
 

 

Abstract − Present paper is devoted to those acoustical problems 

which are also related to the problem of the turbulence onset in high-

speed boundary layers. Basic equations governing linear 

development of both hydrodynamic and acoustic waves in high-speed 

boundary layers are presented. Results of the theoretical investigation 

on external acoustic wave influence on the flat plate boundary layer 

are described. The intensity of disturbances excited by an acoustic 

wave inside the boundary layer has been studied. It has been found 

that interaction of sound with the boundary layer lead to an increase 

of the amplitude of disturbances inside the boundary layer and this 

increase depends on the angle of incidence. It has been established, 

that maximal amplification of  fluctuations inside the boundary layer 

takes place for the external acoustic wave with the wave-vector 

orientation parallel to the model surface which is called streamwise 

acoustic wave. It has been shown that in this case the amplitude of 

fluctuations inside the boundary layer may exceed the amplitude of 

the external acoustic field in many times. Besides in the paper 

nonlinear generation of increasing perturbations by external acoustics 

is studied. 

 

Keywords — compressible boundary layers, acoustic field, 

laminar-turbulent transition, hydrodynamic stability. 

 

I. INTRODUCTION 

The questions on the interaction of a supersonic boundary 

layer with acoustic waves which are considered in the present 

paper were raised mainly in connection with the problem on 

the turbulence formation. At present the most complex 

problem on the prediction of the transition position in the 

boundary layer flows is related to the receptivity of these flows 

to the external effects. It appears that this problem was 

discussed in detail for the first time in [1], and till now many 

works were carried out on it. However this problem has been 

studied more thoroughly both experimentally and theoretically 

for the subsonic flows. A review of the early works of the 

influence acoustic field effect on the transition from a laminar 

supersonic boundary layer to the turbulent has been given in 

[2]. The problems on the supersonic flow aeroacoustics were 

studied mainly within the framework of the investigations on 

the conditions for the onset of auto-oscillations and sound 

generation by the supersonic shear flows in the jets and mixing 
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layers [3, 4]. The advanced approach based on the idea of the 

possibility of the mutual influence of the acoustic and 

hydrodynamic waves has been demonstrated in [5]. A relation 

between the acoustics problems and stability was shown also 

in [6]. 

The first attempts at the investigation of the sound waves 

and supersonic boundary layer interaction on the basis of the 

stability theory were undertaken in [7, 8]. The problem on the 

excitation of unstable waves by sound was considered in [9]. 

The interaction of sound with a supersonic boundary layer was 

studied experimentally in [10] where the main results of the 

theory [8] were confirmed. The experiments of [11] using a 

controlled acoustic field have shown that the boundary layer 

receptivity to the acoustic disturbances depends on the location 

of the interaction region. It was found in particular that the 

intensity of the hydrodynamic waves generated by the sound 

reaches its maximum values when the interaction region is 

located near the leading edge of the model, the lower branch of 

the neutral stability curve and the "sonic" branch of the neutral 

stability. The agreement between the theoretical conclusions 

and the experiments on the acoustic excitation of unstable 

waves is discussed in [12]. The generation of sound waves by 

a transitional boundary layer has been revealed experimentally 

in [13]. 

We analyze the state of the art of the linear theory of the 

supersonic boundary layer receptivity to the acoustic 

disturbances on the basis materials obtained in the present 

work and on the available bibliographic data. The main 

attention is paid to the interaction of a longitudinal (streamwise) 

sound wave with the boundary layer. 

 

II. GENERAL LINEAR EQUATIONS 

Following [14] consider the interaction of a monochromatic 

wave with a boundary layer. The problem is solved in the 

approximation of the parallel flow [15] in the boundary layer 

which implies the independence of the main stream parameters 

on the longitudinal coordinate. To reduce the governing 

equations to a dimensionless form one introduces the reference 

length (the Blasius scale) /e ex U  and the time scale 

t=δ/Ue, where x* is the distance from the leading edge of a 

plate, νe  and Ue are the kinematic viscosity and velocity at the 

boundary layer edge, respectively. We will consider here the 

boundary layer on a flat impermeable plate, and the viscosity, 

velocity and temperature are related to the corresponding 

values at the external boundary of the boundary layer Ue, Te, νe 

A linear approximation is used for the description of the non-

stationary flow parameters which is valid at small amplitudes 
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of the sound wave. The flow parameters of the incident sound 

wave are described by the vector function:  

1 1 1 1 1 1 1 1 1, , , expx y z t i x z y t*

0Q q

 

Where ε is the wave intensity at the adopted normalization, 

x1 is directed along the main stream, y1  − normal to the plate 

surface coordinate, z1− coordinate in the lateral direction 

(normal to x1 and y1). The disturbances inside the boundary 

layer are described by the dependence:  

 

1 1 1 1 1 1 1 1 1 1, , , ( ) expx y z t y i x z t1Q q  

 

By using a conventional procedure of the linearization of 

the Navier-Stokes equations, the energy and continuity one can 

show that the components of the vector q(y) will satisfy a 

system of the eighth-order ordinary differential equations [15] 

depending on the wave numbers α1, β1 the frequency ω1 and 

the main stream parameters: U(y1) and T(y1). If we introduce 

the angle χ=arctg(β1/α1) and go over from x1  and z1 to the new 

variables x=x1cos(χ)-z1sin(χ) and z= x1sin(χ) +z1cos(χ), then 

the disturbances will not depend on z. The system of the 

eighth-order differential equations can be reduced under 

insignificant additional assumptions to a sixth-order system 

[2], which was obtained earlier Dunn and Lin [16]:  

 
6

11

i
ij j

j

dq
a q

dy
                                               (1) 

 

We have used the following notations: q1 and αq3 are the 

disturbance amplitudes of the velocities in the x- and y-

directions, 
2 2

1 2 5(cos ) ,   M q q  are the disturbances of the 

pressures and the temperature; q2 and q6  are derivatives with 

respect to y1 of q1 and q5respectively; γ is ratio of specific 

heats, M1  is the Mach number. The coefficients aij depend on 

y1, the wave number 
2 2

1 1  and ω1=α1c; the 

Reynolds numbers R = R1 cosχ and the Mach number M = M1 

cosχ where R1=Ueδ/ve, M1 =Ue/a, a is the sound velocity. 

Let the velocity and temperature disturbance vanish on the 

surface, i.e.: 

 

q1(0)= q3(0)= q5(0)=0                                           (2) 

 

and outside the boundary layer where the main stream 

parameters do not depend on y1, 

 

0 3 3 11 1 1 4 4 1

1 3 4e e e e ;
yi y i y y

I I Iq q q q q    (3) 

 

where q
0,1

=[1,±iλ, ±iλ/α
2
, c-1, M1

2
(c-1)(γ-1)]; 

approximate values of q
3,4

 look like:q
3
=[1 ,λ

3 
, 0, 0, 0, 0], 

q
4
=[0, 0, 0, 0, 1, λ

4
]; 

2 2

3(1 ) 1;  (1 ) ;    M c i c Re  

4 1 1Pr(1 )  ,  c / ,i c R  Pr  is the Prandtl 

number. The third and the fourth terms of the above 

dependence describe the thermal and vortical waves whose 

intensity rapidly decreases with increasing y1, if c≠1. The 

second term corresponds to the reflected sound wave whose 

intensity is proportional to the incident wave intensity and to 

the reflection factor. Thus outside the boundary layer only the 

first two terms remain significant which taken into account (the 

incident and eflected waves). The problem (l)-(3) enable one 

to compute both the reflection factor and the amplitude of the 

disturbances inside the boundary layer. In the present paper 

computations were carried out for the boundary layer on a flat 

plate for different Mach and Reynolds numbers and different 

orientations of the sound wave. The dependence of the 

viscosity on temperature was used as the Sutherland's law, the 

Prandtl number Pr=0.72.  

 

III. THE REFLECTION FACTORS AND 

OSCILLATIONS IN A BOUNDARY LAYER 

For a problem of a laminar-turbulent transition disturbances 

in boundary layer play important role. In Fig. 1 we present a 

comparison of distributions amplitudes of the mass flow rate, 

A, of the "acoustic" (AC) (M1=2, R1=545, c=0.25, F=α1c/R1 

=10
-5

, χ=0°) and the ―Tollmin-Schlihtihg‖ (TS) wave (M1 =2, 

R1=720, c=0.51, F=0.36∙10
-4

, χ =600). Inside the boundary 

layer the amplitude of the "acoustic" wave corresponds to the 

incident sound wave with the unit amplitude of the 

longitudinal velocity oscillations. Since the eigenoscillations 

(TS) are determined theoretically with the accuracy up to an 

arbitrary multiplier, the maximum value of the mass flow rate 

oscillations was assumed to be the same as for the "acoustic" 

wave. It can be seen from the presented data that under the 

influence of the sound the oscillations arise in the boundary  

 

 

layer, which exceed in their intensity considerably the 

corresponding quantities in the incident sound wave. Despite 

the fact that the parameters of the sound wave and the 

eigenfrequencies differ strongly, the behavior of their 

amplitudes inside the layer are similar. The magnitude of the 

maximum of the mass flow rate amplitude and the reflection 

factor depend on the boundary layer properties and on the 

acoustic wave parameters. boundary layer.  

Fig. 1. Profiles of mass flow amplitude (A) for a 

―Tollmin-Shlichting‖ wave (curve TS) at M1 = 2, R1 = 

720,F = 36∙10
-6

, χ = 60° and for an acoustic wave 

(curve AC): M1 = 2, R1 = 545, F = 10∙10
-6

, χ = 0. 
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It was shown in the work [12] that its value can vary within 

wide limits, and it can either exceed unity in modulus or  

 

 

vanish. A possibility of the reflection with a factor being less 

then unity is in contradiction with the data [17]. 

It should be noted that the results of [17] were obtained 

without regard for the viscosity effect which in the stability 

theory is related to the quantity αR. Therefore the theory of 

[17] can describe satisfactorily the phenomena only at large 

values of αR. Our data taking the viscosity into account 

(M1=2) are presented in Fig.2. The real and imaginary values 

of reflection factors are shown versus the wave number α1 for 

different frequencies, F=2 f ve/Ue
2
: Ir Ii (R1 =545, c=0.38) and 

Reynolds numbers: I2r, I2i  (F=10
-4

, c=0,4). We also present 

here the modulus of the reflection factor Ir +iIi  = I0. The 

range of the variation of F was 0.8∙10
-4

 ÷ 2∙10
-4

 and the range 

of the variation of the Reynolds number RI was (50÷3000). It 

can be seen that the approach of I=Ir+iIi and I2=I2r+iI2i  is 

observed at α1 ≈ 0.05. An analysis of these data shows that a 

significant influence of the viscosity manifests itself at α1R1≤ 

10. A small difference in I and I2 in the region of the large 

values of α1 is related to the difference in the phase velocities. 

With the diminution of α1 and as a consequence of α1R1 the 

modulus of the reflection factor has a minimum which is less 

than unity. Such a possibility was already noted in [12] and it 

does not agree with the data of [17]. 

A question on the receptivity of the supersonic boundary layer 

of the acoustic disturbances was already discussed in [12]. It 

was noted therein that there exists a region of an efficient 

receptivity of the sound waves in a boundary layer between the 

lower branch of the neutral stability curve and the leading 

edge. There is the continuous degeneration of an incident 

sound wave into a ―Tollmien-Schlichting‖ wave in this region. 

The corresponding sound wave is absorbed completely by the 

boundary layer (the reflection factor is equal to zero). On the 

other hand, experimentally it was found [11] that more intense 

oscillations are observed in this region. They are induced by 

the sound field. Therefore it is interest to compare the 

magnitude of the reflection factor with the magnitude of the 

maximum of the mass flow rate oscillations. From the general 

considerations it appears to be logical to assume that the 

intensity of the oscillations inside the boundary layer itself 

must increase with increasing absorption of the sound wave 

energy. The results of a such comparison are shown in Fig. 3. 

For the two values of the phase velocity c = = 0.08 (solid line) 

and 0.28 (dashed line) at R} = 545 and M} = 2 we present the 

 

 

 

values of the maximum of the mass flow rate oscillations 

versus the reflection factor modulus, whose changing was 

achieved by varying the quantities F. The boundary values of 

the frequency parameter are indicated at the curves ends. The 

obtained data confirm on the whole the hypothesis that at a 

fixed value of c the largest values of Amax correspond to the 

minimum values of the reflection factor I0 . The envelope of 

the curves for different c is shown by a dash-dot line. In Fig. 4 

we present the values of Amax and I0 on the envelope. It can be 

seen that the maximum values of the amplitude Amax do not 

correspond completely to the minimum values of the reflection 

factor. But at the same time the maximum is achieved in the 

region of small values I0 < 0.5.  

 

 

 
Taking into account the fact that the absorption energy is 

determined by the quantity (1 – I0
2
), one can draw a conclusion 

that with its increase the oscillations in the boundary layer also 

increase. Therefore, it is not incidental that the efficiency of 

the sound wave effect in this region is high from the viewpoint  

of excitation of unstable waves [11]. 

Fig.2. Dependence of the reflection factor  

on a wave number 

Fig. 4. The maximum values of amplitude of pulsations of 

the mass expense inside boundary layer (dot line) and the 

absolute value of reflection factor (a continuous line) in 

depending on phase speed of an acoustic wave 

Fig. 3. Dependence of the maximum of  mass flow 

oscillations inside the layer on the reflection factor. 
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Fig. 5 shows the dependence of the greatest intensity of 

fluctuations on M1. With increase of the Mach number 

fluctuations in a layer are increased. However in the field of 

high values of M1 this effect weakens. From the resulted data it 

is important to notice that fluctuations intensity in a layer can 

exceed level of external disturbances in a few dozen times.  

 

 

 
IV. INTERACTION OF LONGITUDINAL 

SOUND WAVE WITH A BOUNDARY LAYER 

In the case of a longitudinal sound wave (c = 1 ± 1/M) the 

notions of the incident and reflected waves lose their meaning 

and hence the uncertainty in the formulation of problem (l)-(3) 

is revealed. In this case the disturbances for y≫  normalized 

with respect to the amplitude of the longitudinal velocity 

oscillations in each of the incident and reflected waves have 

the form [2]: 

 

q
0,1

=[1,±iλ, ±iλ/α
2
, c-1, M1

2
(c-1)(γ-1)],                           (4) 

 

where the plus sign corresponds to the incident wave and 

the minus sign corresponds to the reflected wave. At c→1-

1/M1  
2 2

1 (1 ) 1 0M c  and the vectors 

q
0
 and q

1
 coincide. If the reflection factor, I, also tends to zero, 

then the solution describes well the external motion of the 

wave whose normal velocity component a αq3 is equal to zero. 

Since equations (1) depend on the Reynolds number and the 

wave number, the case of the vanishing reflection factor is a 

special case. For the arbitrary values of α and R1 only the 

trivial solution q=0 will be obtained. On the other hand there is 

another approach to the construction of the solution. Let us 

specify the solution at the external boundary in the form q
01

 = 

(q
0
 + Iq

1
)/(1+I). Then the components of the vector q

01
 have 

the form: 

 

01 2 2

1 12

1 1 1
[1, , , 1, ( 1)( 1), ( 1)( 1) ]

1 1 1

I I I
c M c i M c

I I I
q  

If we introduce the quantity λ(1-I)/(1+I)=b determined from 

the solution of system (1) with the boundary conditions (2), 

(3), then the total value of the normal velocity amplitude can 

be written in the form V0=b/α=Λ(1-I)/(1+I). After V0 is 

determined if we compute the reflection factor: I = (Λ - V0)/( Λ 

+ V0).The vector q
01

 has a good agreement with the main 

parameters of the longitudinal sound wave: the longitudinal 

velocity, the pressure and the temperature. However in the 

result of the interaction of the sound wave with the boundary 

layer the normal velocity components V0 ~ α and the gradients 

of the longitudinal velocity and temperature proportional to α
2
 

arise on the external boundary of the boundary layer. It is well 

known from the stability theory [2] that the gradient of the 

pressure amplitude in the normal direction is proportional to α
2
 

and for the long wave approximations it can be taken to be 

equal to zero (dq4/dy=0 in (1)). In this case the interaction of a 

longitudinal sound wave with a boundary layer is described by 

the same equations as in the problem on a complete 

stabilization of a supersonic boundary layer by cooling [19]. 

 

 

 
Taking into account that c=1-1/M1 we have computed the 

amplitude of the mass flow rate oscillations caused by the 

longitudinal sound wave at different values of the angle χ. The 

dependence of the maxima of the mass flow rate amplitudes on 

the angle χ for different R1 is shown in Fig. 6 (M1=2.0, 

F=0.9∙10
-4

). It is seen that the sound wave with the amplitude 

of the longitudinal velocity equal to unity excites an intense 

oscillation of the mass flow rate inside the boundary layer. 

This can be observed especially clearly for R1=320. It is 

interesting to note that the most intense oscillations are 

achieved at χ≠0. With increasing of Reynolds number χcr 

decreases, and at R1=250 χcr >45°. The exact value of χcr at 

R1=250 was indeterminated, since the computations were not 

carried out at χ>45°. In connection with the data obtained one 

should pay attention to the experiments of [18] in which the 

disturbances with χ=45° were revealed in the spectrum. 

However the results were obtained therein at R1=565, 

F=0.5∙10
-4

. Taking into account the fact that the theoretical 

results depend mainly only on α1R1, M1, and F=α1c/Rl, we find 

that 
1 1 /T E E TR R F F  at equal values of α1R1. (The 

Fig. 5 Dependence of the greatest intensity of 

fluctuations on M1 

Fig. 6. Maximal oscillations of the mass flow in the layer 

in dependence of the angle between the wave vector of the 

sound wave and the main stream direction. 

INTERNATIONAL JOURNAL OF MECHANICS

Issue 1, Volume 6, 2012 12



 

superscripts "E" and "T" denote here the experimental and 

theoretical values of the parameters, respectively). Thus the 

theoretical results with F=0.9l∙10
-4

 and R1=418 are the most 

close to the data presented in Fig. 6 at R1=410, correspond to 

the above experiments. In accordance with the obtained data 

the waves with χ≈35° should be amplified the most intensively, 

which is an agreement with [19] at least qualitatively. 

Another important fact is that in the case of a longitudinal 

sound wave the oscillations inside the boundary layer exceed 

by several times the external oscillations (see Fig. 6). It 

appears that this is the main reason for the excitation of the 

oscillations in the boundary layer on the upper surface of a 

plate, when the sound wave source was located below the plate 

level [20, 21]. Only the longitudinal waves with different χ 

could reach the boundary layer zone. The basic energy of the 

oscillation before the plate was generated at a finite angle to it 

passing outside the boundary layer. However, the disturbances 

inside the boundary layer exceeded multiply the oscillations in 

the external sound wave. It was the main reason why they were 

observed in the experiment.  

 

 
 

 
 

Fig. 6 shows that there are critical values of Rcr, at which 

interaction is the strongest (maximum intensity of disturbance 

within the boundary layer). Analysis of the data showed that 

there is a combination of χ and R1 for given frequency F when 

the mass flow inside the boundary layer can greatly exceed 

the relevant values on the outside edge of the boundary layer. 

Explanation of the big intensity oscillations exciting in a 

boundary layer by an acoustic wave can be given on the 

base of the resonance theory. TS waves are described by 
eigen solutions of the stability equation (1) with q1= q3= q5=0 
at y=0,∞. It is known, that the phase velocity of the Tollmin-
Shlichting wave goes to 1-1/M at the lower branche of the 
neutral stability curves and parameters of two types of 
waves also converge [18]. Then it becomes clear that the 
acoustic wave with the same parameters will affect as a 
resonant force for boundary layer and the fluctuations 
amplitude inside a layer in this case will be infinite. Thus 
high values Amax on Fig. 6 can be explained by a closeness of 
the parameters combination of a sound wave ( χ and R1) to a 
resonant combination of these parameters. 

Dependence of frequency parameter and an orientation 

angle of a resonant sound wave on R1 are shown on Fig 7. 

Calculations showed that frequency the acoustic resonance 

decreases with increasing of the Reynolds number and the 

orientation angle goes to 45° when R1 > 800. The existence of 

acoustic resonance is limited by area of R1 > 120.  

 

 
In Fig. 8 the position of an acoustic resonance frequency 

(line with mark) is compared with the position of the neutral 

stability curve of ―Tollmin-Shlichting‖ waves for different 

orientation angles in the plane (F, R1). As it was found the 

curve of the acoustic resonance are in close of the lower 

branches of the neutral stability curves. In addition it was 

confirmed by calculations that the phase velocity of the 

―Tollmin-Shlichting‖ wave goes to to 1-1/M with the growth 

of R1, and disturbances profiles of two types of waves also 

converge. It leads to result that eigen waves and longitudinal 

sound waves become similar each other. Therefore one 

should expect that receptivity of the supersonic boundary 

layer to longitudinal sound field can be a maximum in the 

neighborhood of the lower branches of the neutral stability 

curves. 

 

V. INTERACTION OF STATIONARY MACH WAVES 

WITH A BOUNDARY LAYER 

Within the framework of a problem about interaction of 

acoustic waves with a boundary layer we will consider 

influence of stationary Mach waves on flow parameters in a 

supersonic boundary layer. Let's notice that the problem about 

interaction of Mach waves with a boundary layer arises at 

treatment of the experimental data received in wind tunnels. 

The flows in them aren't homogeneous in space because 

of a roughness of walls of a wind tunnel in particular. 

Such disturbances of an external flow promote earlier laminar- 

turbulent transition of a boundary layer at test models. The 

external Mach waves are described by qαβλ =q0 exp(i(αx + βz 

∓λy)) and inside of a boundary layer by vector-functions qαβ 

=q (y) exp (i(αx + β z)). The vector q satisfies to the equations 

(1) with boundary conditions (2, 3) in which с=0. Thus 

calculations of an interaction of Mach waves with a boundary 

layer are similar to calculations which we did in problem of a 

sonic waves influence on a boundary layer. The calculations 

results of Amax = Amax (χ) are presented in Fig. 9. They are 

Fig. 7. Frequency parameter and the orientation 

angle of the resonant longitudinal acoustic wave in 

depending on the Reynolds number, M = 2. 

Fig. 8. Neutral stability curves and frequency of an 

acoustic resonance, F* (dark circles) in depending on 

the Reynolds number, M = 2. 
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similar to obtained data in the case of interaction between 

longitudinal sound wave with boundary layer (see Fig. 6), 

although the maximum values below (Amax < 10
2
 at χ ≈ 40°). 

 

 

 
 

It is possible to see that for the external short-wave 

nonuniformity (α1 ≥ 0.05) interaction is stronger for two 

demensional (2D) (χ = 0°) waves, while for α1 < 0.03 three-

dimensional external perturbations lead to greater 

nonuniformity inside boundary layer heterogeneity (Amax is 

peak at χ ≠ 0). 

 

 

 
Dependences Amax=Amax(R1) for χ = 0° and M1=3.5 are 

shown in Fig. 10. Again there is a critical R1cr at which Amax 

has a peak and hence the nonuniformity intensity within the 

boundary layer should be the maximum. 

 

VI. NONLINEAR EFFECT OF EXTERNAL LOW-

FREQUENCY ACOUSTICS ON EIGEN-OSCILLATIONS 

IN A SUPERSONIC BOUNDARY LAYER 

The problem of nonlinear interaction of acoustic waves and 

eigen-oscillations in a supersonic boundary layer is directly 

related to the problem of receptivity of steady flows to external 

actions. In the linear formulation, the latter problem involves 

determination the vibrations amplitude in a boundary layer 

excited external acoustic waves. It should be emphasized that, 

if the main flow is parallel external monochromatic waves do 

not excite eigen-oscillations [2]. The problem of excitation of 

eigen-oscillations by a monochromatic acoustic wave owing to 

nonparallelism of the main flow was considered in the linear 

formulation for the first time by Gaponov [12]. 

 In the nonlinear formulation of the problem the external 

sound wave can be considered as a pumping wave. Eigen-

oscillations develop in its field. An example of such a process 

is the development of disturbances in the boundary layer on a 

model located in the test section of a usual supersonic wind 

tunnel. The external acoustic field is generated by a turbulent 

boundary layer on the wind-tunnel walls. This leads us to the 

question of the principal possibility of conducting experiments 

on linear stability theory, since there are no estimates of the 

admissible level of external disturbances at present. At the 

same time, a large number of experiments on stability of a 

supersonic boundary layer was conducted in the T-325 wind 

tunnel of the Khristianovich Institute of Theoretical and 

Applied Mechanics of Siberian Division of the Russian 

Academy of Sciences (ITAM SB RAS) [21]. With respect to 

linear instability, these results are in agreement with the 

theory, although the possible influence of acoustics on the 

development of instability waves is feared. Therefore, apart 

from the general theoretical importance, the question of 

nonlinear interaction of external acoustics and eigen-

oscillations in the boundary layer is relevant from the 

viewpoint of applications, apart from the general theoretical 

importance, which is related to the possibility of modeling 

unsteady phenomena. In the present paper, we consider the 

interaction of hydrodynamic waves exponentially decaying at 

infinity and an external acoustic wave within the framework of 

weakly nonlinear theory. Acoustic disturbances with the 

greatest amplitude are located in the low-frequency range, 

whereas the frequency of disturbances responsible for the 

transition is greater by an order of magnitude. The objective of 

the present work is to determine the degree of influence of 

weakly nonlinear interaction of the waves at these different 

frequencies.  

Amplitude equation [22]. to the triplet of interacting waves 

can be written as: 

 

11
1 1 1 2 3

1

( , ) exp( )i

dA
A k A A i

dx

2 3
q q  

2 1 *2
1 2 2 1 3

1

( , ) exp( )i

dA
A k A A i

dx

3
q q  

3 1 2 *3
1 3 3 1 2

1

( , ) exp( )i

dA
A k A A i

dx
q q  

 

Here ∆ –phase detuning, complex variables are labeled by 

asterisk. The factors of nonlinear communication km 

characterize a force field generated by interacting waves, q
m

 – 

eigen-solutions of the linear problem. Detailed output of 

amplitude equations can be found in [22].  

The calculations were conducted for M1 =  2, R1 =  

220÷640, fundamental wave frequency F1 = (0.250÷0.90)∙l0
-4

, 

Fig. 9 Stationary amplitudes maximum of mass 

flow in depending on the orientation angle χ for 

M1=2, R1=500, α1=0.2(1), 0.05(2), 0.03(3), 0.02(4) 

Fig. 10. Stationary disturbances: an amplitude 

maximum of mass flow Amax in depending on the 

Reynolds number for M1=3.5, χ = 0°, α1 = 0.1(1), 

0.05(2), 0.04(3). 0.03(4), 0.02(5). 
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acoustic wave frequency F3  =  (0.447÷0.950)∙10
-5

, and angles 

of the fundamental  wave relative  to  the  flow χ =  30÷60°. 

Spanwise wave numbers satisfied condition: β1=β2 and β3 =0. 

 

 
 

The phase velocity of the acoustic wave was synchronized 

with the phase velocity of the second Tollmien-Schlichting 

wave, and the detunings ∆φ remained small everywhere. As a 

result of the calculations, we determined the fields of 

interaction coefficients, wave numbers, velocities, and 

reflection factors for the acoustic wave as functions of the 

Reynolds numbers for different frequencies and waves angles 

χ at M1 = 2 on a flat plate.  

It follows from the calculations that, for the frequencies of 

the fundamental wave F1 = 0.35∙l0
-4

 and acoustic wave F3 =  

0.047∙10
-4

, there exists a range of triplet angles (about 50°) 

where the growth rate of the interaction coefficients is 

maximum. Fig. 11 shows absolute values of ki  (i  =  1,  2) as 

functions of Re1 for the triplet angle χ1 =  50 and the above-

mentioned wave frequencies. For other values of F1 and F3 the 

maximum growth rates of the interaction coefficients were 

obtained for the same triplet angle. It is seen from Fig. 11 that 

the interaction coefficient of the fundamental (first) 

hydrodynamic wave is approximately twice the interaction 

coefficient of the second wave. This ratio is also observed for 

different parameters of the triplet of a given configuration. The 

calculations for different F1 at a fixed frequency of the 

acoustic wave F3 = 0.047∙10
-4

 and triplet angle χ1=  50° 

showed that the maximum values of k1,2 are obtained for the 

frequency F1  =  0.5∙10
-4

. The calculation results for these 

parameters are plotted in Fig. 12 (the notation is the same as 

in Fig. 11). It follows from the calculation that the phase 

velocities of the Tollmien-Schlichting waves increase with 

increasing Re1; therefore any triplet synchronized in phase 

velocities is destroyed at rather high Re1. This instant is seen in 

the figure as a drastic decrease in the interaction coefficients.  

Thus hydrodynamic waves with χ1=50 and the 

dimensionless frequency parameter close to F1=0.5∙l0
-4

 

receive the maximum effect of acoustics. As already noted all 

the calculations were conducted for β3 = 0. However the 

maximum linear effect of acoustics is observed at β3 other than 

zero (see Fig. 6, 9). Hence further calculations should be 

performed for β3 ≠ 0. Finally we note that the interaction 

coefficients in our case are small. Since the weakly nonlinear 

action is proportional to the amplitude of the external acoustic 

 

 
 

wave it is negligibly small for low-turbulence wind tunnels (for 

example, T-325 at the ITAM SB RAS).  

As the Mach number increases the hydrodynamic and 

acoustic frequencies should become closer. In addition, the 

levels of acoustic and induced oscillations inside the boundary 

layer increase with increasing Mach number (see Fig. 5). 

Therefore the conclusion about the weak effect of acoustics on 

the degree of amplification of the Tollmien-Schlichting waves 

cannot be automatically extended to the case of high Math 

numbers. 
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