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About Fibonacci numbers and functions

Alina Barbulescu

Abstract— Fibonacci numbers and functions are topics of major
interest in mathematics, due to the importance of their applications in
many sciences. In the first part of this article we present some
congruences involving Fibonacci and Lucas numbers. In the second
one we discuss the dimensions of the Fibonacci numbers, defined on
different closed intervals, starting with the evaluation of the Box
dimension of this function defined on [0, 1] .
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I. INTRODUCTION

he Fibonacci sequence was the outcome of a mathematical
problem about rabbit breeding that was posed in the Liber
Abaci (published in 1202) by Leonardo Fibonacci. [16]

The Fibonacci numbers are Nature's numbering system.
They appear everywhere in Nature, from the leaf arrangement
in plants, to the pattern of the florets of a flower, the bracts of
a pinecone, or the scales of a pineapple.

Johann Kepler studied the Fibonacci sequence. Emile Léger
appears to have been the first (or second, if the work of de
Lagny is counted) to recognise that the worst case of the
Euclidean algorithm occurs when the inputs are consecutive
Fibonacci numbers. [10]

In 1843, Jacques Philippe Marie Binet discovered a formula
for finding the n™ term of the Fibonacci series. [17]

In 1870, the French mathematician Edouard Lucas gave

different results on Fibonacci numbers and proved that that

number 2'*" —1is a prime one. The related Lucas sequences

and Lucas numbers are named after him.

The golden ratio is closely connected to the Fibonacci
series, being the limit of the sequence of the ratios of two
successive Fibonacci numbers. There are no extant records of
the Greek architects' plans for their most famous temples and
buildings. So we do not know if they deliberately used the
golden section in their architectural plans. The American
mathematician Mark Barr used the Greek letter phi (¢) to
represent the golden ratio, using the initial letter of the Greek
Phidias who used the golden ratio in his sculptures. [17]

More extended information on the history of Fibonacci
numbers, the golden ration and the relation between them can
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be found in [6] [14].

Due to their importance in the applied sciences, the
Fibonacci and Lucas numbers and their properties have been
extensively studied in the last years. Generalizations, as
Hyperfibonacci and Hyperlucas numbers have been done
[2][71[8] and congruences modulo different numbers have
been proved or conjectured. [11] [12][13][15]

The present article is organized as follows. In the next
chapter we give some basic definitions and results, which will
be used in the chapters III — V. In Chapter III we prove some
congruences satisfied by the Fibonacci numbers F,and Lucas

numbers L, where p is a prime odd integer. The techniques

employed are combinatorial or of elementary number theory.

In Chapter IV we determine an upper bound of the Box-
dimension of the Fibonacci function defined on the closed
interval [0, 1]. In the last chapter we present the results of the
evaluation of different types of dimensions of the same
function, using the software Benoit 1.3.1.

II. MATHEMATICAL BACKGOUND
Let (F,)nso be the sequence defined by:

Fo=0,F=LF,,=F,+F,,n20,
called the Fibonacci sequence and (L,),s0
Ly=2,L=1,L,,=L,,+L,,n=0,

be the Lucas sequence and

1 15) (2 Y
f(X)—\/g { 5 J (1+\/§J cos(nX);, XxeR

be the Fibonacci function (Fig.1).
It is known that
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Fig.1. Graph of the Fibonacci function defined on [-20, 20]

Let p be a prime odd integer, n - an odd integer and a a
natural number. The following notation will be used in the
following:

- (ij - the Legendre symbol,
p

- [3] - the Jacobi quadratic symbol.
n

We recall that if p is an odd prime integer and a is an
integer number, the Legendre symbol is defined by:

+1,if (a, p)=1 and
ais a quadratic residue mod p
-1, if (a, p)=1and

ais nota quadratic residue mod p

0,if pla
and if n is an odd natural number, n=p,;-p,-...- p, , where
P> Py, ..., P, are prime integers, then the quadratic Jacobi
symbol is defined by:

SR
n P %) Pr

The following result about the Fibonacci and Lucas
numbers is known:

Theorem 2.1 (Legendre, Lagrange). Let p be a prime odd
integer. Then the Fibonacci number, F, has the property:

F, = @j (mod p)
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and the Lucas number, Lp, satisfies:

L, =1 (mod p).

We remember the following theorems that will be used to
prove the results in the next chapter:

Fermat’s little theorem. If p is a prime number, then for
any integer a, aP —a is evenly divisible by p.

Remark. A variant of this theorem is the following:

If p is a prime and a is an integer coprime to p, then

aP'=1 (mod p).

Euler’s criterion. Let p be an odd prime and a an integer
coprime to p. Then

p-1
(EJE a 2 (modp).
p

The quadratic reciprocity law [9]. Let p and q be two
distinct odd prime integers. Then

(g

The fractal character [3] [4] of Fibonacci series and
function may be studied by calculating different types of
dimensions (ruler, box, information, Hausdorff) or the Hurst
coefficient [1].

Let F be a nonempty and bounded subset of R?, N s(F) the

least number of sets whose union covers F with and diameters
that do not exceed a given &>0. The upper bound box
dimension of F is defined by:

dimgF = limsup 2&Ns(F)
50  —logd

and the lower bound box dimension of F, by:

dimgF = liminf 28 Na(F)
850  —logd

If dimgF = dimgF , the common value is called the box-

dimension of F and is denoted by dimg F or Dy (F).

Let f:1 - R be a function defined on the interval | and
[t,, t,] be a subinterval of | . We denote by:
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Re(t,t)= sup |[f(t)—f(u).

t, <t,u<t,
and by I'(f)the graph of f.

Lemma 2.1 [5] Let f be a continuous function defined on
[0,1], 0<8<1,and m be the least integer greater than or

equal to 1/3. If Ny is the number of the squares of the
& — mesh that intersect T'(f). Then:

1

871

]

m-1
R[5, (j+1)8]< Ng < 2m+8*12Rf [§5,(j +D3].
=0 j=0

Remark. In practice, the box dimension is determined to be
the exponent Dy such that Ny =d —Dy, where Ny is the
number of boxes of linear size d necessary to cover a data set
of points distributed in a two-dimensional plane.

To measure Dy one counts the number of boxes of linear

size d necessary to cover the set for a range of values of d and
plot the logarithm of N; on the vertical axis versus the
logarithm of d on the horizontal axis. If the set is indeed
fractal, this plot will follow a straight line with a negative
slope that equals Dy, .

A choice to be made in this procedure is the range of values
of d. In Benoit 1.3.1 software, a conservative choice may be to
use as the smallest d ten times the smallest distance between
points in the set, and as the largest d the maximum distance
between points in the set divided by ten. We shall discuss this
aspect, in detail in the last chapter.

The Hurst exponent can be calculated by rescaled range
analysis (R/S analysis), by the following algorithm [1].

A time series (X ), ;5 is divided into d sub-series of

length m. For each sub-seriesn=1, ... ,d:
e Find the mean, E, and the standard deviation, S,;
e Normalize the data ( X;,) by subtracting the sub-series

mean:

Ziy = Xijn —Ep, i=1..,m;

e (Create a cumulative time series:

[}
Yio =D Zj,i=1,m;
j=1

¢ Find the range:

R, = maxY;, — min Y, ;
j=Lm j=Lm

e Rescale the range R, /S,;
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e Calculate the mean value of the rescaled range for all sub-
series of length m:

(R/S),

d

1

EZ R,/S, .
n=l1

Hurst found that (R/S) scales by power - law as time
increases, which indicates (R/S), =c¢ P

In practice, in classical R/S analysis, H can be estimated as
the slope of log-log plot of (R/S), versus t.

The fractal dimension of the trace can then be calculated
from the relationship between the Hurst exponent H and the
fractal dimension: D,y =2 —H, where D, denotes the fractal

dimension estimated from the rescaled range method.

III.
Lemma 3.1 Let n be a positive integer, n=2 and p a prime

CONGRUENCES OF FIBONACCI NUMBERS

odd integer. Then p divides (:;] -n.

Proof.
The proof is simple, using the congruence:

2

pa
with @ and b - positive integers, b<a and p - a prime integer,
or using induction after n €N and the identity

ot

Lemma 3.2 Let p be a prime odd integer. Then p divides

2
(kp], for 1<k<2p-1,k#p.

)

If 1<k<p -1, it results that p does not divide k! and

m

2

k=0

t
m-k

n+t
m

n
k

Proof.
2p
k

o ep! 12
CkI2p-k)!

p-...(2p)
k2p—k)

p+1<2p-k<2p-1.
This implies that:

p|(2p - k)! and p* doesn’t divide (2p - k)!
2p

Thus: p‘[ K J

Ifp+1<k<2p- 1, it results that
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plk! and p* doesn’t divide k!.

M
Fap z4p—_1-5 2 (mod p).
Wehave 1<2p-k<p-1,so
p doesn’t divide (2p - K)!. Applying Fermat’s little theorem and Euler’s criterion, it
results that:

Theref: 2P 5

erefore, .

p K Fap z(—j (mod p).
p

Proposition 3.3 Let p be a prime odd integer. Then the Applying the quadratic reciprocity law, we have:

Lucas number L,, =3 (mod p).

Bor-(30

s hes it
77T,

)
F, =| 2| (mod
2p = (mod p).
1 2P 7y D k 5
- . .52
b T k_zol(kJS' : :
K e Corollary 3.5 Let p be a prime odd integer. Then:
Using Lemma 3.2, we obtain that
pll F 0y 1]
1 0 zp_[fj
L2p =235y (1+5°) (mod p) <
Proof.
) Since between Fibonacci and Lucas numbers there is the
L,, = 7 (1+ Sp) (mod p). relationship
. S . Ly =Foa +Fos
Applying Fermat’s small theorem, we obtain:

it Its that
L,, =3 (mod p). it results tha

Lyp =Fpu + Fopye

Proposition 3.4 Let p be a prime odd positive integer.

Then, the Fibonacci number Applying Proposition 3.3, Proposition 3.4 and the

properties of Fibonacci and Lucas numbers, we obtain:

Proof. Fopa = s - (mod p),
2p 2p
1 |(1+45 1-+5
sz =— - Pamntl E
5 2 2 L E 3+
Fypuy =20 2P 3/ (mod p)
2p+l — 2 = 9 p
1 &2p) !
Fop = TER [ p] 52 Using the properties of Legendre’ symbol it results that:
2 S Lk
k odd
. . p| F -1].
Using Lemma 3.2 and Lemma 3.1 we obtain that 2 p—[gj
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IV. ON THE BOX DIMENSION OF FIBONACCI FUNCTIONS
DEFINED ON [0, 1]

In the following we shall use Lemma 2.1, to estimate the
upper bound of the Fibonacci function f, defined on [0, 1].

Theorem 4.1. The upper Box dimension of the graph of the
Fibonacci function defined on [0, 1] is less or equal than 1.

Proof.

In order to simplify the calculation we denote by
1+ \/E

5
If 0<d&<]1, then:

a=

m—1<l<m= l +1sl+1.
o o 1)

We evaluate the difference | f(j+1)8)-f (jSX , in order to
apply Lemma 1.
(3 +1B)- 1 (33) -

1 i+1)8 1 j&
:ﬁa““) VE: ———cos(n(j+1)5)-a’ +—cos(n16*

L ajs(as—l)— !

Js alk

(cos( n(j +1)8) cos(rch)j‘-

ad

Since

a®-1>0
0<d<la>l=l<a’<a= 1
—6<1
a
and

COS X —COS y| < |x— y|,(‘v’)x, yeR,
then

[#((i+16)- (i8] <

_{alﬁ(a 1 sleosi 1)~ cos(anﬂS

«I

1

< T[aj& (a6 - 1)+ #h(j +1)5— njéﬂ =N

5

17((5+1)- f(ja))s%{aw(aﬁ —1)+$n8} |

Applying Lemma 2.1 we obtain:
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m-1
N s2m+5—12Rf [i5,(j+1d]<
j=0

m-1

Ny <2m+ 51512(;{ JREON :ﬂ@
N832m+l ( )Za18+n82 ]
55

Ny <2m +L(a5 —1X1+a8 +...+a(m’1)8)+

55

T -5 —(m—l)&)
+—(1+a +..+a R
J5
_-ms
N5s2m+$(am5—l)+ z 11 a — <
5 5 1-a
1
1 T ams
N, <2m+——(a™ 1)+ ———=2a
’ aﬁ( ) N
aS
1
-
1 T md
Ns <2m+——(a™ —1)+ ——2
’ sﬁ( ) V5L
20
a™ —1
19
N, <2m+——(am 1)y = 2™
° 5 5( ) J5 ad—1
aS

1 a™ —1 T
N <2m+——(a™ —1)+ PN
5 55 ( ) @ —ha™ " s

1 N F199)
N: <2m+——a™ 1] 1+ —— | <
5 NG ( { @ _l)a(m—1)6:|

1
<l —+1|+——=@m™ -1 14—
[8 j 8\/5( 1: l)a(m D3

o
2M L( ”‘5—1{“ }

8V5 @ l)a“ v
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-1 L (qms _ o
_6{2(5+1)+ @ 1{1+(

75

logN;g <

NG

s1og{26+2+i(am6 —1{“

<

log N
—logd

a® 1)a(m—1)5

)

nd
@® -nam™he }} e

<

7o
a® —1)am "M }} ~loed

1
log 26+2+am5—1{1+
{ JE( (

—logd

o —1){1+

7o
(aﬁ _ l)a(m—l)S

=

1
logd28+2+—=(a™
logNBSI_ { \/g(

—logd

log &

I
(aﬁ _1)a(m—l)8

1
—+1 (8
S28+2+L a(b ) -1 1+TC—8
(aﬁ _l)a(m—l)ﬁ

1 7o
< 28+2+T<a5” _1){”#&5} ,

D

l—1<m—lsl<:>ﬁ<m—lsl:
) 1) ) 1)

5
because:
I-6<(m-1)
-5 _ . (m-1)5 1
a <a <a=—
a
But,
lim 3 =—,
550g° -1 Ina
So,

. L (gme
égr}){zé +2+ \/g (a 1)[1 +
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6<1=

1 1
<—— <

= a(Mm-Ds -5

a

lima'™® =a,
0—0

o

(as _ l)a(m—l)S

I

|

)

<timl2s 42+ Latrt 1) 1e 0|l
50 \/g @ —Da"

sz+i(a—1)(1+ T j:>

N3 alna

lim 28MNs)

550 —logd
1 5+1 7o
log| 20 +2+—=@"" -1+ —————
. { V5 (@ -na"?
<1-1lim <
50 logd

1 T . 1
<l-logi2+—la-1) 1+ lim =1.
g{ ﬁ( )( alnaj}a»o logd

Thus,

lim 108(MNa)
5-0 —logd

and dimgI'(f)<1.

V. ESTIMATIONS OF DIMENSIONS OF FIBONACCI FUNCTION
DEFINED ON A SYMMETRIC INTERVAL

It is well known that the Fibonacci sequence have fractal
properties.

The software used was Benoit 1.3.1.

In the following we determine the box - dimension and the
fractal dimension D, of the Fibonacci function, defined on a

domain [—a, a], where a > 0. For exemplification, a has be

chosen to be 20.

In theory, to determine the box — dimension, for each box
size, the grid should be overlaid in such a way that the
minimum number of boxes is occupied. This is accomplished
in Benoit by rotating the grid for each box size through 90
degrees and plotting the minimum value of Ny .

Benoit permits the user to select the angular increments of
rotation. For our calculation, the increment of the rotation
angle has been set to 15 degrees, the coefficient of box-
decrease, 1.1, and the size of the largest box 70 pixels (Fig.3).

The value calculated for the box dimension was 1.91362.
Looking to the left hand side of Fig. 3, we see that the chart of
the number of boxes versus the boxes - side length is linear,
proving that fractal character of the Fibonacci number defined
on [-20, 20] .

For the same function the value of Hurst coefficient has
been determined to be H = 1.536 and D, = 0.464 (Fig.4).

Therefore, the function has the long range dependence
property on the studied interval.
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Fig.3. Determination of the box-dimension of the Fibonacci function defined on [-20, 20]
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Fig.4. Determination of the Hurst coefficient for the Fibonacci function defined on [-20, 20]
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