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Abstract—Artificial bee colony (ABC) and differential evolution 

(DE) are two metaheuristics used for hard optimization problems. In 

this paper, a novel method called DEM-ABC is proposed to improve 

the exploitation process in ABC algorithm. The method combines 

differential evolution mutation strategies with original ABC 

algorithm for improving its convergence and performance. The 

proposed approach was tested by using a set of well-known large-

scale unconstrained benchmarks problems. Comparisons show that 

DEM-ABC outperforms or performs similarly as the original ABC 

algorithms in terms of the quality of the resulting solutions. 

 

Keywords— Artificial bee colony, Differential evolution, Large-

scale optimization problems, Swarm intelligence.  

I. INTRODUCTION 

ANY recent years many nature inspired algorithms have 

been introduced due to the fact that many real-world 

optimization problems have become increasingly large, 

complex and dynamic. The size and complexity of the 

problems nowadays require the development of methods and 

solutions whose efficiency is measured by their ability to find 

acceptable results within a reasonable amount of time [1]. An 

ant colony, a flock of birds or an immune system are typical 

examples of a swarm system [2]. Swarm intelligence mimics 

the intelligent behavior of groups of individuals with a very 

limited intellectual capacity. The exact same principles of 

swarm intelligence in nature can be used in optimization 

algorithms. These algorithms can be classified into different 

groups depending on the criteria being considered, such as 

population based, iterative based, stochastic, deterministic, etc. 

An artificial swarm consists of a set of cooperating 

autonomous individuals, called agents. These agents satisfy 

their own objectives through cooperation with other agents. 

Communication and coordination are usually limited to a 

certain range, so that cooperation between agents only takes 

place locally [3]. Optimization is the process of finding the 

best way to use available resources, while at the same time not 

violating any of the required conditions. In simple terms, with 
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optimization we attempt to maximize desirable properties and 

minimize undesirable characteristics. Users generally demand 

that a practical minimization technique should fulfill several 

requirements [4]: 

 

• Ability to handle different type of problems.; 

• Ease of use with few control variables. 

• Good convergence mechanism to the global minimum in 

consecutive independent trials.  

 

The optimization algorithms which are inspired by 

intelligent behavior of honey bees are among the most recently 

introduced techniques. Several approaches have been 

proposed to model the specific intelligent behaviors of honey 

bee swarms and were applied to solving different type of 

problems [5], [6], [7], [8], [9]. Since its invention by Karaboga 

in 2005, ABC algorithm has been successfully applied to many 

kinds of problems [10], [11], [12], [13], [14]. According to the 

various applications mentioned above, ABC algorithm 

confirmed its good performances, but we noticed an 

insufficiency in exploitation process. Inspired by differential 

evolution (DE) [4], we modified exploitation process by 

applying different DE mutation strategies. We name the 

modified ABC algorithm as Differential Evolution Mutation 

ABC (DEM-ABC).  

The rest of this paper is organized as follows. In Sections 2 

and 3, ABC and DE are briefly introduced. The modified ABC 

algorithm called DEM-ABC algorithm is presented in Section 

4. Section 5 presents and discusses the experimental results. 

Finally, the conclusion is drawn in Section 6. 

II. ABC ALGORITHM 

Generally, all modern heuristic algorithms work as follows: 

a population of individuals is randomly initialized and each 

individual represents a potential solution to the problem. The 

quality of each solution is evaluated by using a fitness 

function. A selection process is applied during each iteration 

of an EA in order to form a new population. The selection 

process is directed towards the fitter individuals to increase 

their chances of being included in the new population. This 

procedure is repeated until convergence is reached. The best 

solution found is expected to be a near-optimum solution [15], 

[16], [17]. 

Hybridizing artificial bee colony (ABC) 

algorithm with differential evolution for large 

scale optimization problems 

Nadezda Stanarevic 

M 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 194



 

 

Artificial bee colony (ABC) is a relatively new member of 

swarm intelligence. ABC tries to model natural behavior of 

real honey bees in food foraging. In the ABC algorithm, the 

colony of artificial bees contains three groups of bees: 

employed bees, onlookers and scouts. The number of 

employed bees is equal to the number of food sources and an 

employed bee is assigned to one of the sources.  

There are three main parts in the ABC algorithm: sending 

the employed bees onto the food sources and measuring their 

nectar amounts; selecting the food sources by the onlookers; 

determining the scout bees and finding new possible food 

sources. At the initialization stage, a set of food source 

positions are randomly selected by the bees.  

In the ABC algorithm, the position of a food source 

represents a possible solution of the optimization problem and 

the nectar amount of a food source corresponds to the quality 

(fitness) of the associated solution. 

Short pseudo-code of the ABC algorithm is given below [4]: 
 

Initialize the population of solutions 

Evaluate the population 

Produce new solutions for the employed bees 

Apply the greedy selection process 

Calculate the probability values 

Produce the new solutions for the onlookers 

Apply the greedy selection process 

Determine the abandoned solution for the scout, and replace 

it with a new randomly produced solution 

Memorize the best solution achieved so far 

 

An onlooker bee chooses a food source depending on the 

probability value associated with that food source, pi, 

calculated by the following expression 
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where fiti is the fitness value of the solution i which is 

proportional to the nectar amount of the food source in the 

position i. 

In order to produce a candidate food position from the old 

one in memory, the ABC uses the following expression 
 

)( ,,,,, jkjijijiji xxx  
 (2)          (2) 

 

where k  {1, 2,.., SN} and j  {1, 2,...,D} are randomly 

chosen indexes. A greedy selection mechanism is employed as 

the selection operation between the old one and the candidate 

[4]. If the new food has equal or better nectar than the old 

source, it replaces the old one in the memory. Otherwise, the 

old one remains. Providing that a position cannot be improved 

further through a predetermined number of cycles, the food 

source is assumed to be abandoned.  

The value of predetermined number of cycles is an 

important control parameter of the ABC algorithm, which is 

called “limit” for abandonment. In the ABC, the parameter 

limit is calculated using the formula SN*D, where SN is the 

number of solutions and D is the number of variables of the 

problem.  

ABC algorithm combines four different selection processes: 

1) for discovering promising regions a global selection process 

is used by the artificial onlooker bees, 2) a local selection 

process carried out in a small area by the employed and the 

onlookers bees for determining a neighbour food sources 

around the current source, 3) a greedy selection process (which 

is also local selection process) carried out by all bees if the 

nectar amount of the new source is better than the best 

memorized food source achieved so far. Otherwise, the bee 

keeps the present one in the memory. 4) a random selection 

process, exploration,  carried out by scouts [4].  

III. DE ALGORITHM 

A particular EA that has been used for global optimization 

over continuous spaces is differential evolution (DE). DE is a 

simple yet powerful evolutionary algorithm proposed by Price 

and Storn that has been successfully used for solving single-

objective optimization problems. Like other metaheuristic 

methods, two fundamental processes drive the evolution of a 

DE population: the variation process, which enables exploring 

different regions of the search space, and the selection process, 

which ensures the exploitation of previous knowledge based 

on the fitness values.  

Differential evolution is a parallel direct search method 

which utilizes NP D-dimensional parameter vectors xi,G, i = 1, 

2, … , NP as a population for each generation G. Since the 

parameter vectors are likely to be changed over different 

generations, we may adopt the following notation for 

representing the ith vector of the population at the current 

generation as 
 

XiG=[x1,i,G, x2,i,G, x3,i,G,... xD,i,G,]. (3) 
 

 NP does not change during the minimization process. DE 

algorithm starts with an initial population vector, which is 

randomly generated with no preliminary knowledge about the 

solution space. The initial population should cover the entire 

search space constrained by the lower and upper bounds as 

much as possible. 

DE generates new parameter vectors by adding the weighted 

difference between two population vectors to a third vector – 

mutation [18]. A candidate replaces the parent only if it is 

better than its parent. 

 DE guides the population towards the vicinity of the global 

optimum through repeated cycles of mutation, crossover and 

selection. General procedure and main steps (mutation, 

crossover, and selection) of the DE algorithm are shown in 

Fig.1. 

During the mutation process for each individual X  in 

generation t an associated mutant individual Y can be created 

by using one of the mutation strategies [19], [20] which are 

explained later in this section. 
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Fig. 1. General Evolutionary Algorithm Procedure 

 

The basic DE algorithm initializes individual solution with 

random positions in the search-space. For each solution x three 

solutions xr[1], xr[2], xr[3] have to be picked from the 

population at random. Selected solutions must be distinct from 

each other as well as from current solution x. The mutation 

proces adds more genetic material into the population in order 

to avoid being trapped in a local optimum. 

To increase the diversity of the population DE algorithm 

utilizes a crossover operation after mutation process. The DE 

family of algorithms can use two kinds of crossover schemes: 

exponential and binomial [3], [20], [23]. The main objective of 

crossover is to explore new areas of the search space. 

To keep the population size constant over subsequent 

generations, the next step of the algorithm calls for selection to 

determine whether the base or the mutant vector survives to 

the next generation. If f(x) is the function to be minimized, 

selection process can be described as follows: 
 

XiG+1  =  mutant vector  

     if  f(mutant vector)  ≤ f(base vector) 

    =  base vector              (4) 

     if  f(mutant vector)  > f(base vector)    
 

where XiG+1 is the vector of the population at the next 

generation. In general, selection tends to reduce the diversity 

of a population, while mutation increases it. 

A general notation for DE algorithm is DE/x/y/z where x 

specifies the base vector to be mutated, y is the number of 

difference vectors, and z denotes the crossover scheme.  

The basic mutation strategy is shown as rand/1 : 
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where r[k] k{1, 2, . . . 5} is a uniformly distributed random 

integer number in the range [1, NP],  j{1, 2, ... n}, F[0,2] is 

an amplification factor.  

   In the next equation best/1 mutant solution y is created by 

using two randomly selected solutions xr[1], xr[2],  and the best 

individual t
jbest

x
,

 in the population at generation t: 
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Highly beneficial methods currenttobest/1, best/2, and 

rand/2 use two additional solutions compared to the basic 

mutation strategy rand/1. The usage of additional different 

solution best seems to improve the diversity of the population 

which affects the search direction which is guided by best 

solution. 
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Compared to rand/1 and rand/2, mutation strategies such as 

best/1, currenttobest/1 and best/2 benefit from their fast 

convergence by incorporating best solution information in the 

mutation strategies. The main problem with adding the 

information about the best solution in the mutation strategy is a 

premature convergence, since the population diversity is 

decreased. In view of the fast but less aggressive convergence 

performance currenttobest/1 mutation strategy uses parent 

solution xi,j (current solution) in the process of creating the 

associated mutant solution y.  

The amplification factor F is a positive real number, and 

most suggested to be randomized within a range of (0, 1+) 

[22]. While there is no upper limit on F, effective values are 

rarely greater than 1.0 [3]. In the classical DE algorithm factor 

F is pre-defined, and it doesn't change during the evolution.  

Although the DE algorithm has been shown to be a powerful 

evolutionary algorithm for optimization, users are still faced 

with the problem of hand-tuning the main parameters [24], 

[25]. As a solution, new self-adaptive methods for 

automatically and dynamically adaptation of evolutionary 

parameters such as crossover rates and mutation rates have 

been proposed. Self adaptation can be described as a process 

of adaptation to any general class of problems by refiguring 

evolution strategy without any user interaction [26], [27], [28], 

[29]. In literature, self-adaptation is usually applied to the F 

control parameter. The efficiency and robustness of the DE 

algorithm are sensitive to the setting of F.  

With new versions of DE algorithm, researchers proposed 

several rules for calculating the control parameter F 

automatically. Ali and Torn [28], Qin and Suganthan [30], and 

Salman [31] introduced different methods for the self-adapting 

parameter F.  

During the evolution, parameter settings should be gradually 

self-adapted according to the learning experience. Since the 

amplification factor F controls the rate at which the population 

evolves [32], the value of F has to be high enough while the 

population has not converged to the promising areas (a wide 

scope search is required) and to limit the algorithm search 

scope when the population set is distributed in the most 

feasible areas. Bad choices of the amplification factor F may 

cause the DE to stagnate before finding a globally optimal 

solution. 
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IV. DEM-ABC ALGORITHM 

In optimization algorithms, the exploration refers to the 

ability to investigate the unknown regions while the 

exploitation refers to the ability to apply the knowledge of the 

previous good solutions to find better solutions [20]. 

According to the (2) the new candidate solution is generated 

by moving the old solution towards (or away from) another 

solution selected randomly from the population. The randomly 

selected solution can be a good or a bad one, so the new 

candidate solution is not necessarily a better solution than the 

previous one.  

In this paper, we propose a new way of extending ABC to 

be suitable for solving large-scale unconstrained optimization 

problems. In order to improve the exploitation we have 

replaced expression (2) with one of the mutation strategies 

mentioned in the Section 3.  

 We compared different strategies for creating new 

solution in onlooker and employed bee phase. Although DEM-

ABC uses mutation strategies “borrowed” from DE algorithm, 

it is still much closer to the ABC algorithm. DEM-ABC uses 

same random process to initialize population, same expression 

for calculating probabilities (1), and same scout mechanism as 

ABC algorithm.  

 The use of the best solution in onlooker and employed bee 

phase can drive the new candidate solution towards the global 

best solution; therefore, the exploitation of ABC algorithm can 

be increased.  Note that the parameter F in Fig. 1 plays an 

important role in balancing the exploration and exploitation of 

the candidate solution search. During the first implementation 

of the mutation strategies mentioned in the Section 3, 

amplification factor F was self-adaptive, but it turned out that 

the computation time was too long, thus, we decided to 

experimentally determined F for each mutation strategy as 

shown in Table II. 

V. EXPERIMENTAL STUDY 

A. Functions  

Eight unconstrained benchmark test functions are used to 

validate the proposed DEM-ABC algorithm: Sphere, 

Rosenbrock, Griewank, Rastrigin, Schwefel, Step, Dixon-Price 

and Ackly. 

Sphere function is continuous, convex and unimodal. Global 

minimum value for this function is 0 and optimum solution is 

x=(0, 0, . . . , 0). Surface plot is shown in Fig. 2.  

Definition: 
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where x is in the interval of [-100, 100]. 

 
Fig. 2. Sphere function 

 

Rosenbrock function has the global optimum inside a long, 

narrow, parabolic shaped flat valley. Global minimum value 

for this function is 0 and optimum solution is x = (1,1,…,1). 

Definition: 
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where x is in the interval of [-50, 50]. Surface plot is shown 

in Fig. 3. 

 

 
Fig. 3 Rosenbrock function 

 

Griewank`s value is 0, and its global minimum is (0,0,…,0). 

Since the number of local optima increases with the 

dimensionality, this function is strongly multimodal. The 

multimodality disappears for sufficiently high dimensionalities 

(n > 30) and the problem seems unimodal. 

Definition: 
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where x is in the interval of [-600, 600]. Surface plot is 

shown in Fig. 4. 
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Fig. 4 Griewank function 

 

Rastrigin function is based on Sphere function with the 

addition of cosine modulation to produce many local minima. 

Thus the function is multimodal. The global minimum value 

for this function is 0 and the corresponding global optimum 

solution is x = (0,0,…,0) .  

Definition: 
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where x is in the interval of [-5.12, 5.12]. Surface plot is 

shown in Fig. 5. 

 

 
 

Fig. 5 Rastrigin function 

 

Schwefel function has several local minima. The global 

minimum value for this function is –418.9829 and the 

corresponding global optimum solution is x = (1,1,…,1) . The 

surface of Schwefel function is composed of a great number of 

peaks and valleys. The function has a second best minimum far 

from the global minimum where many search algorithms are 

trapped. 

Definition: 
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where x is in the interval of [-500, 500]. Surface plot is shown 

in Fig. 6. 

 
 

Fig. 6 Schwefel function 

 

Step function has one minimum 0, and it is a discontinuous 

function which represents the problem of flat surfaces. Flat 

surfaces are obstacles for optimization algorithms which do 

not have variable step sizes, because they do not give any 

information as to which direction is favourable [33]. 

Definition: 
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where xi is in the interval of [-100, 100]. Surface plot is shown 

in Fig. 7. 

 

 
Fig. 7 Step function 

 

Dixon-Price is polynomial, strongly convex function. Global 

minimum value for this function is 0.  

Definition: 
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where x is in the interval of [-10, 10]. Surface plot is shown in 

Fig. 8. 

 

  
Fig. 8 Dixon-Price function 

 

Ackley function is a widely used multimodal test function.  

This function has an exponential term that covers its surface 
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with numerous local minima. Global minimum value for this 

function is 0 and optimum solution is x=(0, 0, . . . , 0). 

 

)
1

exp(20)( 2.0

1

2





n

i

ix
n

xf  (17) 

ex
n

n

i

i  


20))2cos(
1

exp(

1

  

 

where x is in the interval of [-32, 32]. Surface plot is shown in 

Fig. 9. 
 

 
Fig. 9 Ackley function 

 

Testing results will be presented in the following section. 
 

B. Test and results 

 For all benchmark functions we set the parameters as 

shown in Table I: 
 

TABLE I 

PARAMETERS VALUES FOR DEM-ABC 

 

Parameter Value 

Max eval. fun. calls 1000000 

Population size NP 100 

Limit Sn*D*0.5 

The values of amplification factor (F) are shown in Table II.  

 

TABLE II 

VALUES OF AMPLIFICATION FACTOR (F) FOR DIFFERENT MUTATION 

STRATEGIES 
 

Mutation strategy F 

1 1 

2 0.6 

3 0.6 

4 0.6 

5 0.2 

 

As we noted in previous Section these values are based on 

empirical experiments. The proposed DEM-ABC algorithm is 

coded in C++ and run on a Pentium Core2Duo, 3-GHz 

computer with 6 GB RAM memory and Microsoft Visual 

Studio 2010. 

The parameters used by DEM-ABC are the following: 
 

1) NP is number of bees in the colony (employed bees plus 

onlooker bees) was set to 100..  

2) Limit controls the number of trials to improve certain food 

source. If a food source could not be improved within 

defined number of trial, it is abandoned by its employed 

bee. Limit is is equal to Sn*D*0.5 

3) Max evaluation function calls: maximum number of 

objective function calls was set to 1000000 for all 

functions 
 

Each of the experiments was conducted 30 times using 

different random seeds. 

Comparison has been made between DE [23], PSO [34], 

original ABC algorithm [35] and our modified ABC algorithm 

for dimensions D = 10, 100 and 500. In experiments in this 

paper, the proposed DEM-ABC algorithm uses five mutation 

strategies: „rand/1“, „best/1“, „currenttobest/1“, „rand/2“, 

„best/2“. The best results for modified ABC algorithm (DEM-

ABC) are presented in Tables III-V for all five mutation 

strategies. Common parameters such as population number, 

maximum evaluation number were set at same values for all 

algorithms.  

Eight benchmark test functions are used to validate the 

proposed DEM-ABC algorithm. Tables III-V show the best 

optimization results of the Sphere, Schaffer, Rosenbrock, 

Rastrigin, Griewank, Step, Dixon-Price and Ackley functions 

respectively. These test cases include various types: uni-modal 

(Sphere, Rosenbrock, Step), multi-modal (Schwefel, Dixon-

Price, Rastrigin, Griewank, Ackley), separable (Sphere, Step, 

Rastrigin), non-separable (Schwefel, Rosenbrock, Dixon-

Price, Griewank, Ackley), non-symmetric (Dixon-Price) 

problems.  

Table III lists the best solutions found on unconstrained 

benchmark problems for D=10. All versions of our proposed 

algorithm DEM-ABC produced better or highly similar results 

as the original ABC algorithm. DEM-ABC obtained better 

solutions than DE, PSO and original ABC, for all function 

except Rosenbrock function. In fact, the proposed DEM-ABC 

algorithm performed marginally better solution than with 

mutation strategy 4. Comparing between DEM-ABC1, DEM-

ABC4 and DEM-ABC5, the results were highly similar except 

that the DEM-ABC4 produced better results for Rosenbrock 

function. Thus, in terms of the overall best solution found, 

DEM-ABC4 produced highly competitive results compared to 

the DE, PSO and conventional ABC algorithm and other 

DEM-ABC mutation strategies. 

Table IV lists the best solutions found on unconstrained 

benchmark problems for D=100. The results again indicate 

that DEM-ABC was able to perform similar or better results 

compared to DE, PSO and original ABC algorithm when the 

number of function variables is increased. Again, DEM-ABC4 

produced the most favorable best solutions for all function. For 
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Rosenbrock function DEM-ABC3 performed significantly 

worse results, while for Rastrigin and Dixon-Price function, 

DEM-ABC3 and DEM-ABC5 performed slightly worse results 

than original ABC algorithm.  

When the dimension is incremented to 500, the DEM-ABC 

algorithm again produces better or similar results to original 

ABC. Table V lists the best solutions found on unconstrained 

benchmark problems for D=500. These results indicate that the 

performance of DEM-ABC algorithms are quite stable 

compared to the conventional ABC algorithm.  

  

 

 

TABLE III 

BEST RESULTS OF PSO, DE, ABC AND DEM-ABC ALGORITHMS ON UNCONSTRAINED LARGE-SCALE BENCHMARK PROBLEMS FOR D=10 

 

D = 10 

Function PSO DE ABC DEM-

ABC1 

DEM-

ABC2 

DEM- 

ABC3 

DEM-

ABC4 

DEM- 

ABC5 

Sphere 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Schwefel -2654.03 -4177.99 -4189.83 -240.830 -240.830 -240.830 -240.830 -240.830 

Rosenbrock 0.426 0.000 0.013 0.021 0.779 0.073 0.006 0.024 

Rastrigin 7.363 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Griewank 0.059 0.004 0.000 0.000 0.000 0.000 0.000 0.000 

Step 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dixon-Pric  0.666 0.666 0.000 0.000 0.000 0.000 0.000 0.000 

Ackley 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  

 

 

TABLE IV 

BEST RESULTS OF PSO, DE, ABC AND DEM-ABC ALGORITHMS ON UNCONSTRAINED LARGE-SCALE BENCHMARK PROBLEMS FOR D=100 

 

D = 100 

Function PSO DE ABC DEM-

ABC1 

DEM- 

ABC2 

DEM- 

ABC3 

DEM- 

ABC4 

DEM- 

ABC5 

Sphere 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Schwefel -20100.4 -31182.50 -41898.30 -2408.30 -2408.301 -2408.301 -2408.301 -2408.301 

Rosenbrock 113.144 132.349 0.055 0.002 0.015 91,131 0.001 0.000 

Rastrigin 148.249 133.114 0.000 0.000 0.000 42.232 0.000 94.000 

Griewank 0.049 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Step 1.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dixon-Pric 2.076 0.666 1.26E-06 1.26E-06 1.1E-06 2.1E-06 1.1E-06 8.4E-05 

Ackley 0.732 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  

 

 

TABLE V 

BEST RESULTS OF PSO, DE, ABC AND DEM-ABC ALGORITHMS ON UNCONSTRAINED LARGE-SCALE BENCHMARK PROBLEMS FOR D=500 

 

D = 500 

Function PSO DE ABC DEM-

ABC1 

DEM- 

ABC2 

DEM- 

ABC3 

DEM- 

ABC4 

DEM-

ABC5 

Sphere 181.160 20.330 8.7E-7 1.2E-07 2.8E-11 2.8E-08 2.7E-07 7.4E-13 

Schwefel -98.1E+03 -13.8E+04 -19.1E+04 -12.1E+03 -12.1E+03 -12.1E+03 -12.1E+03 -12.1E+03 

Rosenbrock 10.9E+05 87.2E+09 10.1E+02 2.2E+03 1.7E+03 1.2E+03 1.9E+02 5.8E02 

Rastrigin 1033.040 594.690 87.960 1.9E-03 2.9E-01 2.5E-02 7.8E-01 7.1E-05 

Griewank 2.200 0.645 0.000 0.000 0.000 0.000 0.000 0.000 

Step 1621.000 1998.030 0.000 0.000 0.000 0.000 0.000 0.000 

Dixon-Price  15315.110 2636.320 309.600 0.052 0.001 0.002 0.001 0.028 

Ackley 3.690 13.000 0.058 0.000 0.000 0.000 0.000 0.000 
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The increment of dimension does not appear to adversely 

affect the performance of ABC-DEM algorithm; in fact DEM-

ABC preserves its robustness. DEM-ABC4 produced the best 

solutions for all functions. As shown in Table V, all DEM-

ABC algorithms achieved better results than PSO, DE and 

ABC algorithm for all the functions except for the Rosenbrock 

function, where mutation 1, 2 and 3 reached slightly worse 

results tham ABC algorithm. 

It can be observed that the performances of DEM-ABC 

algorithm with mutation strategy 4 are superior to ABC 

algorithm for all values of the parameter D.  From the results, 

it can be said that, as the number of function variables 

increases, the performance of the ABC algorithm stands out 

much more.  

The superiority of the ABC algorithm can be explained by 

its structure which combines explorative and exploitative 

processes in a balanced manner. 

 

VI. CONCLUSION 

In this paper, we compared the performance of our proposed 

DEM-ABC algorithm with the original ABC, DE and PSO on 

a set of 8 large-scaled unconstrained benchmark functions. 

These algorithms are chosen because they are also swarm 

intelligence and population based algorithms as the ABC 

algorithm. Our suggested modification improves the 

performance of ABC algorithm in terms of improving the 

exploitation process in employed and onlooker phase. The 

experimental results of different types of mutation strategies 

showed that the DEM-ABC algorithm is effective and 

powerful algorithm for unconstrained large-scaled 

optimization problems  
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