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Abstract— Fibonacci numbers and functions are topics of major 

interest in mathematics, due to the importance of their applications in 
many sciences. In the first part of this article we present some 
congruences involving Fibonacci and Lucas numbers. In the second 
one we discuss the dimensions of the Fibonacci numbers, defined on 
different closed intervals, starting with the evaluation of the Box 
dimension of this function defined on [0, 1] . 
 

Keywords—Fibonacci numbers, Fibonacci functions, 
quadratic residues, fractal dimension.   

I. INTRODUCTION 

he Fibonacci sequence was the outcome of a mathematical 
problem about rabbit breeding that was posed in the Liber 

Abaci (published in 1202) by Leonardo Fibonacci. [16] 
The Fibonacci numbers are Nature's numbering system. 

They appear everywhere in Nature, from the leaf arrangement 
in plants, to the pattern of the florets of a flower, the bracts of 
a pinecone, or the scales of a pineapple. 

Johann Kepler studied the Fibonacci sequence. Émile Léger 
appears to have been the first (or second, if the work of de 
Lagny is counted) to recognise that the worst case of the 
Euclidean algorithm occurs when the inputs are consecutive 
Fibonacci numbers. [10] 

In 1843, Jacques Philippe Marie Binet discovered a formula 
for finding the nth term of the Fibonacci series. [17] 

In 1870, the French mathematician Edouard Lucas gave 
different results on Fibonacci numbers and proved that that 

number 12127  is a prime one. The related Lucas sequences 
and Lucas numbers are named after him. 

The golden ratio is closely connected to the Fibonacci 
series, being the limit of the sequence of the ratios of two 
successive Fibonacci numbers. There are no extant records of 
the Greek architects' plans for their most famous temples and 
buildings. So we do not know if they deliberately used the 
golden section in their architectural plans. The American 
mathematician Mark Barr used the Greek letter phi (φ) to 
represent the golden ratio, using the initial letter of the Greek 
Phidias who used the golden ratio in his sculptures. [17] 

More extended information on the history of Fibonacci 
numbers, the golden ration and the relation between them can 
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be found in [6] [14]. 
Due to their importance in the applied sciences, the 

Fibonacci and Lucas numbers and their properties have been 
extensively studied in the last years. Generalizations, as 
Hyperfibonacci and Hyperlucas numbers have been done 
[2][7][8] and congruences modulo different numbers have 
been proved or conjectured. [11] [12][13][15] 

The present article is organized as follows. In the next 
chapter we give some basic definitions and results, which will 
be used in the chapters III – V. In Chapter III we prove some 
congruences satisfied by the Fibonacci numbers pF and Lucas 

numbers pL , where p is a prime odd integer. The techniques 

employed are combinatorial or of elementary number theory.  
In Chapter IV we determine an upper bound of the Box-

dimension of the Fibonacci function defined on the closed 
interval [0, 1].  In the last chapter we present the results of the 
evaluation of different types of dimensions of the same 
function, using the software Benoit 1.3.1. 

II. MATHEMATICAL BACKGOUND 

Let 0)( nnF  be the sequence defined by:  

 
,0,,1,0 1210   nFFFFF nnn  

 
called the Fibonacci sequence and 0)( nnL ,  

 
,0,,1,2 1210   nLLLLL nnn  

 
be the Lucas sequence and 
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be the Fibonacci function (Fig.1). 

It is known that 
 

5

1
nF
























 










 


nn

2

51

2

51
, 

and 
n

nL 








 


2

51
+

n










 
2

51
. 

About Fibonacci numbers and functions  
 

Alina Bărbulescu  

T 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 222



 

 

 
Fig.1. Graph of the Fibonacci function defined on [-20, 20] 

 
Let p be a prime odd integer, n - an odd integer and a a 

natural number. The following notation will be used in the 
following: 

 

- 



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


p

a
 - the Legendre symbol; 

- 







n

a
 - the Jacobi quadratic symbol. 

We recall that if p is an odd prime integer and a is an 
integer number, the Legendre symbol is defined by: 
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and if n is an odd natural number, rpppn  ...21 , where 

rppp ,...,, 21  are prime integers, then the quadratic Jacobi 

symbol is defined by: 
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     The following result about the Fibonacci and Lucas 
numbers is known: 
 

Theorem 2.1 (Legendre, Lagrange). Let p be a prime odd 
integer. Then the Fibonacci number, ,pF has the property: 
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p
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and the Lucas number, ,pL satisfies: 

 
1pL  (mod p). 

 
We remember the following theorems that will be used to 

prove the results in the next chapter: 
 
Fermat’s little theorem. If p is a prime number, then for 

any integer a, aa p  is evenly divisible by p. 
Remark.  A variant of this theorem is the following: 
If p is a prime and a is an integer coprime to p, then  

 

11 pa  (mod p). 
 

Euler’s criterion. Let p be an odd prime and a an integer 
coprime to p. Then 
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The quadratic reciprocity law [9]. Let p and q be two 

distinct odd prime integers. Then 
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The fractal character [3] [4] of Fibonacci series and 

function may be studied by calculating different types of 
dimensions (ruler, box, information, Hausdorff) or the Hurst 
coefficient [1].  

Let F be a nonempty and bounded subset of R2, )(FN  the 

least number of sets whose union covers F with and diameters 
that do not exceed a given .0  The upper bound box 
dimension of F is defined by: 
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FB , 

 
and the lower bound box dimension of F, by: 
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If FBdim FBdim , the common value is called the box-

dimension of F and is denoted by FBdim  or ).(FDb  

  
Let If : R be a function defined on the interval I and 

 21 , tt  be a subinterval of I . We denote by: 
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and by )( f the graph of f. 

 
Lemma 2.1 [5] Let f be a continuous function defined on 

  ,10,1,0  and m be the least integer greater than or 

equal to ./1   If N  is the number of the squares of the 

 mesh that intersect ).( f  Then: 
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Remark. In practice, the box dimension is determined to be 

the exponent bD such that dd DdN  , where dN  is the 

number of boxes of linear size d necessary to cover a data set 
of points distributed in a two-dimensional plane. 

To measure bD one counts the number of boxes of linear 

size d necessary to cover the set for a range of values of d and 
plot the logarithm of dN  on the vertical axis versus the 

logarithm of d on the horizontal axis. If the set is indeed 
fractal, this plot will follow a straight line with a negative 
slope that equals bD . 

A choice to be made in this procedure is the range of values 
of d. In Benoit 1.3.1 software, a conservative choice may be to 
use as the smallest d ten times the smallest distance between 
points in the set, and as the largest d the maximum distance 
between points in the set divided by ten. We shall discuss this 
aspect, in detail in the last chapter. 

 
The Hurst exponent can be calculated by rescaled range 

analysis (R/S analysis), by the following algorithm [1].  
A time series 

NkkX
,1

)(


 is divided into d sub-series of 

length m. For each sub-series n = 1, … , d : 
 Find the mean, nE and the standard deviation, nS ; 

 Normalize the data ( inX ) by subtracting the sub-series 

mean:  
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 Create a cumulative time series:  
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 Find the range:  
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 Rescale the range ;/ nn SR  

 Calculate the mean value of the rescaled range for all sub-
series of length m:  
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Hurst found that (R/S) scales by power - law as time 

increases, which indicates H
t tcSR )/( . 

In practice, in classical R/S analysis, H can be estimated as 
the slope of log-log plot of tSR )/( versus t.  

The fractal dimension of the trace can then be calculated 
from the relationship between the Hurst exponent H and the 
fractal dimension: ,2 HDrs  where rsD denotes the fractal 

dimension estimated from the rescaled range method. 

III. CONGRUENCES OF FIBONACCI NUMBERS 

Lemma 3.1 Let n be a positive integer, n 2 and p a prime 

odd integer. Then p divides .n
np

p









 

Proof.  
The proof is simple, using the congruence: 
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with a and b - positive integers, b  a and p - a prime integer, 
or using induction after n N* and the identity 
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Lemma 3.2 Let p be a prime odd integer. Then p divides 
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If 1 k p - 1, it results that p does not divide k! and  

 
p +1 2p - k 2p - 1. 

 
This implies that: 

 
p|(2p - k)! and p2 doesn’t divide (2p - k)! 

 

Thus: .
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    If p + 1 k 2p - 1, it results that 
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p|k! and p2 doesn’t divide k!. 
 

We have 1 2p - k p - 1, so  
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Proposition 3.3 Let p be a prime odd integer. Then the 

Lucas number 32 pL  (mod p). 

     Proof. 
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Using Lemma 3.2, we obtain that  
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Applying Fermat’s small theorem, we obtain: 

  
32 pL (mod p). 

 
Proposition 3.4 Let p be a prime odd positive integer. 

Then, the Fibonacci number 
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     Using Lemma 3.2 and Lemma 3.1 we obtain that 
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     Applying Fermat’s little theorem and Euler’s criterion, it 
results that: 
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     Applying the quadratic reciprocity law, we have: 
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Corollary 3.5 Let p be a prime odd integer. Then: 
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Proof.  
Since between Fibonacci and Lucas numbers there is the 

relationship 
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it results that 
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Applying Proposition 3.3, Proposition 3.4 and the 
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Using the properties of Legendre’ symbol it results that:              
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IV. ON THE BOX DIMENSION OF FIBONACCI FUNCTIONS 

DEFINED ON [0, 1] 

     In the following we shall use Lemma 2.1, to estimate the 
upper bound of the Fibonacci function f, defined on [0, 1].  
 

Theorem 4.1. The upper Box dimension of the graph of the 
Fibonacci function defined on [0, 1] is less or equal than 1.  

Proof.  
In order to simplify the calculation we denote by 
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     Applying Lemma 2.1 we obtain: 
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V. ESTIMATIONS OF DIMENSIONS OF FIBONACCI FUNCTION 

DEFINED ON A SYMMETRIC INTERVAL 

It is well known that the Fibonacci sequence have fractal 
properties.  

The software used was Benoit 1.3.1. 
In the following we determine the box - dimension and the 

fractal dimension rsD  of the Fibonacci function, defined on a 

domain ],[ aa , where a > 0. For exemplification, a has be 

chosen to be 20.  
In theory, to determine the box – dimension, for each box 

size, the grid should be overlaid in such a way that the 
minimum number of boxes is occupied. This is accomplished 
in Benoit by rotating the grid for each box size through 90 
degrees and plotting the minimum value of dN .  

Benoit permits the user to select the angular increments of 
rotation. For our calculation, the increment of the rotation 
angle has been set to 15 degrees, the coefficient of box-
decrease, 1.1, and the size of the largest box 70 pixels (Fig.3). 
 The value calculated for the box dimension was 1.91362. 
Looking to the left hand side of Fig. 3, we see that the chart of 
the number of boxes versus the boxes - side length is linear, 
proving that fractal character of the Fibonacci number defined 
on [-20, 20] .  

For the same function the value of Hurst coefficient has 
been determined to be H = 1.536  and rsD = 0.464  (Fig.4). 

Therefore, the function has the long range dependence 
property on the studied interval. 
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Fig.3. Determination of the box-dimension of the Fibonacci function defined on [-20, 20] 
 

 
 

Fig.4. Determination of the Hurst coefficient for the Fibonacci function defined on [-20, 20] 
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