

Abstract— In this paper we present a study of the algorithmic

and architectural exploration methodology for a parallelism of the 3D

reconstructing algorithm (Marching Cubes) and its optimized

implementation on FPGA.

We aim at defining a parallel multiprocessor architecture

implementing this algorithm in an optimal way and Elementary

Processor (EP) architecture dedicated to this algorithm.

We use the SynDEx tool which adapts the AAA (Algorithm

Architecture Adequacy) methodology, to find a good compromise

between the computing power, the functionality of each PE, the

optimization constraint (time, area), and the parallelization efficiency.

Then, we describe a first implementation of PE on FPGA

Keywords—3D reconstruction, Marching Cubes, Optimization

AAA, FPGA, SynDEx.

I. INTRODUCTION

he 3D reconstruction consists in providing a volumetric

representation of an object from a set of information that

ensures a description of the 3D volume. The involvement of

these algorithms is important in various fields, especially in

medicine and biology.

The Marching Cubes algorithm is the most used for the

isosurface reconstruction [1]. This algorithm has been

designed by William E. Lorensen and Harvey E. Cline in 1987

[5] to generate a 3D model for an interesting anatomical

structure. For that, it uses a threshold (characteristic value of

anatomical structure for studying a human organ, which will be

defined by the medical expert; each organ has its proper

Manuscript received June 6,2012: Revised version received .., 2012. This

work was supported in Research Team of Medical and Imaging and

Technologie at the Faculty of Medecine of Monastir, Monastir University,

Tunisia.

MILI Manel is with Faculty of Medicine/Laboratory of Biophysique/Team

TIM, University of Monastir, 5019, Tunisia (e-mail: mili_manel@yahoo.fr).

MAHMOUD Bouraoui is with Faculty of Medicine/Laboratory of

Biophysique/Team TIM, University of Monastir, 5019, Tunisia (e-mail:

Bouraoui.mahmoud@fsm.rnu.tn).

AKIL Mohamed is with ESIEE Paris/Laboratoire d’informatique Gaspard-

Monge/équipe A3SI, Université Paris EST Bld Blaise Pascal, BP 99, Noisy-

Le-Grand, 93162, France (e-mail: Akilm@esiee.fr).

BEDOUI Med Hédi is with Faculty of Medicine/Laboratory of

Biophysique/Team TIM, University of Monastir, 5019, Tunisia (e-mail:

Medhedi.bedoui@fmm.rnu.tn).

threshold) and a set of slices previously segmented [2] [3].

We have known that the application implementation in

processing and 3D reconstruction images must often respect

real-time execution, while minimizing resource consumption

when targeting systems with low cost and which are able to

integrate the maximum processing algorithms.

Our goal is to make the hardware implementation of a fast

and robust 3D reconstruction by defining a parallel

architecture for the Marching Cubes algorithm. This requires

the adoption of an algorithmic and architectural optimization

methodology as the AAA (Algorithm Architecture Adequacy)

for rapid prototyping associated with the SynDEx tool

(Synchronous Distributed Executive) [4]. This tool gives us a

well algorithmic and architectural exploration in function of

the optimization constraints (time and area), the processing

element number and the multiprocessor architecture topology.

In this paper, our work is based on the tool and methodology

for studying and exploring the different parallelism types, to

define the architecture topology and to specify their

elementary processors dedicated to the 3D reconstruction

(Marching Cubes) algorithm.

This paper is organized as follows: Section 2 describes the

Marching Cubes algorithm. In Section 3 we describe the AAA

methodology and the SynDEx tool applied for the exploration

and implementation of this algorithm, as well as the results of

this architectural exploration of parallelism and the

corresponding topology. We propose in Section 4 the

Elementary Processor architecture and we present its

implementation on two families of FPGA.

II. MARCHING CUBES (MC)

The principle basic of the "Marching Cubes" algorithm is to

subdivide the space into elementary volumes [10]. The basic

element is a cube called voxel and formed by 8 vertices and 12

edges. Each vertex can get two states: it can be inside or

outside the interested surface (surface of anatomical structure).

So, there are 256 (2
8
) possible topologies inside a voxel. Due

to the rotation symmetry and inversion of inner and outer

points, these 256 initial configurations can be reduced to 15

basic configurations [5] [10].

This algorithm is functioning is composed by 4 stages: The

first step is to define a cube and number its vertices according

to the Paul Bourke convention [5]. The second consists in

Hardware Parallel Architecture

 of a 3D Surface Reconstruction:

Marching Cubes Algorithm

MILI Manel, MAHMOUD Bouraoui, AKIL Mohamed, BEDOUI Med Hédi

T

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 143

determining the index (Fig.1). In fact, the interested surface

intersects the voxel edge when the two vertices forming this

edge are two opposite signs. In the third step, this index is

used as a pointer in the "Tri-Table" (Fig.1) which defines the

set of intersections of the interested surface by the cube edges.

The last step allows the intersection points calculation on the

cube’s edges, by a linear interpolation [10] (Fig.1).

v1

v2
v3

v4 v5

v6
v7

0

1

2

3

4

56
7

8 9

1011 v0 V4 V5

V1V0

V7 V6

V2V3

4

9

0

8

6

10
2

11

7 5

13

00 0 0 01 10

V7 V6 V5 V4 V3 V2 V1 V0

= 5

V6=12

V2=9

x

V6=12

V2=9

x

Fig. 1 Steps of the MC algorithm’s functioning

Algorithm 1 describes the iterative form of the Marching

Cubes algorithm, and it takes as data: p as the number of 2D

images, N as the resolution of 2D images (image NxN), and

the threshold (chosen by the user to be associated to the

interest anatomical structure).

The core processing algorithm contains three loops:

(for(s=0; s<7; s++)) and the two nested loops

(for(a=1; a<15; a++)) and (for c=x;y;z).

This algorithm gives, on each voxel processed, the

coordinates of the intersection point between the edge and the

interested surface (Px,Py,Pz).

III. PARALLELISM EXPLORATION METHODOLOGY

A. AAA/SynDEx tool

The SynDEx (Synchronous Distributed Executive) [6] [7] is

a graphic software used to provide rapid prototyping and

optimizing the implementation of real-time embedded

applications on multiprocessor architectures.

This tool is based on the AAA methodology [8]. It takes as

an input the algorithm specification in the form of a data graph

and the target architecture description in the form of an

operator graph (Fig.2).

The SynDEx tries to make an algorithm implementation

which respect a given constraint (latency and surface) while

being implemented on the target circuit. For this, it works on

factorization; i.e, the more the factorized loop is, the more

parallelism is [11].

The factorization process shows four specific types of nodes

present in Fig.3 (factorization frontiers nodes): F (Fork node),

J (Join node), D (Diffuse node) and I (Iterate node).

Because it is impossible to explore all possible

defactorizations in reasonable times, SynDEx use approximate

methods based on heuristics.

The SynDEx executes the optimization heuristic, adequating

between the algorithm and the architecture. This ensures the

automatic generation of a real-time distributed executive.

The optimized implementation called adequacy, forms a

graph obtained by transforming the two input graphs

(algorithm graph, architectural graph).

Among all possible transformations, the heuristic

optimization, based on performance prediction, keeps the one

Algorithm 1 :

{Data= p slices(N x N), threshold}

for(z=1; z<p; z++)// read of two adjacent slices//

 for(y = 1 ; y<N; y++)

 for(x = 1; x<N ; x++)//Voxel Extraction//

for(s = 0; s<7; s++)// Index calculation

 If (Vxyz(s) < threshold) then

 index = index +2s

 for (a = 1; a<15; a++)

 If Tri-Table[Index](a)≤11 then

 //the edge a is intersected, coordinates

 and intensities extraction of pixels

 associated in every edge:

 V1xyz,V2xyz,(P1x,P1y,P1z)et(P2x,P2y,P2z) //

 for c = x;y; z

 If(threshold-V1xyz)>0 and (V2xyz-V1xyz)>0

 Then //interpolation calculation //

 else Pc =P1c

 {Results=Px,Py,Pz} //the intersection points //

Fig. 2 the extension of the AAA / SynDEx

Fig. 3 Factorization frontier nodes

A- Voxel extraction

B- Index calculation

C- Find intersected edge

D- Intersection points calculation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 144

that minimizes the execution time (latency) of the algorithm.

The result is shown through the temporal graph provided by

the SynDEx: the "Schedule Time" (Fig. 4). This prediction is

used for viewing the parallelism obtained as well as optimizing

the implementation. For this, the user may interact with

heuristics to help find better results by adjusting the grain size

of the algorithm and by modifying the resources of the

architecture.

Following the construction of the implementation graph, the

SynDEx generates a macro code which does not depend on the

language used by processors. The process leading to the final

goal of the AAA methodology (the algorithm execution on real

architecture) includes, at first, the transformation of each

macro code constituting the program for each processor in a

compilable executive. That is why, it is necessary to have

translation libraries given with the SynDEx [4].

The SynDEx-IC is also a tool like the SynDEx; it looks for

an algorithm implementation which respects a given constraint

(latency, surface) for optimization. However this tool

(SynDEx-IC) aims for an implementation on a single FPGA

architecture. Thus, it allows the generation of the synthesizable

and optimized VHDL code while respecting the constraints.

B. Modeling of the Marching Cubes

In this section, we show how we have modeled the

Marching Cubes algorithm to exploit the different types of

parallelism.

1) Data Parallelism

In order to optimize memory used on embedded processors,

we have analyzed the data dependencies presented in the

Marching Cubes algorithm.

As we have described in algorithm 1 in section 2, the 3D

reconstruction is done by sweeping each two successive slices

to extract a finite number of cubes. Thus, the treatment is done

cube by cube. This sweep is repeated for the other slices until

the volume formation whose parameters are the resolution of

2D slice (N x N pixels) and the number of slices Z.

In fact, the cube processing presents the working core of this

3D reconstruction algorithm. This treatment is independent

from others, not only within the same 2D slice but also by

moving from a 2D slice to another, so we can treat many cubes

in parallel as a cube block.

As we have outlined below, the processing volume depends

on two factors; the image resolution (N) and the slice number

(Z), therefore the number of processing blocks can be

presented in two ways:

� Version 1: The processing block depends on the 2D

image resolution (N): The blocks number ()12 −×= Zknb

where k presents the parallelism factor. Each block contains
2

1

 −
k

N cubes where k= 2
i
and

*Ν∈i .

In Fig.5 we show this approach of two 2D slices. The

maximum data parallelism is attained when all cubes extracted

from the 2D slices are processed in parallel. In this case, each

cube is a processing block.

� Version 2: The processing block depends on the slice

number to process (Z): In this case, the blocks number

knb = where ()11 −≤≤ zk . Each block is composed by

+

 −
1

1

k

Z slices and contains ()211
−×

 −
N

k

Z cubes.

In Fig.6 we show this approach.

The maximum data parallelism is attained when all 2D

slices are processed in parallel. In this case, each two

successive 2D slices are a processing block.

2) Complexity analysis

In the following, we focus on exploring and developing the

data flow model configured by N, which we have outlined in

the previous section.

According to this model, the complexity calculation is based

on the parallelism factor (K).

Z

+

 −
1

2

1Z

+

 −
1

4

1Z

2=k 4=k 1−= zk

+

 −
1

2

1Z

+

 −
1

4

1Z

Fig.6 Data flow model for the calculation of blocks configured by Z

2=k 4=k ik 2=

 −
2

1N

 −
4

1N

 −
K

N 1

()21−N
2

2

1

 −N
2

4

1

 −N
2

1

 −
k

N2k

Fig.5 Data flow model for the calculation of blocks configured by N

Fig. 4 Schedule Time

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 145

In the table below we present the complexity of the

Marching Cubes algorithm which processes 24 2D images

(64x64). This complexity depend, on three parameters: the

cubes number to be processed per block, the operations

number and the memory space occupied.

The complexity analysis presented in table.I confirms that

the voxels number to be processed per block as well as the

operations number is depends on the parallelism factor k.

3) Task Parallelism

The Marching Cubes algorithm consists in drawing a

polygon which presents the intersection of a cube and the

plane that models the interest surface, so the core of this

processing focuses on a voxel. In section 2 we describe how

this algorithm is functioning. We are interested, in the next

part (section III.C), in the last stage and we try to put in

parallel the calculation of intersection points on the 12 edges

of the voxel.

C. Architectural exploration result of the MC parallelism

1) Algorithmic architectural specification

Using the SynDEx-IC tool, the algorithm specification is in

the form of a data dependency graph including regular

(repeating periodic units) and no-regular parts. This

specification should be independent of any constraints linked

to the hardware implementation and requires the

implementation of the algorithm's decomposition process in

hardware operations (addition, subtraction and multiplication)

[9].

In the example of the second step operation of the Marching

Cubes algorithm, which consists in determining the index, the

value is presented in 8 bits. So it is between 0 and 255. The

index value provides information on the positions of the inside

and outside for the interested surface. Each bit of the index is

associated with one vertex; the bit is "1" if the point is internal,

and "0" if is not. The surface then cuts the edges of the cube

when the two vertices forming the edge are opposite signs (one

is 0 the other is 1).

Thus, by factoring the index calculation block (Fig.7), we

have a factorization frontier FF2 which corresponds to the

repeating units factorization of the index calculations

(comparator, multiplier and adder) contained in the loop

(For (s = 0;s<7 ;s++)).

This FF2 frontier is applied 8 times and is delimited by the

factorization node (F1, F2, I1). The two nodes F1 and F2

separate their input array into an element of 8 intensities for F2

and 8 constants for F1, while the node (I1) makes the

factorization of inter-pattern data (Fig.8).

In Fig.7, the GFCDD of the Marching Cubes algorithm,

added to the FF2, contains two nested frontiers, FF3 and FF4,

whose factorization factors are respectively 15 and 3.

The first is the factorization of unit calculations contained in

the loop "((for (a=1;a<15;a++))"; and the second is the

factorization contained in the loop "(for c=x;y;z)" (Fig.8).

 Table I. Complexity of the Marching Cubes algorithm

Fig. 7 Decomposition and Factorization of an index calculation block

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 146

2) Setting a graph within SynDEx-IC

We have modeled the GFCDD of the MC algorithm in

SynDEx-IC. The solutions obtained by the heuristic

optimization under different constraints (expressed in micro

seconds) are given in Fig.9. For each case, we give the

estimated latency and area (number of CLBs) and the

defactorization degree (DF) of the two frontiers FF3 and FF4

(TF indicates that it is totally factorized).

The parallelism depends on the degree of each

defactorization frontier following the constraint. For a constant

surface, the variation of latency depending on the

defactorization degree is due to the sequentially or partially

parallel execution of the frontier.

According to the results presented in Fig.9, the heuristic has

opted for implantation when the frontiers (FF3 and FF4) are

defactored by 4; this is confirmed by the neighborhood graph

generated automatically by the SynDEx-IC (Fig.10).

In this graph, each node represents a factorization frontier

and each hyperarc represents the data dependencies between

the different frontiers.

The first neighborhood graph (Fig.10a) corresponds to a

sequential implementation of the Marching Cubes algorithm.

Whereas, the second (Fig.10b) corresponds to its optimized

implementation to defactorize the different frontiers by 4 in

order to minimize its critical path.

Fig. 9 Results of the heuristic according to constraint variation

Fig. 8 GFCDD of Marching Cubes algorithm for a voxel processing

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 147

These new frontiers can be executed in parallel (that means

to perform processing for each three edges together); this

result can provide the reduction of the computation time but

increases of the resource consumption.

D. Exploration result of the multiprocessor topology:

Then, we use the SynDEx tool to model the data parallelism

(version1) in various models of different topology

architectures.

We focus in this article on a ring architecture which has led

to better results by varying the number of PEs (NPE). In this

architecture, each PE is connected to its two neighbors by a

direct link (Fig.11).

We have already seen in section III.B.1 that the processing

block depends on the two parameters N and Z. According to

version1, we consider that the blocks number ()12 −×= Zknb

and each one contains
2

1

 −
k

N voxels where k=2
i
,

*Ν∈i

The exploration has been carried on 24 images of 64x64 as

data, by varying two parameters:

� The number of processing blocks (by varying k)

� The number of elementary processors (PEs) 1 <NPE <64

In fact, the acceleration (Fig.11) is described by Sp

(Sp=Tseq/Tp) where Tseq and Tp are respectively the

computation time of 1 and NPE PEs.

The result shown in Fig.12 confirms that the speed of the

algorithm continues to increase proportionally with the number

of PEs processors present in architecture until a defined

number, and then it becomes stable.

Indeed, the acceleration reaches its maximum for a

multiprocessor architecture whose number of PEs is similar to

the number of processing blocks. For the case of 16 input

blocks, the best compromise between the acceleration and the

NPE (surface) is attained for 16 PEs (k = 4).

According to the data parallelism exploitation for this

algorithm, we can conclude that an efficient architecture is the

one that forms a ring of PEs, where each one processes a

single block (each voxel presents a block).

Fig.13 represents the parallelization efficiency (Eff=Sp/NPE)

of the adequacy obtained by SynDEx, depending on the NPE.

This efficiency decreases by increasing the number of PEs

forming the architecture; this may be explained by the fact that

this parallelization requires many data transfers between

processors.

We can observe in the previous figure (Fig.13) that

the decreased efficiency is increasingly important in the case

of the architecture that includes a significant number of PEs

Fig. 10 The Marching Cubes neighborhood

Fig. 12 The acceleration as a function of NPE

Fig. 11 Example of ring architecture

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 148

and that processes a few input blocks.

This observation confirms that the addition of PEs in an

efficient architecture can quickly reduce the efficiency of

parallelization, since the data transfer time between processors

becomes important compared to the process time.

IV. ELEMENTARY PROCESSOR DESIGN

According to the GFCDD of the Marching Cubes algorithm

already modeled with the SynDEx-IC and the SynDEx and

based on the exploration conclusions, we present the data path

of the Marching Cubes implementation for voxel processing

(Fig.14).

This figure (Fig.14) shows two Datapaths; the first

DatapathA contains computations operations (1 multiplier,

1 adder and 1 comparator) used to calculate the index and a

register which is stored the intensities of eight pixels forming

the voxel.

The second DatapathB contain calculations units

(2 multipliers, 3 subtractors, 3 comparators, 1 adder and 1

divider) limited by the factorization frontier presented as FF3

in GFCDD (Fig.8), it is used to calculate the intersection

points by interpolation linear. This DatapathB contains too two

registers to save intensities and the pixel coordinates as input.

These two Datapaths are connected to three memory which

containing the coefficients needed to implement the Marching

Cubes algorithm.

Based on the Fig.13, we propose a PE (Fig.15) composed of

two Datapaths containing registers backup as well as

computation operations.

This PE include three memory; the first one contains all

possible topologies present in each cube (Tri-table), the

second determines the two vertices forming the edge which

intersected by the interested surface and the third memory

contains the image data.

A memory interface is designed to ensure an efficient

distribution of data to the Datapaths.

Fig. 13 The parallelization efficiency as a function of NPE

Fig. 15 The architecture of PE

Fig. 14 Data path of the optimized implementation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 149

This elementary processor has been implemented and

validated on two FPGA families, Xilinx Virtex4 (xc4vlx200-

10ff1513) and Altera CycloneV (5CGXC7) (Table.II).

The synthesis result presented by table.II shows that the

elementary processor designed consumes on CycloneV 1151

LEs, 1309 of FF (flip-flop), 11 of DSP and 205 M10K.

On Virtex4 this core consumes 1689 Slices, 1704 of FF

(flip-flop), 2 of DSP and 128 BRAM.

This result provides an elementary processor core which

working at 43MHz and using only 1% of resources

(Slices/LEs) FPGA (table2).

The obtained performances allow us to envisage a

multiprocessor architecture implementation on FPGA.

V. CONCLUSION

In this paper we have studied the algorithmic and

architectural exploration of the Marching Cubes algorithm

using the AAA methodology and SynDEx tool based on the

optimization constraints to define a parallel multiprocessor

architecture that accommodates an optimized implementation.

By exploring the data parallelism of the algorithm, we have

seen that the number of blocks to be parallelly processed is

determined either by the image resolution (version1) or by the

slice number (version2).

We have focused on the first version, and we have modeled

this algorithm within the SynDEx. We have made a first

implementation of an elementary processor of this architecture

and defined the adequate topology for this PE type of and this

application.

Following this work, we will focus on the second version to

well optimize the algorithm by using two parallel

programming models: the MPI and OpenMP models.

REFERENCES:

[1] A. Lopes, K. Brodlie, Improving the Robustness and Accuracy of the

Marching Cubes Algorithm for Isosurfacing. IEEE Transactions on

Visualization and Computer Graphics, 2003, 9(1) p: 16-29.

[2] Timothy S. Newman_, Hong Yi , “A survey of the marching cubes

algorithm”, Elsevier, Sciencedirect, Computers & Graphics 30 (2006)

854–879.

[3] V. Gelder, J. Wilhelms, Topological considerations in isosurface

generation. ACM Trans Graph 1994; 13, p: 337–75.

[4] E. Belhaire, E. Bourennane, G. Bouvier, D. Demigny, P. Garda,

L. Kessal, L. Lacassagne, F. Lohier, M. Paindavoine, Y. Sorel,

L. Torres, and S. Weber. Méthodes et architectures pour le traitement du

signal et des images en temps réel, chapter 5: Y. Sorel, Méthodologie

AAA et logiciel SynDEx, pages 79-108. IC2. Hermes, 2001.

[5] Paul Bourke, 3D Contouring, Marching Cubes, Surface Reconstruction,

1994.

[6] N. Ghezal, S. Matiatos, P. Piovesan, Y. Sorel, M. Sorine. SYNDEX, un

environnement de programmation pour multiprocesseur de traitement du

signal : Mécanismes de communication. Rapports de Recherche INRIA

n° 1236 (1990).

[7] The AAA methodology and SynDEx. INRIA, 1999. http://www-

rocq.inria.fr/syndex/

[8] C. Lavarenne, O. Seghrouchni, Y. Sorel, M. Sorine. The SynDEx

software environment for real time distributed systems design and

implementation. Proc. of the European Control Conference (Juillet

1991).

[9] L.Kaouane, M.Akil, Y.Sorel, T.grandpierre. A methodology to

implement real-time applications onto reconfigurable circuits, Special

issue on Engineering of Configurable Systems of the Journal of

Supercomputing, Kluwer Academic Publisher, Vol.30, No.3, Dec. 2004

.

[10] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high

resolution 3D surface construction algorithm,” Computer Graphics,

21(4), 163–169, July 1987.

[11] T. Grandpierre, Y. Sorel. “From Algorithm and Architecture

Specifiations to Automatic Generation of Distributed Real-Time

Executives: a Seamless Flow Graphs Transformations”, IN Procs. IEEE

Formal Methods and Models for Codesign Conference

(MEMCODE’2003), pp: 123-133, Mont Saint-Michel, France, June 24-

26, 2003.

Manel MILI received the Bachelor’s and Master‘s Degree in the National

Engineering School of Sfax, University of Sfax, in 2007 and 2008

respectively.

Since 2009, she has been working as a Research Scientist at the Research

team of Medical Imaging Technology (TIM), Faculty of Medicine at Monastir

University of Monastir where she prepares his thesis.

She has also four published paper in international conference in the same

areas. His areas of interest include dedicated architecture of medical image

processing.

Bouraoui MAHMOUD received the Bachelor’s, Master‘s Degree and

doctorate in the Faculty of Science at Monastir from Mastir University, in

1997, 1999 and 2006 respectively.

Since 2008, He is currently Assistant Professor in the Department of

Industrial Electronics in the National Engineering School of Sousse,

University of Sousse.

He has four published papers in international journals. His areas of interest

include embedded processor, embedded system, medical imaging, codesign

HW/SW.

Mohamed Hedi BEDOUI Since 2011, He is currently Professor in

Biophysics in the Faculty of Medecine at Monastir from Monastir University.

He has many published papers in international journals. His areas of interest

include Biophysics, medical imaging processing, embedded system, codesign

HW/SW.

 Table II. Results of the PE implementation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 150

