
 

 

   
Abstract— The invariant properties of input and output of two-port 

circuits,   established previously, are generalized for a multiport 

network on the example of six-pole network. 

 The six-pole network is interpreted as two interconnected two-port 

circuits because of final resistance of the general wire of these 

circuits.  

       For the preset load conductivities, the projective coordinates of a 

running regime point are introduced concerning of the characteristic 

regime points, which set the projective coordinate systems on the 

input and output of six-pole networks. The invariance or preservation 

of the projective coordinate in these coordinate systems is shown.  

      The direct and reverse formulas of recalculation of currents and 

non-uniform coordinates are obtained in the form of fractionally - 

linear expressions of identical type.  

      The results allow separating or restoring two sensing signals via 

input currents of the six-pole circuit or the three-wire line inputs 

without determination of their transmission parameters. 

 

Keywords— interference of loads, invariant properties, loading 

characteristic, multi-port network, projective coordinates. 

I. INTRODUCTION 

N  the electric circuits theory two-port networks are usually 

considered, including their cascade connection with  fixed 

value of load conductivity [1]. But the special research of 

influence of load changes reveals invariant properties of the 

input and output regime parameters of such networks [2].  

       It is obvious, when there is the quantity expressed via 

conductivities or currents, which keeps the value in all the sub 

circuits or cross-section of circuit in the form of cascaded two-

port networks, then it is interesting for the  theory and useful in 

practice.    

      It is natural to discuss the question about detection of 

invariant properties of multiport networks on an example of 

the six-pole network which contains two output loads and two 

input voltage sources. In this case, the interference of load 

conductivities is observed. This six-pole network can be 

interpreted as two interconnected two-port networks. In 

practice, it can be the manifestation of final resistance of the 

general wire of two circuits. The three-wire communication  

line with use, for example, of physical "earth" as the third wire 

can also be the example of such circuit. 
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II. PROJECTIVE COORDINATES OF A SIX-POLE NETWORK 

OUTPUT 

Let us consider the six-pole network in Fig. 1. This circuit 

represents, in fact, two two-port networks which are connected 

among them by the conductivity
KLy . Therefore, the 

interference of load conductivities 21, LL YY is observed.   

 
 

Fig. 1   Six-pole network represents two two-port networks 

connected via conductivity KLy  

 

This circuit concerning loads represents an active two-port 

network. As it was shown [3], the family of load characteristics  

0),,( 121 =LYII , 0),,( 221 =LYII  at change of 

conductivities 21, LL YY  is represented by two bunches of 

straight lines in system of coordinates )0( 21 II in Fig. 2. For 

simplification, we consider DC circuit.       The bunch center, 

the point
1G , corresponds to the bunch of the straight lines 

with the parameter
2LY .  Physically, the bunch center 

corresponds to such regime of the second load 
2LY  which 

does not depend on its values. It is carried out for its current 

02 =I   on account of the first load parameters, 

01

11 <= G

LL YY , 
1

11
G
II = . 

The parameters of the center
2G  of the bunch 

1LY  are 

expressed similarly, 01 =I , 0
2

22 <= G

lL YY ,
2

22
G
II = . 

   The specified parameters of such characteristic regimes are 

determined either by  the matrix of Y - parameters of a six-

pole network  or by the direct calculation of the circuit, taking 

into account   one of the conditions 02 =I and 01 =I . 
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Fig. 2   Two bunches of load characteristics with the 

parameters 21, LL YY . 

 

Next, we use the idea of projective coordinates of the point of 

a running regime [3]. Let the initial or running regime 

corresponds to the point
1M  which is set by the values of 

conductivities 
1

2

1

1, LL YY and currents
1

2

1

1 , II .  In addition, 

this point is defined by projective non-uniform coordinates 
1

2

1

1 , mm  and homogeneous   coordinates 
11

2

1

1 ,, ∞ξξξ  which 

are set by the coordinate triangle 21 0GG and the unit point 

SC  [4]. The unit point corresponds to the short circuit 

regime, the point 0  is the beginning of coordinates as open 

circuit regime, and the straight line 21 GG  is the infinitely 

remote straight line ∞ . 

      The non-uniform projective coordinate 
1

1m  is set by a 

cross ratio of four points 

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

0
)0(

G

LL

L

G

L

G

LL

LG

LL

YY

Y

YYY

Y
YYm

−
=

=
−∞
−∞

÷
−

=∞=

.          (1)                                                                                                         

 

The points 
1

1

1

11 ,0 G

LLL YYY ==  correspond to extreme or 

base values. The point ∞=1LY  is the unit point.  The values 

of 1m are shown in Fig.2. For the point
1

1

1

1

G

LL YY = , 

coordinate ∞=1m   defines the sense of line of infinity 

21 GG .      The cross ratio for the projective coordinate 
1

2m  

is expressed similarly.                                                                                 

     In addition, the homogeneous projective 

coordinates ∞ξξξ ,, 21  set the non-uniform coordinates as 

follows 

,1
1

∞
=

ρξ
ρξ

m
∞

=
ρξ
ρξ2

2m ,                                             (2)                                                                                                      

where ρ  is the coefficient of proportionality. 

 

The homogeneous coordinates are defined as the ratio of 

distances of the points SCM ,1
to the sides of the coordinate 

triangle. Taking into account the side equations, we obtain  
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

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where 

( ) ( )22

2

21

1

11

GG II
+=∞µ  is the normalizing factor. 

 

The homogeneous projective coordinates (3) have a matrix 

form  

 

                  




















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
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∞
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
















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I
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0
1

0
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1
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2

2

1

1

2

1

C
. 

 

From here, the expressions (2) of non-uniform coordinates 

assume a convenient form 
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The inverse transformation 
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where the  components of  current vector define homogeneous 

coordinates of a current. 

From here, we find the current    
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III. PROJECTIVE COORDINATES OF A SIX-POLE NETWORK INPUT 

 

Let us superpose the system of coordinates )0( 43 II of input 

currents with the system of coordinates )0( 21 II in Fig. 3. 

Then any point with coordinates ),( 21 II  corresponds to a 

point with coordinates ),( 43 II .  

      In the terms of geometry, the projective transformation 

takes place which transfers points of plane ),( 21 II  into the 

points of plane ),( 43 II . Therefore, the coordinate 

triangle 21 0 GG , unit point SC  and running regime point 

1M  correspond to the triangle
21 0 GG , point SC  , and 

point 
1M , as it is shown by arrows in Fig. 3.  

 

 
 

Fig. 3   Projective transformation transfers points of the 

plane ),( 21 II  into points of the plane ),( 43 II . 

 

 

Then, the axes of currents 21, II  correspond to the axes 

21, II .  In addition, two bunches of the 

characteristics 0),,( 121 =LYII , 0),,( 221 =LYII  

correspond to two bunches of the 

characteristics 0),,( 143 =LYII , 0),,( 243 =LYII with the 

centers in the points 12 , GG . In the electric circuit theory, the 

linear property of   currents in different branches of a circuit at 

change of resistance in any other branch is known. It just also 

corresponds to projective nature of such property. Thus, the 

point 
1M  is set by other values of currents, the 

currents
1
4

1
3 , II .  Besides, this point is defined by projective 

non-uniform and homogeneous coordinates which are set by 

the coordinate triangle 21 0 GG  and unit point SC . 

 

The property of projective transformations shows that these 

coordinates of point 
1M  are equal to the coordinates of point 

1M , as the points 
1M ,

1M  are set by the same loads 
1

2

1

1, LL YY . Therefore, this property gives required invariant 

relations between the input and output currents.   
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For finding of the point 
1M  projective coordinates, it is 

necessary to obtain the equations of sides of a coordinate 

triangle. According to Fig. 4, the normalized equation of the 

side 10G or the axis 1I looks like 

01

314

31

314

4 =−
−

−
− OCOCOCOC IkI

Ik

IkI

I
, 

OCG

OCG

II

II
tgk

3
1

3

4
1

4
11

−

−
== α , 

 where 1k  is the  angular coefficient or  slope ratio. 

 

 

Fig. 4   Point’s
1M , SC  distances to the axis 1I  

 

Then, the point’s 
1M distance 

1

2δ to the axis 1I  is defined 

by expression 
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  where 2µ is the normalizing factor. 

The point’s SC  distance 
SC

2δ to the axis 1I is 

1
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Similarly, the axis 2I equation is 
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Then, the point’s 
1M distance 

1

1δ to the axis 2I  is 
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The point’s SC  distance 
SC

1δ to the axis 2I is 
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Similarly, the infinitely remote straight line ∞ equation is 
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The point’s 
1M  distance 

1

∞δ to the line ∞ is 
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The point’s SC  distance 
SC

∞δ  to the line ∞ is 
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The homogeneous projective coordinates are 
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and  have a matrix form  
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where the constituents of matrix are   
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From here, the non-uniform coordinates have the form similar 

to (6) 
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     The obtained expressions have a general appearance in 

comparison to (6) because of nonorthogonal 

coordinates 21 0 II .  Thus, in practice, the characteristic values 

of input and output currents (vertexes of coordinate triangles) 

and the characteristic load values are precomputed or   

preprogrammed by the calculation or testing the six-pole 

network.  Further, using the running values of input currents, 

we find or, more precisely, restore the values of non-uniform 

coordinates (10) and given load conductivities according to the 

expressions )(),( 2211 mYmY HH which are reverse to 

expression (1).   

        The formulated algorithm represents practical interest for 

transfer of two sensing signals via an unstable six-pole 

network or a three-wire line; it is by analogy to the signal 

transmission via a two-port network [2]. 

         

 Two cascaded six-pole networks.  Let us consider the 

cascaded six-pole networks in the Fig. 5.  

 
Fig. 5   Cascaded six-pole networks. 

 

Similarly, we superpose the system of coordinates )0( 65 II of 

input currents of the first six-pole network with the matrix 

63−Y of Y parameters  with the systems of 

coordinates )0( 43 II  , )0( 21 II . Then, the projective 

transformation, which transfers the plane ),( 21 II  points to the 

plane  ),( 65 II points, takes place. Therefore, the coordinate 

triangle 21 0 GG  corresponds to the triangle 21

~
0
~~
GG in 

Fig.6.  

      Also, the unit point SC , the running regime point 
1M  

will  correspond to the  points  CS
~~

, 
1~

M .  Moreover, two 

bunches of characteristics 0),,( 121 =LYII ,  

0),,( 221 =LYII  correspond to two bunches of characteristics 

0),,( 165 =LYII , 0),,( 265 =LYII   with the point centers 

12

~
,

~
GG .  
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Fig. 6   Mapping of the coordinate triangles. 

 

   

      Too, the point 
1~

M  is defined by the projective non-

uniform and homogeneous coordinates which are set by the 

coordinate triangle 21

~
0
~~
GG and the unit point CS

~~
. These 

projective coordinates of the point 
1~

M  are equal to the  

projective coordinates of the points 
1M ,  

1M  according to 

the property of projective transformations. Thus, the invariant 

relationships between the input and output currents of  

cascaded six-pole networks take place. 

The projective coordinates of the point 
1~

M  are obtained 

similarly to projective coordinates of the point 
1M . For this 

purpose, it is necessary to form the sides equations  of the 

triangle 21

~
0
~~
GG . 

  

IV. INVARIANCE OF REGIME CHANGES 

 

Besides the invariance of projective coordinates, for example, 

in the form of non-uniform coordinates (1), the invariance of 

changes of these non-uniform coordinates on account of 

changes of load conductivities takes place. Let the subsequent 

regime corresponds to the point 
2M  with the parameters of  

loads
2

2

2

1, LL YY , currents
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1 , II , and non-uniform 

coordinates
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The subsequent currents according to (7), (8) 
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Further, we are using the results [3].  Let us present the 

subsequent values of non-uniform coordinates via the initial 

values 
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Then, the expressions (11) are 
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or takes the matrix form 
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






∞

−

∞

−

1

1
2

1
1

211

1

1
2

1
1

21
2

21
1

12
2

2
1

][][

100

00

00

][

1

ξ

ξ

ξ

ξ

ξ

ξ

ρ

ρ

ρ

mC

m

m

CI

I

. 

 

Taking into account (5), we obtain  

  



















⋅=



















⋅⋅⋅=



















−

1

][

1

][][][

1

1
2

1
1

211
2

1
1

2112
2

2
1

I

I

MI

I

CmCI

I

ρ

ρ

ρ

,       (13) 

 

                                

where the matrix of current changes is 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 5, Volume 6, 2012 310



 

 

























−−

=



















=

1
11

00

00

1

00

00

][

2
2

21
2

1
1

21
1

21
2

21
1

21
32

21
31

21
22

21
11

21

GG I

m

I

m

m

m

MM

M

M

M .  (14)                                                              

 

The obtained relationship (13) allows carrying out the 

recalculation of the load currents for the preset value of load 

changes in the form of non-uniform coordinate changes.   

These changes of non-uniform coordinates are also true for 

input currents. Therefore, it is possible to obtain similar 

relationships for recalculation of the input currents.  

       The reverse transformation to the (9) is 

 

























⋅=























∞

−

ξ

ξ

ξ

ρ

ρ

ρ

2

1

1
4

3

][

1

CI

I

,                                     (15) 

      where                         

 



























=

−−−

−−−

−−−

−

OCGG

OC

OC

G

G

G

G

I
C

I
C

I
C

I

I
C

I

I
C

I

I
C

CCC

3

1
132

3

1
121

3

1
11

3

41
132

3

2
41

121
3

1
41

11

1
13

1
12

1
11

1

111

][C , 

 

and the constituents of matrix are 

 

SCG

GOC

OCOC

I
IIkk

IIk
C 11

1
31

3321

4321
11

))((
δµ

−−

−
=−

, 

SCG

GOC

OCOC

I
IIkk

IIk
C 22

2
32

3321

4311
12

))((
δµ

−−

−
−=−

, 

SCOC

GOC

GG

I
IIkk

IIk
C ∞∞

∞

∞−

−+

+
= δµ31

331

1
4

1
31

13
))((

. 

 

From here, similarly to (11), we pass to the subsequent 

currents 

,
111

3

1
13

2
22

3

1
12

2
11

3

1
11

1
13

2
2

1
12

2
1

1
112

3

OCGG I
Cm

I
Cm

I
C

CmCmC
I

−−−

−−−

++

++
=

OCGG

OC

OC

G

G

G

G

I
Cm

I
Cm

I
C

I

I
Cm

I

I
Cm

I

I
C

I

3

1

13

2

22

3

1

12

2

11

3

1

11

3

41

13

2

22

3

2

41

12

2

11

3

1

41

11

2

4 111 −−−

−−−

++

++
= .         (16)    

 

 

The obtained expressions have a general appearance in 

comparison to (11) because of nonorthogonal coordinates. 

Convenience of reverse to each other the expressions (10), 

(16) consists in their identical form. It is being reached on 

account of change of variables; we replace the load 

conductivities by the non-uniform projective coordinates, and 

currents are  already non-uniform coordinates.    

Further, we use the changes of non-uniform coordinates 

according to (12), and obtain the matrix expression 

 

 



















⋅⋅=

=



















⋅



















⋅=



















∞

−

∞

−

1

1
2

1
1

211

1

1
2

1
1

21
2

21
1

12
4

2
3

][][

100

00

00

][

1

ξ

ξ

ξ

ξ

ξ

ξ

ρ

ρ

ρ

mC

C m

m

I

I

. 

 

Using the transformation (9), we obtain 

 



















⋅=



















⋅⋅⋅=



















−

1

][

1

]][][

1

1
4

1
3

211
4

1
3

2112
4

2
3

I

I

I

I

I

I

MC[mC

ρ

ρ

ρ

 .       (17)                                                    

 

If to carry out calculations, we receive the matrix ][
21

M . The 

matrix ][
21

M of change of currents carries a general view in 

comparison to (14). 

      Using the transformations (13), (17), we find the 

subsequent currents 

1
111 1

22
2

21
21

11
1

21
1

1
1

21
1

2
12

1

+⋅
−

+⋅
−

⋅
==

I
I

m
I

I

m

ImI
I

GG

ρ
ρ

, 

 
1

2
22

2 ρ
ρI

I = ,                                                                        (18)                                         
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21

33

1

4

21

32

1

3

21

31

21

13

1

4

21

12

1

3

21

11

2

32

3
1 MIMIM

MIMIMI
I

+⋅+⋅
+⋅+⋅

==
ρ
ρ

,   

 
1

2
42

4 ρ
ρI

I =  .                                                                       (19)      

       

The calculation shows the equal values of the denominators of 

the expressions (18), (19). 

 

Example.  The active network in Fig.1 is described by the 

following system of the equations 

 

]][[

4

3

2

1

44342414

34332313

24232212

14131211

4

3

2

1

UY=









































−−−

−−−

−

−

=























U

U

U

U

YYYY

YYYY

YYYY

YYYY

I

I

I

I

,  

 

[ ]


















−−−

−−−

−

−

=

2803.0029.0159.00464.0

029.03247.0087.0147.0

159.0087.07727.01393.0

0464.0147.01393.06813.0

Y . 

 

Hereinafter, the dimensions of values are not specified for 

simplifying of record.  

 

For the output of multiport we have the next results. 

The parameters of the bunch centers 1G , 2G , 

1172.151

1 =GI ,  7991.0
1

1 −=G
LY ;  

152

2 =GI ,  9375.02

2 −=G

LY . 

The short circuit currents, 636.2,229.2 21 == SCSC II . 

The parameters of the initial regime, the point  
1M  

333.0,5.0 1

2

1

1 == LL YY , 8868.0,101.1 1

2

1

1 == II . 

The non-uniform projective coordinates (1) 

3848.0
7991.05.0

5.0
1

1

1

1

1

11

1 =
+

=
−

=
G

LL

L

YY

Y
m ,    

2622.0
9375.0333.0

333.0
2

2

1

2

1

21

2 =
+

=
−

=
G

LL

L

YY

Y
m . 

The homogeneous projective coordinates (3), (4) 

    4939.0
229.2

101.1

1

1

11

1 ===
SCI

I
ξρ  ,   

3364.0
2

1

21

2 ==
SCI

I
ξρ ,   2825.1

1
1 ==

∞

∞
∞ SCδ

δ
ξρ ,  

where                                                                

868.01
15

8868.0

1172.15

101.11 −=






 −+=∞∞δµ ,   

6768.01
15

636.2

1172.15

229.2
−=







 −+=∞∞
SCδµ .      

                                                                                                                             

 Let us check up the values of the non-uniform projective 

coordinates (2), 

3851.0
2825.1

4939.011

1 ===
∞ρξ

ρξ
m , 

2622.0
2825.1

3364.021

2 ===
∞ρξ

ρξ
m . 

Matrix [C]  according to (5) 

[ ]

























⋅
−

⋅
−

=

6768.0

1

6768.015

1

6768.01172.15

1

0
6358.2

1
0

00
229.2

1

C . 

 

Let us check up the value of the non-uniform projective 

coordinate (6) 

286.1

494.0

6768.0

1

6768.015

8868.0

6768.01172.15

101.1

101.1
229.2

1

1
1 =

+
⋅

−
⋅

−
=m . 

 

The inverse transformation matrix  (7) 

[ ]















=−

6768.01757.01474.0

06358.20

00229.2
1

C  .                                                         

 

Then, the current (8) 

101.1
7797.0

86.0

6768.02623.01757.03858.01474.0

3858.0229.21
1

==

=
+⋅+⋅

⋅
=I

. 

 

 

For the input of multiport we have the next results. 

The parameters of the bunch centers 1G , 2G  

3886.61

3 =GI ,  333.31

4 =GI , 5
2

3 =G
I ,  5

2
4 =G
I . 

The currents corresponding to the short circuit, 

455.2,607.3 43 == SCSC II . 
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The currents corresponding to the open circuit, 

602.1,639.2 43 == OCOC II . 

The parameters of the initial regime, the point  
1M  

929.1,051.3 1

4

1

3 == II . 

The normalized equation of the axis 1I   

01
8305.03835.0

1

34

314

31

314

4

=−−=

=−
−

−
−

II

IkI

Ik

IkI

I
OCOCOCOC

, 

4617.0
639.23886.6

602.1333.3

3

1

3

4

1

4
1 =

−
−

=
−
−

=
OCG

OCG

II

II
k . 

 

 The point 
1M distance to the axis 1I  

3566.01
8305.0

051.3

3835.0

929.11

22 =−−=δµ ,

8721.2
8305.0

1

3835.0

1
22

2 =






+






=µ . 

 

The point SC  distance to the axis 1I  

 0576.11
8305.0

606.3

3835.0

455.2
22 =−−=SCδµ . 

 

The normalized equation of the axis 2I  

01
5258.11961.2

1

34

432

32

432

4

=+−=

=+
−

−
−

II

IIk

Ik

IIk

I
OCOCOCOC

, 

4392.1
639.25

602.15

3

2

3

4

2

4
2 =

−
−

=
−
−

=
OCG

OCG

II

II
k . 

The point 
1M distance to the axis 2I  

1216.01
5258.1

051.3

196.2

929.11

11 −=+−=δµ , 

798.0
5258.1

1

1961.2

1
22

1 =






+






=µ . 

The point SC  distance to the axis 2I  

2458.01
5258.1

606.3

1961.2

455.2
11 −=+−=SCδµ . 

 

The normalized equation of the infinitely remote line ∞   

01
166.911

1

34

1
3

1
4

3

1
3

1
4

4

=−+=

=−
+

+
+ ∞

∞

∞

II

IkI

Ik

IkI

I
GGGG

, 

2.1
53886.6

333.35
2

3

1

3

1

4

2

4 =
−

−
=

−
−

=∞ GG

GG

II

II
k . 

 

The point 
1M distance to the line ∞   

4918.01
166.9

051.3

11

929.11 −=−+=∞∞δµ ,

142.0
166.9

1

11

1
22

=






+






=∞µ . 

 

The point SC distance to the line ∞   

3835.01
166.9

606.3

11

455.2
−=−+=∞∞

SCδµ . 

 

The homogeneous projective coordinates have the same values 

4947.0
2458.0

1216.0

1

1

11

1 ===
SCδ

δ
ρξ , 

3364.0
057.1

3566.0

2

1

21

2 ===
SCδ

δ
ρξ , 

2823.1
3835.0

4918.01
1 ===

∞

∞
∞ SCδ

δ
ρξ . 

 

The matrix ]C[  according to (9) 

[ ]

















−−

−−

−−

=

=

























⋅
−

⋅
−

−⋅⋅−

−⋅−⋅

=

607.2237.02844.0

9454.04653.21383.1

067.4852.1666.2

3835.0

1

113835.0

1

166.93835.0

1

057.1

1

3834.0057.1

1

8305.0057.1

1

2458.0

1

1961.22458.0

1

5258.12458.0

1

C

. 

Let us carry out the requalification of the value of the non-

uniform projective coordinate according to (10) 

 

282.1

495.0

607.2929.1237.0051.32844.0

067.4929.18522.1051.3666.21
1 =

+⋅−⋅−
−⋅−⋅

=m . 
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For the invariance of regime changes we have the next 

results. 

 The parameters of the subsequent regime, the point
2M ,  

1,1 2

2

2

1 == LL YY , 602.1,459.1 2

2

2

1 == II , 

132.2,253.3 2

4

2

3 == II . 

555.0
7991.01

12

1 =
+

=m , 516.02

2 =m .   

 

 The non-uniform projective coordinate changes (12) 

 

442.13848.0555.01

1

2

1

21

1 =÷=÷= mmm , 

968.12622.0516.01

2

2

2

21

2 =÷=÷= mmm .   

                                                           

The matrix of the current changes (14) 

 
















=

10645.00292.0

0968.10

00442.1

][M21
.                                                              

The matrix of the reverse transformation  (15) 
















=−

6768.01757.01474.0

0847.18791.04915.0

7868.18789.09422.0
1
]C[ .          

                                     

 The matrix of the change of the input current 3I  (17) 

















−

−

=

5728.02982.001927.0

503.23225.11463.1

21

23

21

22

21

21 MMM]M[ 21
. 

 

Let us check up the recalculation of the output current 1I (13), 

and input current 3I  (17) 

457.1
0893.1

5876.1

18868.00645.0101.10292.0

101.1442.1

1

2
12

1

===

+⋅+⋅
⋅

==
ρ

ρI
I

, 

 

254.3
0893.1

545.3

5728.0929.12982.0051.301927.0

503.2929.13225.1051.31463.12
3

==

=
+⋅+⋅−

−⋅+⋅
=I

. 

 

 

V. CONCLUSIONS 

 

1. For the preset load conductivities, the projective 

coordinates of a running regime point are 

introduced concerning of the characteristic regime 

points, which set the projective coordinate systems 

for input and output of the six-pole networks.  

2. The invariance or preservation of the projective 

coordinates of running regimes in these coordinate 

systems is shown.  

3. The direct and reverse formulas of recalculation of 

currents and non-uniform coordinates are obtained 

in the form of fractionally - linear expressions of 

identical type.  

4. The results allow separating or restoring two sensing 

signals via input currents of the six-pole circuit or 

the three-wire line inputs without determination of 

their transmission parameters. 

5. The offered approach can be generalized on AC 

circuits. 
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