results for Griewank, 

Sphere, Rastrigin and Ackley functions with 5,10 and 50 

parameters, respectively. Due to most of the results are small 

numbers close to zero, we used exponential notation.   

 

 

 

 

TABLE III 

RESULTS FOR FUNCTION OPTIMIZATION WITH 5 PARAMETERS 

 

Function  D=5 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

1.32E-28 

6.72E-26 

1.65E-23 

3.26E-24 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

5.25E-26 

2.50E-22 

3.75E-21 

7.88E-22 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

3.33E-22 

1.77E-18 

5.32E-16 

9.56E-16 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

1.17E-12 

8.52E-11 

1.24E-09 

2.23E-10 

 

As we can see from Table 3, for all test functions CS 

algorithm gained outstanding results. The best value is 

acquired for Griewank function (10
-28

), which is very close to 

the optimum.  If we compare test results with 5 and 10 

parameters (Table 3 and Table 4), we can see that results with 

ten parameters for the same number of cycles are somewhat 

worse but again very close to the optimum (error 10
-18

 

compared to 10
-28

). 

 

TABLE IV 

RESULTS FOR FUNCTION OPTIMIZATION WITH 10 PARAMETERS 

 

Function  D=10 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

9.18E-18 

5.03E-15 

4.82E-14 

9.89E-15 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

4.29E-15 

6.04E-13 

5.12E-12 

9.66E-13 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

1.77E-15 

4.72E-09 

4.54E-08 

1.16E-08 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

1.65E-07 

1.10E-06 

3.85E-06 

9.30E-07 

 

From Table 5, which is listed below,  it is interesting to 

notice that performance penalty when going from 10 to 50 

parameters is similar to the one when going from 5 to 10 

parameters.  Again, all results are very close to optimal value 

and for some reasonable threshold, for example 10
-5

, all results 

are perfect. 
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TABLE V 

RESULTS FOR FUNCTION OPTIMIZATION WITH 50 PARAMETERS 

 

Function  D=50 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

1.58E-9 

1.60E-8 

1.10E-7 

2.50E-8 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

2.36E-8 

4.64E-6 

4.28E-5 

8.43E-6 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

8.53E-8 

8.01E-6 

5.48E-5 

1.23E-5 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

3.91E-5 

5.39E-4 

1.25E-3 

4.19E-4 

 

In another test set, we used much larger number of 

parameters. Tests on the same benchmark functions with 100, 

500 and 1000 parameters are shown on Tables 6, 7 and 8 

respectively.  

 

TABLE VI 

RESULTS FOR FUNCTION OPTIMIZATION WITH 100 PARAMETERS 

 

Function  D=100 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

3.62E-9 

2.81E-8 

3.30E-6 

3.11E-7 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

3.12E-6 

4.62E-5 

1.85E-4 

5.28E-5 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

4.45E-6 

1.31E-4 

7.00E-4 

1.64E-4 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

1.93E-4 

0.002 

0.003 

0.002 

 

If we compare results between last test in first set and first 

test in second set (with 50 and 100 parameters, Tables 5 and 

6), it is interesting to notice that Griewank's function best 

solution in test with 100 parameters is just slightly worse than 

the best solution in the test with 50 parameters (in both cases, 

error is 10
-9

). Despite, doubled numbers of parameters in the 

second test, results are practically the same. This is also the 

case in mean results comparison. Only in worst results test, 

Griewank function optimization showed smoothly worse result 

in 100 parameter test, by factor of 10
-1

.  

  For all other test functions, best solutions in 100 parameter 

test are worse than those in 50 parameter test by approximately 

the factor of 10
-2

. Similar situation is in mean and worse 

results comparison with exception of Ackley function, where 

mean and worst results are penalized by 10
-4

 and 10
-3

 

respectively.   

As we can see from Table 7, results with 500 parameters are 

noticeable worse than those with 100 parameters (Table 6). 

For mean, worst and standard deviation, for all test functions 

with exception of Griewank, exponential inscription of 

decimal number which represents result is no longer needed. 

For example, even best result for Ackley function is noticeably 

greater than zero (0.002). For all other functions, best results 

are still smaller than zero (error 10
-4

 or 10
-6

).  

 

TABLE VII 

RESULTS FOR FUNCTION OPTIMIZATION WITH 500 PARAMETERS 

 

Function  D=500 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

3.68E-6 

1.07E-4 

0.001 

2.63E-4 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

5.91E-4 

0.004 

0.014 

0.004 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

4.74E-4 

0.010 

0.085 

0.017 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

0.002 

0.449 

5.419 

1.257 

 

Finally, as expected, with 1000 parameters tests (Table 8), 

satisfying results are obtained only for Griewank function 

whose best is within the value of 10
-5

. Even for Griewank, 

worst result is noticeable greater than zero (0.001). If we 

would run tests with more than 1000 parameters, Griewank 

function results would become dissatisfactory. For the 

remaining three benchmark functions, best, mean and worst 

values are unsatisfying (in the range of [0.003, 11.469]). 

Ackley`s function worst value is even 11.459, which is far 

away from real optimum.  

According to test results, it can be concluded that Griewank 

function is the easiest for optimization by CSapp, while at the 

other hand, Ackley is the hardest for optimization. Also, for 

Ackley function it is interesting to notice performance penalty 

with the rise in parameter numbers in all, best, mean, worst 

and standard deviation results.   
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TABLE VIII 

RESULTS FOR FUNCTION OPTIMIZATION WITH 1000 PARAMETERS 
 

Function  D=1000 

Griewank 

 

Best 

Mean 

Worst 

Stdev. 

3.82E-5 

3.30E-4 

0.001 

3.02E-4 

Sphere 

 

Best 

Mean 

Worst 

Stdev. 

0.002 

0.028 

0.112 

0.027 

Rastrigin 

 

Best 

Mean 

Worst 

Stdev. 

0.003 

0.032 

0.176 

0.043 

Ackley 

 

Best 

Mean 

Worst 

Stdev. 

0.005 

2.426 

11.469 

3.559 

 

In order to visualize test results changes of best, mean, 

worst and standard deviation results for Griewank and Ackley 

functions, summary of results for both functions are shown in 

Tables 9 and 10 respectively. From presented tables, it can 

clearly be seen difference in optimization results between 

Griewank and Ackley functions.   

 

TABLE IX 

RESULTS SUMMARY FOR GRIEWANK FUNCTION 
 

 Best Mean Worst Stdev 

D=5 1.32E-28 6.72E-26 1.65E-23 3.26E-24 

D=10 9.18E-18 5.03E-15 4.82E-14 9.89E-15 

D=50 1.58E-9 1.60E-8 1.10E-7 2.50E-8 

D=100 3.62E-9 2.81E-8 3.30E-6 3.11E-7 

D=500 3.68E-6 1.07E-4 0.001 2.63E-4 

D=1000 3.82E-5 3.30E-4 0.001 3.02E-4 
 

 

TABLE X 

RESULTS SUMMARY FOR ACKLEY FUNCTION 
 

 Best Mean Worst Stdev 

D=5 1.17E-12 8.52E-11 1.24E-09 2.23E-10 

D=10 1.65E-07 1.10E-06 3.85E-06 9.30E-07 

D=50 3.91E-5 5.39E-4 1.25E-3 4.19E-4 

D=100 1.93E-4 0.002 0.003 0.002 

D=500 0.002 0.449 5.419 1.257 

D=1000 0.005 2.426 11.469 3.559 

 

Sphere and Rastrigin functions` optimization showed 

similar results for all test cases. In some tests Sphere is slightly 

better, while in others Rastrigin obtained better results. For 

easier comparison, collectively results (best, mean, worst and 

standard deviation values) for Sphere and Rastrigin functions 

are put in Tables 11 and 12, respectively.  

TABLE XI 

RESULTS SUMMARY FOR SPHERE FUNCTION 

 

 Best Mean Worst Stdev 

D=5 5.25E-26 2.50E-22 3.75E-21 7.88E-22 

D=10 4.29E-15 6.04E-13 5.12E-12 9.66E-13 

D=50 2.36E-8 4.64E-6 4.28E-5 8.43E-6 

D=100 3.12E-6 4.62E-5 1.85E-4 5.28E-5 

D=500 5.91E-4 0.004 0.014 0.004 

D=1000 0.002 0.028 0.112 0.027 

 

As we can see from Tables 11 and 12, in almost all testing 

scenarios (different parameter set), result difference between 

corresponding best, mean and worst values is less than 10
-1

. 

The only exception is test with 5 parameter tests, where Sphere 

function substantially outperformed Rastrigin (relative 10
-4

). 

 

 TABLE XII 

RESULTS SUMMARY FOR RASTRIGIN FUNCTION 

 

 Best Mean Worst Stdev 

D=5 3.33E-22 1.77E-18 5.32E-16 9.56E-16 

D=10 1.77E-15 4.72E-09 4.54E-08 1.16E-08 

D=50 8.53E-8 8.01E-6 5.48E-5 1.23E-5 

D=100 4.45E-6 1.31E-4 7.00E-4 1.64E-4 

D=500 4.74E-4 0.010 0.085 0.017 

D=1000 0.003 0.032 0.176 0.043 

 

VI. CONCLUSION 

We designed, developed and tested a software system in 

JAVA for unconstrained optimization problems based on Yan 

and Deb`s CS algorithm. Because of its flexible object-

oriented design, our software can be modified to accommodate 

large number of different optimization problems in both, 

function optimization and engineering domain. Benchmark 

tests show that superior results can be generated and system is 

ready to be applied to new problems and used as a valuable 

tool for further research.  
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