
 

 

  
Abstract—This paper demonstrates the application of an 

evolutionary heuristic search technique called Novel Particle Swarm 

Optimization (NPSO) for the optimal design of 6th and 8th order low 

pass and band pass Infinite Impulse Response (IIR) filters. 

Conventional particle swarm optimization (PSO) has been modified 

with the attractive features of cognitive information, ( pbest  

and pworst ) and named as NPSO. NPSO helps to speed up the 

convergence by means of non-advancement of particle to pworst  

position. It finds near optimal solution in terms of a set of filter 

coefficients. The effectiveness of this algorithm is justified with a 

comparative study of some well established algorithms, namely, Real 

coded Genetic Algorithm (RGA) and conventional Particle Swarm 

Optimization (PSO) with a superior outcome for the designed 6th and 

8th order IIR low pass and band pass filters. Simulation results affirm 

that the proposed NPSO algorithm outperforms its counterparts not 

only in terms of quality output i.e. sharpness at cut-off, pass band 

ripple and stop band attenuation but also in convergence speed with 

assured stability.  

 

Keywords— IIR Filter; RGA; PSO; NPSO; Evolutionary 

Optimization Techniques; Magnitude Response; Pole-Zero 

Plot; Stability, Low Pass Filter, Band Pass Filter. 

I. INTRODUCTION 

HE The scientific and technological blossoming of signal 

processing explores the plethoric requirement of filters as 

an integral part of all signal processing systems. Application of 

the filter is not only widely covered but also deeply rooted in 

its domain of utilization. Application is ranging from ripple 

reduction of a very simple rectifier circuit to highly 

sophisticated application zones of biological and astrological 

signal analysis along with noise reduction of raw signal, video 

signal enhancement and graphic equalization in hi-fi systems. 

Basically, a filter is a frequency selective device which 

extracts the useful portion of input signal lying within its 

operating frequency range that could be contaminated with 

random noise due to unavoidable circumstances. On the basis 

of physical makeup and the way filtration is done, filters can 

be broadly classified as analog and digital ones. Analog filters 
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are made up with discrete components like resistor, capacitor, 

inductor and op-amp. Discrete component dependent design, 

prone to high component tolerance sensitivity, poor accuracy, 

highly susceptible to thermal drift and large physical size are 

the major retractions of analog filter implementation. On the 

contrary, digital filter performs mathematical operation on a 

sampled, discrete timed signal to achieve the desired features 

with the help of a specially designed digital signal processor 

(DSP) chip or a processor used in a general purpose computer. 

Digital filters are broadly classified into two main categories 

namely; finite impulse response (FIR) filter and infinite 

impulse response (IIR) filter [1-2]. The output of FIR filter 

depends on present and past values of input, so the name non-

recursive is aptly suited to this filter. On the other hand, the 

output of IIR filter depends not only on previous inputs, but 

also on previous outputs with impulse responses continuing 

forever in time at least theoretically, so the name recursive is 

aptly suited to this filter; anyway, a large memory is required 

to store the previous outputs for the recursive IIR filter. 

Hence, due to these aspects FIR filter realization is easier with 

the requirement of less memory space and design complexity. 

Ensured stability and linear phase response over a wide 

frequency range are the additional advantages. On the other 

hand, IIR filter distinctly meets the supplied specifications of 

sharp transition width, less pass band ripple and more stop 

band attenuation with ensured lower order compared to FIR 

filter. As a consequence, properly designed IIR filter can meet 

the magnitude response close to ideal and more finely as 

compared to FIR filter. Due to these challenging features with 

wide field of applications, performances of IIR filters designed 

with various evolutionary optimization algorithms are 

compared to find out the optimization effectiveness of the 

algorithms and the best optimal IIR filters.  

In the conventional approach, IIR filters of various types 

(Butterworth, Chebyshev and Elliptic etc.) can be implemented 

with two methods. In the first case frequency sampling 

technique is adopted for Least Square Error [3] and Remez 

Exchange [4] process. In the second method, filter coefficients 

and minimum order are calculated for a prototype low pass 

filter in analog domain which is then transformed to digital 

domain with bilinear transformation. This frequency mapping 

works well at low frequency, but in high frequency domain this 

method is liable to frequency warping [5]. 

IIR filter design is a highly challenging optimization problem. 

Gradient based classical algorithms such as steepest descent 
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and quasi Newton algorithms had been used for the design of 

IIR filters [6-7]. In general, these algorithms are very fast and 

efficient to obtain the optimum solution of the objective 

function for a unimodal problem. But the error surface 

(typically the mean square error between the desired response 

and estimated filter output) of IIR filter is multimodal and 

hence superior optimization techniques are required to find out 

better near-global optimal filter designs. 

The shortfalls of classical optimization techniques for handling 

the multimodal optimization problem are as follows: i) 

Requirement of continuous and differentiable error fitness 

function (cost or objective function), ii) Usually converges to 

the local optimum solution or revisits the same sub-optimal 

solution, iii) Incapable to search the large problem space, iv) 

Requirement of the piecewise linear cost approximation (linear 

programming), v) Highly sensitive to starting points when the 

number of solution variables are increased and as a result the 

solution space is also increased. 

So, owing to the various shortfalls of classical optimization 

techniques as mentioned above, various evolutionary meta-

heuristic algorithms have recently been applied for obtaining 

better and better optimal filter designs. The algorithms are as 

follows: Genetic Algorithm (GA) is inspired by the Darwin’s 

“Survival of the Fittest” strategy [8-9]; Simulated Annealing 

(SA) is designed from the thermodynamic effects [10]; 

Artificial Immune Systems (AIS) mimics the biological 

immune systems [11]; Ant Colony Optimization (ACO) 

simulates the ants’ food searching behaviour [12]; Bee Colony 

Optimization mimics the honey collecting behaviour of the bee 

swarm [13]; Cat Swarm Optimization(CSO) is based upon the 

behaviour of cats for tracing and seeking of an object [14]; and 

Particle Swarm Optimization (PSO) simulates the behaviour of 

bird flocking or fish schooling [15]-[18].  

Naturally, it is a vast area of research continuously being 

explored for years. In this paper, the capabilities of global 

searching and near optimum result finding features of GA, 

PSO and NPSO are investigated thoroughly for solving 6th 

and 8th order IIR filter design problems. GA is a probabilistic 

heuristic search optimization technique developed by Holland 

[19]. The features such as multi-objective, coded variable and 

natural selection made this technique distinct and suitable for 

finding the near global solution of filter coefficients. 

Particle Swarm Optimization (PSO) is swarm intelligence 

based algorithm developed by Eberhart et al. [20]-[21]. 

Several attempts have been taken to design digital filter with 

basic PSO and its modified versions [15], [22-23]. The main 

attraction of PSO is its simplicity in computation and a few 

numbers of steps are required in the algorithm.  

The limitations of the conventional PSO are premature 

convergence and stagnation problem [24]-[25]. To overcome 

these problems an improved version of PSO, called NPSO is 

suggested by the authors for the design of IIR low pass (LP) 

and band pass (BP) filters.  

The paper is organized as follows: section II describes the IIR 

filter design problem. Different evolutionary algorithms 

namely, RGA, PSO and NPSO are discussed in section III. 

Section IV consists of comprehensive and demonstrative sets 

of data and illustrations that articulate the usefulness of paper 

in terms of result and discussion. Finally section V concludes 

the paper. 

II. IIR FILTER DESIGN FORMULATION 

This section discusses the design strategy of IIR filter based 

on NPSO. The input-output relation is governed by the 

following difference equation [2]: 

∑ ∑
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assumption of coefficient 00 =a , the transfer function of the 
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Let .Ω= jez  Then, the frequency response of the IIR filter 
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where 







=Ω

sf

f
π2  in [0, π] is the digital frequency; f is 

the analog frequency and sf is the sampling frequency. 

Different fitness functions are used for IIR filter optimization 

problems [26-28]. The commonly used approach to IIR filter 

design is to represent the problem as an optimization problem 

with the mean square error (MSE) as the error fitness function 

[28] expressed in (4). 
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1
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s

−=ω                            (4) 

where sN  is the number of samples used for the 

computation of the error fitness function; )( pd and )( py are 

the filter’s desired and actual responses. The difference 

)()()( pypdpe −= is the error between the desired and the 

actual filter response. The design goal is to minimize the 

MSE )(ωJ  with proper adjustment of coefficient vector ω  

represented as: 
T

mn bbbaaa ]......[ 1010=ω                  (5) 

In this paper, instead of (4), a novel error fitness function 
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given in (6) is adopted in order to achieve higher stop band 

attenuation and to have more control on the transition width. 

Using (6), it is found that the proposed filter design approach 

results in considerable improvement in stop band attenuation 

over other optimization techniques.  
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For the first term of (6), ∈ω pass band including a portion 

of the transition band and for the second term of (6), ∈ω stop 

band including the rest portion of the transition band. The 

portions of the transition band chosen depend on pass band 

edge and stop band edge frequencies. 

The error fitness function given in (6) represents the 

generalized fitness function to be minimized using the 

evolutionary algorithms RGA, conventional PSO, and the 

proposed NPSO individually. Each algorithm tries to minimize 

this error fitness 
1J  and thus optimizes the filter performance. 

Unlike other error fitness functions as given in [26-28] which 

consider only the maximum errors, 1J involves summation of 

all absolute errors for the whole frequency band, and hence, 

minimization of 1J  yields much higher stop band attenuation 

and lesser pass band and stop band ripples.  

III. EVOLUTIONARY TECHNIQUES EMPLOYED 

Evolutionary algorithms stand upon the platform of heuristic 

optimization methods, which are characterized as stochastic, 

adaptive and learning in order to produce intelligent 

optimization schemes. Such schemes have the potential to 

adapt to their ever changing dynamic environment through the 

previously acquired knowledge. Few such efficient algorithms 

have been discussed for the purpose of designing as well as 

comparison of performances for handling the optimization 

problems of 6th and 8th order IIR LP and BP filters. 

A. Real Coded Genetic Algorithm (RGA) 

Standard Genetic Algorithm (also known as real coded GA) is 

mainly a probabilistic search technique, based on the 

principles of natural selection and evolution built upon the 

Darwin’s “Survival of the Fittest” strategy [29]. Each encoded 

chromosome that constitutes the population is a solution to the 

filter designing optimization problem. These solutions may be 

good or bad, but are tested rigorously through the genetic 

operations such as crossover and mutation to evolve a global 

optimal or near global optimal solution to the problem at hand. 

Chromosomes are constructed over some particular alphabet 

{0, 1}, so that chromosomes’ values are uniquely mapped onto 

the real decision variable domain. Each chromosome is 

evaluated by a function known as fitness function, which is 

usually the fitness function or objective function of the 

corresponding optimization problem. Each chromosome has a 

probability of selection and has to take part in the genetic 

operation based upon the Roulette’s wheel strategy. In the 

genetic operations, crossover and mutation brings the variation 

in alleles of gene in the chromosome population along with the 

alleviation of trapping to local optimal solution.  

Steps of RGA as implemented for the optimization of 

coefficient vector ω are as follows [30-33]: 

Step 1: Initialize the real coded chromosome strings (ω ) of 

pn population, each consisting of equal number of numerator 

and denominator filter coefficients 
kb and

ka , respectively; 

total coefficients = (n+1)*2 for nth order filter to be designed. 

Step 2: Decoding the strings and evaluation of error fitness 

)(1 ωJ according to (6). 

Step 3: Selection of elite strings in order of increasing error 

fitness values from the minimum value. 

Step 4: Copying the elite strings over the non selected 

strings. 

Step 5: Crossover and mutation generate offsprings. 

Step 6: Genetic cycle updating. 

Step 7: The iteration stops when maximum number of cycles 

is reached. The grand minimum error fitness and its 

corresponding chromosome string or the desired optimal 

solution having (n+1)*2 number of coefficients are finally 

obtained. 

B. Particle Swarm Optimization (PSO) 

PSO is flexible, robust, population based stochastic search 

algorithm with attractive features of simplicity in 

implementation and ability to quickly converge to a reasonably 

good solution. Additionally, it has the capability to handle 

larger search space and non-differential objective function, 

unlike traditional optimization methods. Eberhart et al. [20-21] 

developed PSO algorithm to simulate random movements of 

bird flocking or fish schooling.  

The algorithm starts with the random initialization of a 

swarm of individuals, which are known as particles within the 

multidimensional problem search space, in which each particle 

tries to move toward the optimum solution, where next 

movement is influenced by the previously acquired knowledge 

of particle best and global best positions once achieved by 

individual and the entire swarm, respectively. The features 

incorporated within this simulation are velocity matching of 

individuals with the nearest neighbour, elimination of ancillary 

variables and inclusion of multidimensional search and 

acceleration by distance. Instead of the presence of direct 

recombination operators, acceleration and position 

modification supplement the recombination process in PSO. 

Due to the aforementioned advantages and simplicity, PSO has 

been applied to different fields of practical optimization 

problems.   

To some extent, IIR filter design with PSO is already 

reported in [15-18], [22-23]. A brief idea about the algorithm 

for a D-dimensional search space with pn particles that 

constitute the flock is presented here. Each 
thi particle is 

described by a position vector as: 
T

iDiii sssS ),...,,( 21= and 
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a velocity vector as: 
T

iDiii vvvV ),...,,( 21= . 

The best position that the 
thi particle has reached previously 

,),...,,( 21

T

iDiii ppppbest = and group best is expressed as 

T

gDgg pppgbest ),...,,( 21= . 

The vectors of maximum and minimum velocities are 
maxV , 

minV , respectively. 

T

DvvvV ),...,,( max2max1maxmax = and 

T

DvvvV ),...,,( min2min1minmin = . 

The positive constants ,1C 2C are related with accelerations 

and 21, randrand lie in the range [0, 1]. The inertia weight 

w is a constant chosen carefully to obtain fast convergence to 

optimum result. k denotes the iteration number. 

The basic steps of the PSO algorithm are as follows [32]: 

Step1:  Initialize the real coded particles (ω ) of 

pn population, each consisting of equal number of numerator 

and denominator filter coefficients kb and ka , respectively; 

total coefficients D = (n+1)*2 for nth order filter to be 

designed. 

Step 2: Compute the error fitness value for the current 

position iS of each particle. 

Step 3: Each particle can remember its best position 

)( pbest which is known as cognitive information and that 

would be updated with each iteration. 

Step 4: Each particle can also remember the best position 

the swarm has ever attained )(gbest and is called social 

information and would be updated in each iteration. 

Step 5: Velocity and position of each particle are modified 

according to (7) and (8), respectively [20].  
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Step 6: The iteration stops when maximum number of cycles 

is reached. The grand minimum error fitness and its 

corresponding particle or the desired solution having (n+1)*2 

number of coefficients is finally obtained. 

C. Novel Particle Swarm Optimization (NPSO) 

The global search ability of conventional PSO is very much 

enhanced with the help of the following modifications. This 

modified PSO is termed as NPSO [34].  

i) The two random parameters 
1 rand and 

2rand of (7) are 

independent. If both are large, both the personal and social 

experiences are over used and the particle is driven too far 

away from the local optimum. If both are small, both the 

personal and social experiences are not used fully and the 

convergence speed of the technique is reduced. So, instead of 

taking independent 1 rand and 2 rand , one single random 

number 1 r is chosen so that when 1 r is large, ( )11 r−  is small 

and vice versa. Moreover, to control the balance of global and 

local searches, another random parameter 2 r is introduced. 

For birds’ flocking for food, there could be some rare cases 

that after the position of the particle is changed according to 

(7), a bird may not, due to inertia, fly toward a region at which 

it thinks is most promising for food. Instead, it may be leading 

toward a region which is in opposite direction of what it 

should fly in order to reach the expected promising regions. 

So, in the step that follows, the direction of the bird’s velocity 

should be reversed in order for it to fly back into promising 

region. The term ( )3_ rsig m
 is introduced for this purpose. 

Both cognitive and social parts are modified accordingly. 

Other medications are described below. 

ii) A new variation in the velocity expression (7) is made by 

splitting the cognitive component (second part of (7)) into two 

different components. The first component can be called good 

experience component. That is, the particle has a memory 

about its previously visited best position. This component is 

exactly the same as the cognitive component of the basic PSO. 

The second component is given the name bad experience 

component. The bad experience component helps the particle 

to remember its previously visited worst position. The 

inclusion of the worst experience component in the behaviour 

of the particle gives additional exploration capacity to the 

swarm. By using the bad experience component, the bird 

(particle) can bypass its previous worst position and always try 

to occupy a better position.  

Finally, with all modifications, the modified velocity of 
thj  

component of 
thi  particle, replacing (7), is expressed as 

follows:  
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where ( )3_ rsig m
 is a function defined as: 
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k

iV  is the velocity of 
thi  particle at

thk iteration; 
1
r , 

2
r  and 

3
r  are the random numbers between 0 and 1; 

k

iX  is the current 

position of 
thi  particle at

thk iteration; 
k

ipbest  and 

k

ipworst  are the personal best and the personal worst of 
thi  

particle, respectively, at
thk iteration; 

kgbest  is the group 

best among all pbests  for the group at
thk iteration. The 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 154



 

 

searching point in the solution space is as usual modified by 

the equation (8). 

IV. SIMULATION RESULTS AND DISCUSSIONS 

Extensive MATLAB simulation study has been performed 

for performance comparison of three algorithms, RGA, PSO 

and NPSO for the 6th and 8th order IIR filter optimization 

problems. The design specifications followed for all 

algorithms are given in Table 1. 

 

Table 1. Design Specifications of IIR LP and BP Filters 

Type 

of 

Filter 

Pass 

band  

ripple 

(δp) 

Stop  

band 

ripple 

(δs) 

Pass band 

normalized  

edge 

frequency  

(ωp) 

Stop band  

normalized 

 edge 

frequency 

(ωs) 

LP 0.01 0.001 0.35 0.40 

BP 0.01 0.001 0.35 and0.65 0.3 and 0.7 

 

Table 2. Control parameters of RGA, PSO and NPSO 

Parameters RGA PSO NPSO 

Population size 120  25 25 

Iteration Cycle 100 100 100 

Crossover rate 1 - - 

Crossover Two Point Crossover - - 

Mutation rate 0.01 - - 

Mutation Gaussian Mutation - - 

    

Selection 

Probability 

1/3 - - 

C1 - 2.05 2.05 

C2 - 2.05 2.05 
min

iv  - 0.01 0.01 
max

iv  - 1.0 1.0 

The values of the control parameters of RGA, PSO and 

NPSO are given in Table 2. Each algorithm is run for 30 times 

to get the best solution of its own and all the best results are 

reported in this paper. All optimization programs were run in 

MATLAB 7.5 version on core (TM) 2 duo processor, 3.00 

GHz with 2 GB RAM. 

A. Analysis of Magnitude Response of IIR LP Filter 

Three aspects of the algorithms are investigated in this work 

namely, their accuracy, speed of convergence and stability. 

Fig. 1 shows the comparative gain plots in dB for the designed 

6th order IIR LP filter obtained for different algorithms. Fig. 2 

represents the comparative normalized gain plots for 6th order 

IIR LP filter.  
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Fig. 1. Gain plots in dB for 6th order IIR LP filter using RGA, 

PSO and NPSO. 
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Fig. 2. Normalized gain plots for 6th order IIR LP filter using 

RGA, PSO and NPSO. 

 

The best optimized numerator coefficients )( kb and 

denominator coefficients )( ka obtained after extensive 

simulation study are reported in Table 3. It is observed that 

maximum stop band attenuations 27.8345 dB, 28.94 dB and 

33.7864 dB are obtained for RGA, PSO and NPSO 

algorithms, respectively. Gain plots and Tables IV and V also 

explore that the proposed 6th order IIR filter design approach 

using NPSO attains the highest stop band attenuation, the 

lowest stop band ripple with significantly small transition 

width and pass band ripple as compared to the results 

produced by RGA and PSO algorithms. 

Figs. 3-5 show the pole-zero plots for 6th order IIR LP filter 

designed using RGA, PSO and NPSO, respectively. A system 

is called stable and minimum phase only when it’s all poles 

and zeros, respectively, are within the unit circle of the z-

plane. For designing the FIR filter, achieving these criteria is 

not a problem, but for IIR filters fulfilling these features 

simultaneously is really a challenging job.  Fig. 3 shows the 

pole-zero plot of 6th order IIR LP filter designed with RGA. 
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In Fig. 4 pole-zero plot of 6th order IIR LP filter designed with 

PSO has been demonstrated. Fig. 5 shows the pole-zero plot of 

6th order IIR LP filter designed with NPSO. In all these 

designs, stability is assured with the locations of all poles 

within the unit circle shown in Figs. 3-5. 

  

Table 3. Optimized Coefficients and Performance Comparison 

of Different Algorithms for 6th order IIR LP Filter 

Algorith

ms 

Num.  

Coeff. 

(bk) 

Den.  

Coeff. 

(ak) 

Max.   

stop  

 Band 

 Attenuation 

(dB)  

RGA 

0.0334  0.0183 

0.0691  0.0372 

0.0675  0.0184 

0.0330 

1.0011 -2.7537 

4.4663 -4.3975 

-2.8654 -1.1215 

0.2161 

-27.8345 

PSO 

0.0729 0.0189 

0.1405 0.0649 

0.111 0.0388 

0.0467 

1.0007 -2.2202 

3.3618 -2.9247 

1.7854 -0.6235 

0.1129 

-28.94 

NPSO 

0.0379  0.0188 

0.0772  0.0419 

0.0766  0.0182 

0.0372 

1.0004 -2.6542 

4.2439 -4.0895 

2.6280 -1.0101 

0.1925 

-33.7864 

Statistically and qualitatively analyzed data obtained from 

those graphs are presented in Tables 4-5, respectively. For IIR 

filter design, group delay is the function of normalized 

frequency due to which different frequency components 

undergo different amounts of phase shift. And the degree of 

severity increases as the distances of zeros are increased away 

from the unit circle. With this view point, Table 6 is prepared 

from Figs. 3-5 for the demonstration of closeness of crucial 

zeros to the perimeter of unit circle. It is to be noted that poles 

and zeros are situated symmetrically about the real part of z-

plane so the radii of zeros and poles at the upper half are equal 

to those of the lower half.  

It is observed from Table 6 that the zero Z2 is just outside 

the unit circle along with two zeros Z1 and Z3 just inside the 

unit circle for RGA based design approach. For the PSO based 

design, it is noticed that the zero Z1 stays outside the unit circle 

while the rest zeros are within the unit circle. But in the case of 

NPSO approach, a distinct point is explored about the position 

of zero Z2 which is the closest to the boundary but just outside 

the circle along with rest of the zeros and poles which are 

clearly situated within the unit circle. 

It can be concluded that positions of two zeros out of six are 

almost on the unit circle of z-plane for NPSO based design 

which gives the best group delay response among the others. 

In this paper the filter design is not limited to 6th order IIR 

filter but extended to 8th order filter also to verify the degree 

of superiority of higher order filter compared to its lower order 

version and to show the consistency in the superiority of the 

proposed NPSO. Fig. 6 shows the comparative gain plots in 

dB for the designed 8th order IIR LP filter obtained for 

different algorithms. Fig. 7 represents the comparative 

normalized gain plots for 8th order IIR LP filter. Statistically 

and qualitatively analyzed data obtained from those graphs are 

presented in Tables 7 and 8, respectively. Figs. 8-10 show the 

pole-zero plots for 8th order IIR LP filter designed using 

RGA, PSO and NPSO, respectively. Fig. 8 shows the pole-

zero plot of 8th order IIR LP filter designed with RGA. In Fig. 

9 pole-zero plot of 8th order IIR LP filter designed with PSO 

has been demonstrated. Fig. 10 shows the pole-zero plot of 8th 

order IIR LP filter designed with NPSO. In these designs also, 

stability is assured with the location of poles within the unit 

circle shown in Figs. 8-10. It has already been pointed out that 

the positions of zeros out side the unit circle affect the group 

delay criteria. From this view point Table 9 is prepared to 

demonstrate the radii of crucial zeros located close to unit 

circle. Conclusion can be made from the data represented in 

Table 9 that all the algorithms are capable enough to produce 

fair group delay responses due to the degree of closeness of 

zeros to the unit circle. 

Gain plots as shown in Figs. 6-7 and Tables 7-8 reveal that 

for designing 8th order IIR LP filter the proposed algorithm 

NPSO outperforms the other optimization algorithms in terms 

of attaining the highest stop band attenuation, the lowest pass 

band and stop band ripple along with small transition width. 

Tables 4 and 7 also explore that the NPSO yields the highest 

value of mean attenuation, the least variance and the least 

standard deviation. The best optimized numerator coefficients 

)( kb and denominator coefficients )( ka obtained after 

extensive simulation study are reported in Table 10. It is 

observed that maximum stop band attenuations of 29.3896 dB, 

30.5904 dB and 36.9916 dB are obtained for RGA, PSO and 

NPSO algorithms, respectively. Luitel et al. in [26] reported 

for 9th order IIR filter using PSO and DEPSO in which 

maximum attenuations of approximately 22dB and 25dB, 

respectively, have been reported. Luitel et al. reported the 

design of 9th order IIR filter using PSO and PSO-QI in [27] 

and approximate attenuations of 22dB and 27dB, respectively, 

have been reported. In this paper, maximum attenuation 

obtained for PSO is higher even though it is designed with 

lower order. In [28] Karaboga et al. has reported the design of 

10th order minimum phase IIR filter using GA and the 

maximum attenuation of 14 dB (approx.) has been achieved.  

Table 4.Statistical Data for Stop Band Attenuation (dB) for 6th order IIR LP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 

RGA -27.8345 -38.0612 52.8107 7.2671 
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PSO -28.9400 -32.1180 9.9952 3.1615 

NPSO -33.7864 -38.2573 5.0498 2.2472 

 

Table 5. Qualitatively Analyzed Data for 6th order IIR LP Filter 

Algorithm Maximum 

 Pass band  

Ripple 

(normalized) 

Stop band ripple (normalized) Transition  

Width  

(normalized) 
Maximum Minimum Average 

RGA 0.023 4.07×10
-2

 1.94×10
-4

 2.0432×10
-2

 0.0493 

PSO 0.004 3.59×10
-2

 19.2×10
-4

 1.8926×10
-2

 0.0344 

NPSO 0.005 2.06×10
-2

 0.67×10
-4

 1.0348×10
-2

 0.0364 
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Fig. 3. Pole-Zero plot of 6th order IIR LP filter using RGA. 
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Fig. 4. Pole-Zero plot of 6th order IIR LP filter using 

PSO. 
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Fig. 5.  Pole-Zero plot of 6th order IIR LP filter using NPSO. 

Table 6. Radii of Zeros for 6th order IIR LP Filter 

Algorithm 
Zeros 

Z1 Z2 Z3 

RGA 0.98863 1.01963 0.98596 

PSO 1.01035 0.98938 0.80075 

NPSO 0.99856 1.00013 0.99202 
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Fig. 6. Gain plots in dB for 8th order IIR LP filter using RGA, PSO and NPSO. 
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Fig. 7. Normalized gain plots for 8th order IIR LP filter using RGA, PSO and NPSO. 

 

Table 7. Statistical Data for Stop Band Attenuation (dB) for 8th order IIR LP Filter 

Algorithm Maximum Mean Variance Standard 

Deviation 

RGA -29.3896 -48.6365 123.5632 11.1159 

PSO -30.5904 -50.0187 128.6359 11.3418 

NPSO -36.9916 -52.5802 96.2146 9.8090 

 

Table 8. Qualitatively Analyzed Data for 8th order IIR LP Filter 

Algorithm Maximum  

Pass band  

ripple (normalized) 

Stop band ripple (normalized) Transition  

Width  

(normalized) 
Maximum Minimum Average 

RGA 0.0182 3.39×10
-2

 2.8235 ×10
-4

 1.7091×10
-2

 0.0481 

PSO 0.0118 2.95×10
-2

 1.8307×10
-4

 1.4842×10
-2

 0.0290 

NPSO 0.0107 1.41×10
-2

 0.4587×10
-4

 0.7073×10
-2

 0.0335 
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Fig. 8.  Pole-zero plot of 8th order IIR LP filter using RGA. 
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Fig. 9.  Pole-zero plot of 8th order IIR LP filter using PSO. 
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Fig. 10.  Pole-zero plot of 8th order IIR LP filter using NPSO. 

Table 9. Radii of Zeroes for 8th order IIR LP Filter 

Algorithm Zero 

Z1 Z2 Z3 Z4 

RGA 0.72524 1.02088 0.98347 0.99111 

PSO 0.69360 1.02037 0.95481 1.00188 

NPSO 0.72072 0.95981 1.00047 1.02191 
 

 

Table 10. Optimized Coefficients and Performance Comparison of Different Algorithms for 8th order IIR LP filter 

Algorithms Num. Coeff. 

(bk) 

Den. Coeff. 

(ak) 

Max.  stop  Band 

Attenuation (dB) 

RGA 

0.0169 0.0059 0.0429 

0.0239 0.0450 0.0299 

0.0266 0.0120 0.0088 

1.0004 -3.5211  7.1618 

-9.4237  8.7904 -5.7900 

2.6419 -0.7579   0.1064 

-29.3896 

PSO 

0.0168 0.0058 0.0432 

0.0228 0.0453 0.0286 

0.0258 0.0115 0.0077 

1.0001  -3.5200 7.1620 

-9.4224  8.7896 -5.7890 

2.6419  -0.7583 0.1061 

-30.5904 

NPSO 

0.0165 0.0047 0.0428 

0.0228 0.0451 0.0289 

0.0268 0.0112 0.0082 

1.0002  -3.5209  7.1635 

-9.4234  8.7895   -5.7897    

2.6427   -0.7595   0.1069 

-36.9916 

 

Table 19. Convergence Profile Data for RGA, PSO and NPSO for 8th order Low Pass IIR Filter 

Algorithms Minimum  

Error Value 

Iteration  

Cycles 

Convergence 

Speed  (per cycle) 

Execution time 

for  

100 cycles (s) 

RGA 3.988 100 2.903×10
-2

 5.801761 

PSO 3.019 100 4.135×10
-2

 2.391630 

NPSO 2.400 100 5.067×10
-2

 3.969984 
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Fig. 11. Gain plots in dB for 6th order IIR BP filter using RGA, PSO and NPSO. 
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Fig. 12. Normalized gain plots for 6th order IIR BP filter using RGA, PSO and NPSO. 

 

 

B. Analysis of Magnitude Responses of IIR Band Pass (BP) 

Filters 

IIR BP filters of 6th and 8th orders are also designed with 

NPSO technique and results are compared with those of RGA 

and PSO for measuring the effectiveness of the proposed 

algorithm. Fig.11 shows the gain plots in dB for 6th order IIR 

BP filter using RGA, PSO and NPSO techniques. Normalized 

gain plots for 6th order IIR BP filter using RGA, PSO and 

NPSO techniques are shown in Fig. 12.  

From these plots it can be perceived that the proposed 

NPSO algorithm obtains the highest stop band attenuation 

compared to the other mentioned optimization algorithms. The 

optimal filter coefficients are obtained by RGA, PSO and 

NPSO and are shown in Table 11. Table 12 shows the 

statistical performance of stop band attenuation obtained for 

6
th

 order IIR BP filter.  Table 12 depicts that the maximum 

attenuation of 14.9360 dB is attained for NPSO based IIR 

design with the highest mean attenuation and appreciably good 

consistence in results for variance and standard deviation. In 

Table 13, it is shown that the lowest stop band ripple is 

achieved for NPSO based design with small pass band ripple 

and transition width.  

Pole-zero plots for the designed 6th order IIR BP filter are 

shown in Figs. 13-15 when RGA, PSO and NPSO are 

employed, respectively. From these plots it is evident that the 

designed 6th order BP filters are stable as the poles are located 

within the unit circle. Table 14 shows the radii of zeros which 

are calculated from Figs. 13-15.  

In this section, optimal design of 8th order IIR BP filter is 

discussed. Fig. 16 shows the comparative gain plots in dB for 

the designed 8th order IIR BP filter obtained for different 

algorithms. Fig. 17 represents the comparative normalized gain 

plots for 8th order IIR BP filter. The best optimized numerator 

coefficients )( kb and denominator coefficients )( ka obtained 
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are reported in Table 15.  

From Table 15 it is observed that maximum stop band 

attenuations of 18.2445 dB, 20.1389 dB and 21.7813 dB are 

obtained for RGA, PSO and NPSO algorithms, respectively. 

The gain plots as shown in Figs. 16-17 and Tables 16-17 

explore that the proposed 8th order IIR filter design approach 

using NPSO results in the highest stop band attenuation, the 

lowest pass band and stop band ripples with significantly small 

transition width as compared to the results obtained when 

RGA and PSO algorithms are employed. Pole-zero plots 

obtained for the 8th order IIR filter designed using RGA, PSO 

and NPSO are shown in Figs. 18-20, respectively. From these 

plots it is evident that the designed 8th order BP filters are all 

stable due to the existence of poles within the unit circle. Table 

18 shows the radii of zeros calculated from Figs. 18-20 for 

RGA, PSO and NPSO, respectively. 

C. Comparative effectiveness and convergence profiles of 

RGA, PSO and NPSO 

In order to compare the algorithms in terms of the error 

fitness values, Fig. 21 shows the convergences of error fitness 

values obtained by the algorithms. The convergence profiles 

are shown for the 8
th

 order LP filter. Similar plots are also 

obtained for 6
th

 order LP filter and both 6
th

 and 8
th

 order BP 

filters, which are not shown here. 
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Fig. 21. Convergence profiles for RGA, PSO and NPSO for 

8th order IIR LP filter. 

 

As shown in Fig. 21, in case of 8
th

 order LP filter, RGA 

converges to the minimum error fitness value of 3.988 in 

5.801761 s; PSO converges to the minimum error fitness value 

of 3.019 in 2.391630 s; whereas, NPSO converges to the grand 

minimum error fitness value of 2.400 in 3.969984 s. The 

above-mentioned execution times may be verified from Table 

19. Similar observations are made for 6th order LP filter also, 

which are not shown here. Table 19 summarizes the 

convergence profile data for the algorithms applied for the 

design of 8th order LP filter. 

From Fig. 21 it can be concluded that the proposed 

algorithm NPSO obtains the minimum error fitness value as 

compared to PSO and RGA. It is also noticed that the 

proposed algorithm, NPSO has the faster rate of convergence 

in terms of sharp reduction in error fitness value shown in Fig. 

21, compared to the rest error fitness function curves obtained 

by RGA and PSO algorithms for obtaining the optimum 

results. With a view to the above fact, it may finally be 

inferred that the performance of the NPSO is the best among 

all the mentioned algorithms.  

V. CONCLUSIONS 

In this paper, three different evolutionary optimization 

algorithms have been applied to the problems of designing 6th 

and 8th order low pass and band pass IIR digital filters. The 

filters thus obtained meet the stability criterion and show the 

best attenuation characteristics with reasonably good transition 

widths. Among the algorithms, the proposed NPSO yields the 

best attenuation characteristics and the best stop band ripples; 

converges very fast to the best quality optimal solution and 

reaches the lowest minimum error fitness value in moderately 

low execution time. Statistical results obtained for the NPSO 

also justify the potential of the proposed algorithm for the 

realization of IIR filters.  
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