
 

 

  

Abstract— In this paper we present a study of the algorithmic 

and architectural exploration methodology for a parallelism of the 3D 

reconstructing algorithm (Marching Cubes) and its optimized 

implementation on FPGA. 

We aim at defining a parallel multiprocessor architecture 

implementing this algorithm in an optimal way and Elementary 

Processor (EP) architecture dedicated to this algorithm. 

We use the SynDEx tool which adapts the AAA (Algorithm 

Architecture Adequacy) methodology, to find a good compromise 

between the computing power, the functionality of each PE, the 

optimization constraint (time, area), and the parallelization efficiency. 

Then, we describe a first implementation of PE on FPGA 

 

Keywords—3D reconstruction, Marching Cubes, Optimization 

AAA, FPGA, SynDEx.  

I. INTRODUCTION 

he 3D reconstruction consists in providing a volumetric 

representation of an object from a set of information that 

ensures a description of the 3D volume. The involvement of 

these algorithms is important in various fields, especially in 

medicine and biology. 

The Marching Cubes algorithm is the most used for the 

isosurface reconstruction [1]. This algorithm has been 

designed by William E. Lorensen and Harvey E. Cline in 1987 

[5] to generate a 3D model for an interesting anatomical 

structure. For that, it uses a threshold (characteristic value of 

anatomical structure for studying a human organ, which will be 

defined by the medical expert; each organ has its proper 
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threshold) and a set of slices previously segmented [2] [3]. 

We have known that the application implementation in 

processing and 3D reconstruction images must often respect 

real-time execution, while minimizing resource consumption 

when targeting systems with low cost and which are able to 

integrate the maximum processing algorithms. 

Our goal is to make the hardware implementation of a fast 

and robust 3D reconstruction by defining a parallel 

architecture for the Marching Cubes algorithm. This requires 

the adoption of an algorithmic and architectural optimization 

methodology as the AAA (Algorithm Architecture Adequacy) 

for rapid prototyping associated with the SynDEx tool 

(Synchronous Distributed Executive) [4]. This tool gives us a 

well algorithmic and architectural exploration in function of 

the optimization constraints (time and area), the processing 

element number and the multiprocessor architecture topology. 

In this paper, our work is based on the tool and methodology 

for studying and exploring the different parallelism types, to 

define the architecture topology and to specify their 

elementary processors dedicated to the 3D reconstruction 

(Marching Cubes) algorithm. 

This paper is organized as follows: Section 2 describes the 

Marching Cubes algorithm. In Section 3 we describe the AAA 

methodology and the SynDEx tool applied for the exploration 

and implementation of this algorithm, as well as the results of 

this architectural exploration of parallelism and the 

corresponding topology. We propose in Section 4 the 

Elementary Processor architecture and we present its 

implementation on two families of FPGA.   

II. MARCHING CUBES (MC) 

The principle basic of the "Marching Cubes" algorithm is to 

subdivide the space into elementary volumes [10]. The basic 

element is a cube called voxel and formed by 8 vertices and 12 

edges. Each vertex can get two states: it can be inside or 

outside the interested surface (surface of anatomical structure). 

So, there are 256 (2
8
) possible topologies inside a voxel. Due 

to the rotation symmetry and inversion of inner and outer 

points, these 256 initial configurations can be reduced to 15 

basic configurations [5] [10].  

This algorithm is functioning is composed by 4 stages: The 

first step is to define a cube and number its vertices according 

to the Paul Bourke convention [5]. The second consists in 
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determining the index (Fig.1).  In fact, the interested surface 

intersects the voxel edge when the two vertices forming this 

edge are two opposite signs.  In the third step, this index is 

used as a pointer in the "Tri-Table" (Fig.1) which defines the 

set of intersections of the interested surface by the cube edges. 

The last step allows the intersection points calculation on the 

cube’s edges, by a linear interpolation [10] (Fig.1). 
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Fig. 1 Steps of the MC algorithm’s functioning 
 

Algorithm 1 describes the iterative form of the Marching 

Cubes algorithm, and it takes as data: p as the number of 2D 

images, N as the resolution of 2D images (image NxN), and 

the threshold (chosen by the user to be associated to the 

interest anatomical structure). 

The core processing algorithm contains three loops:  

(for(s=0; s<7; s++)) and the two nested loops  

(for(a=1; a<15; a++)) and (for c=x;y;z).  

This algorithm gives, on each voxel processed, the 

coordinates of the intersection point between the edge and the 

interested surface (Px,Py,Pz).  
 

 

III. PARALLELISM EXPLORATION METHODOLOGY 

A. AAA/SynDEx tool 

The SynDEx (Synchronous Distributed Executive) [6] [7] is 

a graphic software used to provide rapid prototyping and 

optimizing the implementation of real-time embedded 

applications on multiprocessor architectures. 

This tool is based on the AAA methodology [8]. It takes as 

an input the algorithm specification in the form of a data graph 

and the target architecture description in the form of an 

operator graph (Fig.2). 

  
The SynDEx tries to make an algorithm implementation 

which respect a given constraint (latency and surface) while 

being implemented on the target circuit. For this, it works on 

factorization; i.e, the more the factorized loop is, the more 

parallelism is [11]. 

The factorization process shows four specific types of nodes 

present in Fig.3 (factorization frontiers nodes): F (Fork node), 

J (Join node), D (Diffuse node) and I (Iterate node).  
 

 
Because it is impossible to explore all possible 

defactorizations in reasonable times, SynDEx use approximate 

methods based on heuristics.  

The SynDEx executes the optimization heuristic, adequating 

between the algorithm and the architecture. This ensures the 

automatic generation of a real-time distributed executive. 

The optimized implementation called adequacy, forms a 

graph obtained by transforming the two input graphs 

(algorithm graph, architectural graph). 

Among all possible transformations, the heuristic 

optimization, based on performance prediction, keeps the one 

Algorithm 1 : 

{Data= p slices(N x N), threshold} 
 

for(z=1; z<p; z++)// read of two adjacent slices//  
   

 for(y = 1 ; y<N; y++) 
 

    for(x = 1; x<N ; x++)//Voxel Extraction// 

  

for(s = 0; s<7; s++)// Index calculation  

  If (Vxyz(s) < threshold) then 

  index = index +2s  

         

      for (a = 1; a<15; a++) 

        If Tri-Table[Index](a)≤11 then  

         //the edge a is intersected, coordinates     

        and intensities extraction of pixels  

        associated in every edge:   

        V1xyz,V2xyz,(P1x,P1y,P1z)et(P2x,P2y,P2z) // 

        for c = x;y; z   

          If(threshold-V1xyz)>0 and (V2xyz-V1xyz)>0              

          Then  //interpolation calculation //  

          else  Pc =P1c  

     {Results=Px,Py,Pz} //the intersection points //  

 
 

 
 

 

Fig. 2 the extension of the AAA / SynDEx  

 

 
 

Fig. 3 Factorization frontier nodes 

A- Voxel extraction 

B- Index calculation 

C- Find intersected edge 

D- Intersection points calculation 
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that minimizes the execution time (latency) of the algorithm. 

The result is shown through the temporal graph provided by 

the SynDEx: the "Schedule Time" (Fig. 4). This prediction is 

used for viewing the parallelism obtained as well as optimizing 

the implementation. For this, the user may interact with 

heuristics to help find better results by adjusting the grain size 

of the algorithm and by modifying the resources of the 

architecture. 

 
Following the construction of the implementation graph, the 

SynDEx generates a macro code which does not depend on the 

language used by processors. The process leading to the final 

goal of the AAA methodology (the algorithm execution on real 

architecture) includes, at first, the transformation of each 

macro code constituting the program for each processor in a 

compilable executive. That is why, it is necessary to have 

translation libraries given with the SynDEx [4]. 

The SynDEx-IC is also a tool like the SynDEx; it looks for 

an algorithm implementation which respects a given constraint 

(latency, surface) for optimization. However this tool 

(SynDEx-IC) aims for an implementation on a single FPGA 

architecture. Thus, it allows the generation of the synthesizable 

and optimized VHDL code while respecting the constraints. 

B. Modeling of the Marching Cubes 

In this section, we show how we have modeled the 

Marching Cubes algorithm to exploit the different types of 

parallelism. 

1) Data Parallelism 

In order to optimize memory used on embedded processors, 

we have analyzed the data dependencies presented in the 

Marching Cubes algorithm. 

As we have described in algorithm 1 in section 2, the 3D 

reconstruction is done by sweeping each two successive slices 

to extract a finite number of cubes. Thus, the treatment is done 

cube by cube. This sweep is repeated for the other slices until 

the volume formation whose parameters are the resolution of 

2D slice (N x N pixels) and the number of slices Z. 

In fact, the cube processing presents the working core of this 

3D reconstruction algorithm. This treatment is independent 

from others, not only within the same 2D slice but also by 

moving from a 2D slice to another, so we can treat many cubes 

in parallel as a cube block. 

As we have outlined below, the processing volume depends 

on two factors; the image resolution (N) and the slice number 

(Z), therefore the number of processing blocks can be 

presented in two ways: 

� Version 1: The processing block depends on the 2D 

image resolution (N): The blocks number ( )12 −×= Zknb  

where k presents the parallelism factor. Each block contains 
2

1







 −
k

N  cubes where k= 2
i
and

*Ν∈i .   

In Fig.5 we show this approach of two 2D slices. The 

maximum data parallelism is attained when all cubes extracted 

from the 2D slices are processed in parallel. In this case, each 

cube is a processing block. 

 
� Version 2: The processing block depends on the slice 

number to process (Z): In this case, the blocks number 

knb = where ( )11 −≤≤ zk . Each block is composed by 
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1

k

Z slices and contains ( )211
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 −
N

k

Z  cubes.  

In Fig.6 we show this approach. 

 
The maximum data parallelism is attained when all 2D 

slices are processed in parallel. In this case, each two 

successive 2D slices are a processing block. 

2) Complexity analysis 

In the following, we focus on exploring and developing the 

data flow model configured by N, which we have outlined in 

the previous section. 

According to this model, the complexity calculation is based 

on the parallelism factor (K). 
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Fig.6 Data flow model for the calculation of blocks configured by Z 
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Fig.5 Data flow model for the calculation of blocks configured by N 

 

 
 

Fig. 4 Schedule Time 
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In the table below we present the complexity of the 

Marching Cubes algorithm which processes 24 2D images 

(64x64). This complexity depend, on three parameters: the 

cubes number to be processed per block, the operations 

number and the memory space occupied. 

 
The complexity analysis presented in table.I confirms that 

the voxels number to be processed per block as well as the 

operations number is depends on the parallelism factor k. 

3) Task Parallelism 

The Marching Cubes algorithm consists in drawing a 

polygon which presents the intersection of a cube and the 

plane that models the interest surface, so the core of this 

processing focuses on a voxel. In section 2 we describe how 

this algorithm is functioning. We are interested, in the next 

part (section III.C), in the last stage and we try to put in 

parallel the calculation of intersection points on the 12 edges 

of the voxel. 

C. Architectural exploration result of the MC parallelism 

1) Algorithmic architectural specification  

Using the SynDEx-IC tool, the algorithm specification is in 

the form of a data dependency graph including regular 

(repeating periodic units) and no-regular parts. This 

specification should be independent of any constraints linked 

to the hardware implementation and requires the 

implementation of the algorithm's decomposition process in 

hardware operations (addition, subtraction and multiplication) 

[9]. 

In the example of the second step operation of the Marching 

Cubes algorithm, which consists in determining the index, the 

value is presented in 8 bits. So it is between 0 and 255. The 

index value provides information on the positions of the inside 

and outside for the interested surface. Each bit of the index is 

associated with one vertex; the bit is "1" if the point is internal, 

and "0" if is not. The surface then cuts the edges of the cube 

when the two vertices forming the edge are opposite signs (one 

is 0 the other is 1). 

Thus, by factoring the index calculation block (Fig.7), we 

have a factorization frontier FF2 which corresponds to the 

repeating units factorization of the index calculations 

(comparator, multiplier and adder) contained in the loop  

(For (s = 0;s<7 ;s++)). 

 
This FF2 frontier is applied 8 times and is delimited by the 

factorization node (F1, F2, I1). The two nodes F1 and F2 

separate their input array into an element of 8 intensities for F2 

and 8 constants for F1, while the node (I1) makes the 

factorization of inter-pattern data (Fig.8). 

In Fig.7, the GFCDD of the Marching Cubes algorithm, 

added to the FF2, contains two nested frontiers, FF3 and FF4, 

whose factorization factors are respectively 15 and 3. 

The first is the factorization of unit calculations contained in 

the loop "((for (a=1;a<15;a++))"; and the second is the 

factorization contained in the loop "(for c=x;y;z)" (Fig.8). 

 Table I. Complexity of the Marching Cubes algorithm 

 

 
 

Fig. 7 Decomposition and Factorization of an index calculation block 
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2) Setting a graph within SynDEx-IC 

We have modeled the GFCDD of the MC algorithm in 

SynDEx-IC. The solutions obtained by the heuristic 

optimization under different constraints (expressed in micro 

seconds) are given in Fig.9. For each case, we give the 

estimated latency and area (number of CLBs) and the 

defactorization degree (DF) of the two frontiers FF3 and FF4 

(TF indicates that it is totally factorized). 

 
The parallelism depends on the degree of each 

defactorization frontier following the constraint. For a constant 

surface, the variation of latency depending on the 

defactorization degree is due to the sequentially or partially 

parallel execution of the frontier.  

According to the results presented in Fig.9, the heuristic has 

opted for implantation when the frontiers (FF3 and FF4) are 

defactored by 4; this is confirmed by the neighborhood graph 

generated automatically by the SynDEx-IC (Fig.10). 

In this graph, each node represents a factorization frontier 

and each hyperarc represents the data dependencies between 

the different frontiers. 

The first neighborhood graph (Fig.10a) corresponds to a 

sequential implementation of the Marching Cubes algorithm. 

Whereas, the second (Fig.10b) corresponds to its optimized 

implementation to defactorize the different frontiers by 4 in 

order to minimize its critical path.  
 

Fig. 9 Results of the heuristic according to constraint variation 

 

 
Fig. 8 GFCDD of Marching Cubes algorithm for a voxel processing 
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These new frontiers can be executed in parallel (that means 

to perform processing for each three edges together); this 

result can provide the reduction of the computation time but 

increases of the resource consumption. 

D. Exploration result of the multiprocessor topology: 

Then, we use the SynDEx tool to model the data parallelism 

(version1) in various models of different topology 

architectures. 

We focus in this article on a ring architecture which has led 

to better results by varying the number of PEs (NPE). In this 

architecture, each PE is connected to its two neighbors by a 

direct link (Fig.11). 

 
We have already seen in section III.B.1 that the processing  

block depends on the two parameters N and Z. According to 

version1, we consider that the blocks number ( )12 −×= Zknb  

and each one contains
2

1







 −
k

N voxels where k=2
i
,

*Ν∈i  

The exploration has been carried on 24 images of 64x64 as 

data, by varying two parameters: 

� The number of processing blocks (by varying k) 

� The number of elementary processors (PEs) 1 <NPE <64 

In fact, the acceleration (Fig.11) is described by Sp 

(Sp=Tseq/Tp) where Tseq and Tp are respectively the 

computation time of 1 and NPE PEs. 

 
The result shown in Fig.12 confirms that the speed of the 

algorithm continues to increase proportionally with the number 

of PEs processors present in architecture until a defined 

number, and then it becomes stable. 

Indeed, the acceleration reaches its maximum for a 

multiprocessor architecture whose number of PEs is similar to 

the number of processing blocks. For the case of 16 input 

blocks, the best compromise between the acceleration and the 

NPE (surface) is attained for 16 PEs (k = 4). 

According to the data parallelism exploitation for this 

algorithm, we can conclude that an efficient architecture is the 

one that forms a ring of PEs, where each one processes a 

single block (each voxel presents a block). 

Fig.13 represents the parallelization efficiency (Eff=Sp/NPE) 

of the adequacy obtained by SynDEx, depending on the NPE. 

This efficiency decreases by increasing the number of PEs 

forming the architecture; this may be explained by the fact that 

this parallelization requires many data transfers between 

processors. 

We can observe in the previous figure (Fig.13) that 

the decreased efficiency is increasingly important in the case 

of the architecture that includes a significant number of PEs 

 

 
Fig. 10 The Marching Cubes neighborhood  

 

 

 
Fig. 12 The acceleration as a function of NPE 

 

 
 

Fig. 11 Example of ring architecture 
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and that processes a few input blocks.  

 
This observation confirms that the addition of PEs in an 

efficient architecture can quickly reduce the efficiency of 

parallelization, since the data transfer time between processors 

becomes important compared to the process time. 

IV. ELEMENTARY PROCESSOR DESIGN 

According to the GFCDD of the Marching Cubes algorithm 

already modeled with the SynDEx-IC and the SynDEx and 

based on the exploration conclusions, we present the data path 

of the Marching Cubes implementation for voxel processing 

(Fig.14).

This figure (Fig.14) shows two Datapaths; the first 

DatapathA contains computations operations (1 multiplier,  

1 adder and 1 comparator) used to calculate the index and a 

register which is stored the intensities of eight pixels forming 

the voxel. 

The second DatapathB contain calculations units  

(2 multipliers, 3 subtractors, 3 comparators, 1 adder and 1 

divider) limited by the factorization frontier presented as FF3 

in GFCDD (Fig.8), it is used to calculate the intersection 

points by interpolation linear. This DatapathB contains too two 

registers to save intensities and the pixel coordinates as input. 

These two Datapaths are connected to three memory which 

containing the coefficients needed to implement the Marching 

Cubes algorithm. 

Based on the Fig.13, we propose a PE (Fig.15) composed of 

two Datapaths containing registers backup as well as 

computation operations. 

 
This PE include three memory; the first one contains all 

possible topologies present in each cube (Tri-table), the 

second determines the two vertices forming the edge which 

intersected by the interested surface and the third memory 

contains the image data. 

A memory interface is designed to ensure an efficient 

distribution of data to the Datapaths. 

 

 
Fig. 13 The parallelization efficiency as a function of NPE 

 

 
 

Fig. 15 The architecture of PE 

 

 
Fig. 14 Data path of the optimized implementation 
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This elementary processor has been implemented and 

validated on two FPGA families, Xilinx Virtex4 (xc4vlx200-

10ff1513) and Altera CycloneV (5CGXC7) (Table.II). 

 
The synthesis result presented by table.II shows that the 

elementary processor designed consumes on CycloneV 1151 

LEs, 1309 of FF (flip-flop), 11 of DSP and 205 M10K.  

On Virtex4 this core consumes 1689 Slices, 1704 of FF 

(flip-flop), 2 of DSP and 128 BRAM. 

This result provides an elementary processor core which 

working at 43MHz and using only 1% of resources 

(Slices/LEs) FPGA (table2). 

The obtained performances allow us to envisage a 

multiprocessor architecture implementation on FPGA. 

V. CONCLUSION 

In this paper we have studied the algorithmic and 

architectural exploration of the Marching Cubes algorithm 

using the AAA methodology and SynDEx tool based on the 

optimization constraints to define a parallel multiprocessor 

architecture that accommodates an optimized implementation. 

By exploring the data parallelism of the algorithm, we have 

seen that the number of blocks to be parallelly processed is 

determined either by the image resolution (version1) or by the 

slice number (version2). 

We have focused on the first version, and we have modeled 

this algorithm within the SynDEx. We have made a first 

implementation of an elementary processor of this architecture 

and defined the adequate topology for this PE type of and this 

application. 

Following this work, we will focus on the second version to 

well optimize the algorithm by using two parallel 

programming models: the MPI and OpenMP models. 
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