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Generating passive systems from recursively
defined polynomials

Luigi Fortuna and Mattia Frasca

Abstract— In single-input single-output linear time-invariant sys-
tems, and in particular in filter modelling and design, some prop-
erties of the system (such as shaped frequency responses) are
achieved by using polynomials of particular types for the design
of the system transfer function. In this paper it is shown that
single-input single-output linear time-invariant systems having as
transfer function the ratio between two successive polynomials
recursively defined have particular properties. In particular, if the
ratio between successive polynomials of either Fibonacci or Lucas
type is considered, loss-less systems are achieved, while starting
from Jacobsthal or Morgan-Voyce polynomials relaxation systems
are defined. Furthermore, it is also shown that transfer functions
obtained by considering either the ratio between a Fibonacci poly-
nomial of order n and a Lucas polynomial of order n or between a
Fibonacci polynomial of order n and a Lucas polynomial of order
n− 1 multiplied by the complex variable s are also loss-less.

I. INTRODUCTION

Some of the properties of single-input single-output time-
invariant linear systems are connected to the characteristics
of the polynomials involved in their transfer function. This
is particularly important for filter modelling and design. If
the polynomials at the numerator and/or denominator of
the transfer function of a single-input single-output (SISO)
linear time-invariant (LTI) system belong to special classes
of polynomials, then the system may have particular features.
For instance, in filter design [1], Butterworth polynomials are
used to implement filters with maximally flat approximation
at dc, Chebyshev polynomials of the first kind [2] to mini-
mize the maximum deviation from the ideal flat characteristic
in the bandpass and Bessel polynomials to implement filters
with a maximally linear phase response. Another example
are Laguerre filters constituting an orthonormal basis for
the Hilbert space, and for this used in system identification
and reduced-order modelling [3]. Additionally, it has been
demonstrated that systems having as transfer function the
sum of the first n+1 Laguerre functions have all the singular
values equals each other [4]. In general, filter design is very
important both in the analog and in the digital word [1], [5],
[6], [7].

In this paper we study recursively defined polynomials
such as Fibonacci, Lucas or Jacobsthal polynomials and
show how from such polynomials systems with particular
peculiarities can be defined. In particular, we show that the
ratio between polynomials of Fibonacci or Lucas type leads
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to the definition of a loss-less system (in particular, this hold
for two successive either Fibonacci or Lucas polynomials,
for the ratio between a Fibonacci polynomial of order n and
a Lucas polynomial of order n and for the ratio between a
Fibonacci polynomial of order n and a Lucas polynomial of
order n − 1 multiplied by the complex variable s), while
the ratio between successive Jacobsthal or Morgan-Voyce
polynomials leads to positive real relaxation systems.

Loss-less systems and positive real relaxation systems
(or shortly relaxation systems) [9], [10], [11] are particular
classes of passive systems. Loss-less systems are charac-
terized by the fact that, while in a passive one-port circuit
the total energy delivered to it from any generating source
connected to it, is always non-negative, in a loss-less one-port
circuit, when a finite amount of energy is put on its elements,
all the energy can be extracted again. Given a linear time-
invariant system defined by:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m,
x ∈ Rn is the state vector, u,y ∈ Rm the input and output
vectors, and the transfer matrix is given by:

G(s) = C(sI−A)−1B+D (2)

the necessary and sufficient conditions for the system to be
loss-less are:

• all poles of G(s) are simple and have zero real part and
the residue matrix at any pole is a non-negative definite
matrix;

• GT (−s) + G(s) = 0 for all s such that s is not a pole
of any element of G(s).

In the case of SISO systems, the loss-lessness of the
transfer function can be easily tested from the inspection
of its zeros and poles. In fact, it is worth recalling that, as a
consequence of Foster’s reactance theorem [8], the poles and
zeros of any loss-less function must alternate with increasing
frequency. This criterion will be helpful in the following to
prove the loss-lessness of the transfer function defined by
Fibonacci/Lucas polynomials.

As far as concerns relaxation systems, these are passive
systems characterized by the fact that they can be realized
using only a subsets of the possible passive components
(resistors, capacitors and inductors). In fact, while in general
a passive system can be realized with an electrical circuit
with resistors, capacitors and inductors, a relaxation system
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can be realized by only using either resistors and capacitors
or resistors and inductors. Restricting the discussion to SISO
systems, a simple necessary and sufficient condition is given
by the following result [12]: a transfer function represents the
impedance (the admittance) of a relaxation system (that can
be implemented by only using resistors and capacitors) if and
only if the poles and the zeros are all negative real, simple
and alternate in frequency and the critical point closest to
the origin is a pole (a zero). Another important result to
be recalled is related to the continued fraction expansion of
a relaxation system. We restrict the discussion to the most
interesting cases for the results presented below. It can be
demonstrated that a relaxation system G(s) of order n with
a pole at the origin can be rewritten as follows:

G(s) =
h0

s
+

1

h1 +
1

h2

s
+ .................

...+
1

h2n+1

(3)

where hi with i = 0, . . . , 2n+1 are real positive coefficients.
A relaxation system G(s) of order n with a zero at the origin
has the following continued fraction expansion:

G(s) =
1

h1 +
1

h2

s
+ ..................

...+
1

h2n+2

s

(4)

where hi with i = 1, . . . , 2n+2 are real positive coefficients.
Finally, if the relaxation system has finite values at s = 0
and s → ∞, then it can be rewritten as:

G(s) =
1

h1 +
1

h2

s
+ ..................

....+
1

h2n+1

(5)

where hi with i = 1, . . . , 2n+1 are real positive coefficients.
The remaining of the paper is organized as follows: in

Section II the recursively defined polynomials that in the
following will be used to generate loss-less or relaxation
systems are briefly discussed along with some important
properties; in Section III loss-less systems generated by
recursively defined polynomials are discussed, while in Sec-
tion IV the case of relaxation systems is dealt with. Section V
concludes the paper.

II. RECURSIVELY DEFINED POLYNOMIALS

In this Section, we briefly recall the definition of the
polynomials that will be used in the following, along with
some of their most important properties. The polynomials are
recursively defined as described in the following. In partic-
ular, we discuss Finonacci polynomials, Lucas polynomials,
Jacobsthal polynomials and Morgan-Voyce polynomials [13].

A. Fibonacci polynomials
Fibonacci polynomials are a sequence of polynomials,

recursively defined in a way analogous to the way in which
Fibonacci numbers are defined [13]. Fibonacci polynomials
in fact are recursively defined from f1(x) = 1, f2(x) = x
and from the following rule:

fn(x) = xfn−1(x) + fn−2(x) (6)

The first ten Fibonacci polynomials are for instance re-
ported in Table I.

TABLE I
LIST OF THE FIRST TEN FIBONACCI POLYNOMIALS

Order Fibonacci Polynomial
n = 1 f1(x) = 1
n = 2 f2(x) = x
n = 3 f3(x) = x2 + 1
n = 4 f4(x) = x3 + 2x
n = 5 f5(x) = x4 + 3x2 + 1
n = 6 f6(x) = x5 + 4x3 + 3x
n = 7 f7(x) = x6 + 5x4 + 6x2 + 1
n = 8 f8(x) = x7 + 6x5 + 10x3 + 4x
n = 9 f9(x) = x8 + 7x6 + 15x4 + 10x2 + 1
n = 10 f10(x) = x9 + 8x7 + 21x5 + 20x3 + 5x

The degree of fn(x) is n−1. Odd Fibonacci polynomials
contain only even powers of x, while even Fibonacci poly-
nomials contain only odd powers of x.

Fibonacci polynomials have some interesting properties
[13], [14], [15].

Property 1: The Fibonacci polynomials, evaluated at x =
1, give the Fibonacci numbers, i.e.,

fn(1) = Fn (7)

where Fn are the Fibonacci numbers 1, 1, 2, 3, 5, 8, . . .
Property 2: f(x) is given by the following explicit for-

mula:

fn(x) =

[(n−1)/2]∑
j=0

(
n− j − 1

j

)
xn−2j−1 (8)

where [·] is the floor function and
(

n− j − 1
j

)
the

binomial coefficient.
Property 3: fn(x) divides fm(x) if and only if n divides

m.
Property 4: The roots of fn(x) are given by:

rk = 2i cos
kπ

n
(9)

for k = 1, . . . , n− 1.
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B. Lucas polynomials

Lucas polynomials are also recursively defined polynomi-
als [13], [16]. The recursive rule of Lucas polynomials is:

ln(x) = xln−1(x) + ln−2(x) (10)

given l0(x) = 2 and l1(x) = x.
Table II reports the first ten Lucas polynomials.

TABLE II
LIST OF THE FIRST TEN LUCAS POLYNOMIALS

Order Lucas Polynomial
n = 1 l1(x) = x
n = 2 l2(x) = x2 + 2
n = 3 l3(x) = x3 + 3x
n = 4 l4(x) = x4 + 4x2 + 2
n = 5 l5(x) = x5 + 5x3 + 5x
n = 6 l6(x) = x6 + 6x4 + 9x2 + 2
n = 7 l7(x) = x7 + 7x5 + 14x3 + 7x
n = 8 l8(x) = x8 + 8x6 + 20x4 + 16x2 + 2
n = 9 l9(x) = x9 + 9x7 + 27x5 + 30x3 + 9x
n = 10 l10(x) = x10 + 10x8 + 35x6 + 50x4 + 25x2 + 2

Similarly to Fibonacci polynomials, the roots of Lucas
polynomials can also be computed in closed form.

Property 5: The zeros of ln(x) are given by:

rk = 2i cos
(2k + 1)π

2n
(11)

for k = 0, . . . , n− 1.

C. Jacobsthal polynomials

A third class of recursively defined polynomials is rep-
resented by Jacobsthal polynomials. Such polynomials are
defined by:

Jn(x) = Jn−1(x) + xJn−2(x) (12)

provided that J1(x) = 1 and J2(x) = 1.
Table III reports the first ten Jacobsthal polynomials.

TABLE III
LIST OF THE FIRST TEN JACOBSTHAL POLYNOMIALS

Order Jacobsthal Polynomial
n = 1 J1(x) = 1
n = 2 J2(x) = 1
n = 3 J3(x) = x+ 1
n = 4 J4(x) = 2x+ 1
n = 5 J5(x) = x2 + 3x+ 1
n = 6 J6(x) = 3x2 + 4x+ 1
n = 7 J7(x) = x3 + 6x2 + 5x+ 1
n = 8 J8(x) = 4x3 + 10x2 + 6x+ 1
n = 9 J9(x) = x4 + 10x3 + 15x2 + 7x+ 1
n = 10 J10(x) = 5x4 + 20x3 + 21x2 + 8x+ 1

It is interesting to note that J2n−1(x) and J2n(x) have
the same degree: the degree of Jn(x) is in fact [(n− 1)/2].
Furthermore, Jn(x) and fn(x) have the same coefficients,
but in reverse order.

Another class of polynomials, related to Jacobsthal poly-
nomials, is defined by:

Kn(x) = Kn−1(x) + xKn−2(x) (13)

given K1(x) = 1 and K2(x) = x.
Table IV reports the first ten polynomials Kn(x).

TABLE IV
LIST OF THE FIRST TEN Kn(x) POLYNOMIALS

Order Kn(x)
n = 1 K1(x) = 1
n = 2 K2(x) = x
n = 3 K3(x) = 2x
n = 4 K4(x) = x2 + 2x
n = 5 K5(x) = 3x2 + 2x
n = 6 K6(x) = x3 + 5x2 + 2x
n = 7 K7(x) = 4x3 + 7x2 + 2x
n = 8 K8(x) = x4 + 9x3 + 9x2 + 2x
n = 9 K9(x) = 5x4 + 16x3 + 11x2 + 2x
n = 10 K10(x) = x5 + 14x4 + 25x3 + 13x2 + 2x

Such polynomials have similar properties to those of
Jacobsthal polynomials.

D. Morgan-Voyce polynomials

There are two types of Morgan-Voyce polynomials [13],
usually indicated as bn(x) or Bn(x). The polynomials bn(x)
are recursively defined by the following relationships:

bn(x) = (x+ 2)bn−1(x)− bn−2(x) (14)

provided that b0(x) = 1 and b1(x) = x+ 1, or by

Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x) (15)

with B0(x) = 1 and B1(x) = x+ 2.
Tables V and VI report the first ten Morgan-Voyce poly-

nomials b(x) and B(x).
Morgan-Voyce polynomials have a remarkable property

for what follows. Their zeros can be explicitly calculated as
formally stated in the following properties.

Property 6: The zeros of bn(x) are given by:

rk = −4 sin2
(2k − 1)π

(4n+ 2)
(16)

for k = 0, . . . , n− 1.
Property 7: The zeros of Bn(x) are given by:

rk = −4 sin2
kπ

(2n+ 2)
(17)

for k = 0, . . . , n− 1.
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III. GENERATING LOSS-LESS SYSTEMS FROM FIBONACCI
AND LUCAS POLYNOMIALS

Theorem 1: G(s) = fn(s)
fn+1(s)

represents the transfer func-
tion of a controllable and observable loss-less system of order
n.

Proof. The fact that the system with transfer function
G(s) = fn(s)

fn+1(s)
is controllable and observable is a direct

consequence of the divisibility property (property 3) of
Fibonacci polynomials. Let’s focus on the loss-less property.

Recall that a SISO LTI system is loss-less if and only
if its zeros and poles are all on the imaginary axis and
alternate in frequency. Therefore, to demonstrate it suffices
to demonstrate that the zeros of fn(s) and fn+1(s) have zero
real part and alternate.

Since the roots of fn(s) and fn+1(s) represent the zeros
Zh and poles Ph of G(s), thanks to property 4, they can be
explicitly calculated:

Zh = 2i cos hπ
n , 1 ≤ h ≤ n− 1

Ph = 2i cos hπ
n+1 , 1 ≤ h ≤ n

(18)

Therefore, all the zeros and poles of G(s) have zero real
part.

Let us now rewrite Zh and Ph as

Zh = 2izh, 1 ≤ h ≤ n− 1
Ph = 2iph, 1 ≤ h ≤ n

(19)

i.e., zh = cos hπ
n and cos hπ

n+1 .
Since for 1 ≤ h ≤ n− 1

0 <
hπ

n
< π

and

hπ

n+ 1
<

hπ

n
,

then

cos
hπ

n+ 1
> cos

hπ

n

for 1 ≤ h ≤ n− 1 and thus

ph > zh (20)

Analogously, since n−1
n < n

n+1 , then

pn < zn−1 (21)

From Eqs. (20) and (21) it follows that

p1 > z1 > p2 > z2 > . . . > pn−1 > zn−1 > pn

which demonstrates that the zeros and poles of G(s) alternate
in frequency.

Furthermore, the fact that loss-less systems have an odd
positive real function, ie. G(s) = −GT (−s) can be also
shown taking into account that:

fn(s)fn+1(−s) = −fn(−s)fn+1(s)

since either fn(s) is odd and fn+1(s) is even, or fn(s) is
even and fn+1(s) is odd.

So, one has:

fn(s)

fn+1(s)
= − fn(−s)

fn+1(−s)

and thus G(s) = −GT (−s). ⋄
Example 1: As an example of Theorem 1, consider

G(s) = f6(s)
f7(s)

, i.e.

G(s) =
s5 + 4s3 + 3s

s6 + 5s4 + 6s2 + 1
.

G(s) can be factorized as follows:

s(s2 + 1)(s2 + 3)

(s2 + 0.1981)(s2 + 1.555)(s2 + 3.247)

Clearly, this represents the transfer function of a loss-less
system. For instance, the pole-zero map shows how the poles
and zeros of this system are all on the imaginary axis and
alternate. ⋄

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re s

Im
 s

Fig. 1. Pole-zero map of system G(s) in Example 1.

For Lucas polynomials, a result analogous to Theorem 1
can be derived.

Theorem 2: G(s) = ln−1(s)
ln(s)

represents the transfer func-
tion of a controllable and observable loss-less system of order
n.

Proof. The demonstration is analogous to that of Theo-
rem 1. In fact, thanks to property 5, the zeros Qh and poles
Th of G(s) can be explicitly calculated:

Qh = 2i cos (2h+1)π
2n , 2iqh, 0 ≤ h ≤ n− 1

Th = 2i cos (2h+1)π
2(n+1) , 2ith, 0 ≤ h ≤ n

(22)

All the poles and zeros of G(s) thus have zero real part.
Moreover, they alternate in frequency. In fact, since for 1 ≤
h ≤ n− 1

0 <
(2h+ 1)π

2n
< π

and
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(2h+ 1)π

2(n+ 1)
<

(2h+ 1)π

2n

then

cos
(2h+ 1)π

2(n+ 1)
> cos

(2h+ 1)π

n
.

Moreover, since 2n−1
2n < 2n+1

2n+2 , then qn−1 < tn, and in
conclusion:

t1 > q1 > t2 > q2 > . . . > tn−1 > qn−1 > tn

which demonstrates that the poles Th and zeros Qh of
G(s) = ln−1(s)

ln(s)
alternate in frequency. ⋄

Example 2: As an example of Theorem 2, consider
G(s) = l7(s)

l8(s)
, i.e.

G(s) =
s7 + 7s5 + 14s3 + 7s

s8 + 8s6 + 20s4 + 16s2 + 2
.

G(s) can be factorized as follows:

s(s2 + 0.753)(s2 + 2.445)(s2 + 3.802)

(s2 + 0.1522)(s2 + 1.235)(s2 + 2.765)(s2 + 3.848)

This is the transfer function of a loss-less system. For
instance, the pole-zero map shown in Fig. 2 illustrates how
the poles and zeros of this system are all on the imaginary
axis and alternate. ⋄

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re s

Im
 s

Fig. 2. Pole-zero map of system G(s) in Example 2.

It is interesting to note that it is not possible to generate
transfer functions of loss-less systems if the Fibonacci/Lucas
polynomials are not successive. For instance, if we consider
G(s) = fn(s)

fn+2(s)
, since this does not have relative degree

equal to one, it cannot represent the transfer function of
a loss-less system. However, other loss-less systems can
be generated by considering the ratio between Lucas and
Fibonacci polynomials.

Keeping in mind the condition on the relative degree, one
can consider either G(s) = ln(s)

fn+2(s)
or G(s) = fn(s)

ln(s)
. The

next example shows that G(s) = ln(s)
fn+2(s)

does not lead to

loss-less systems, while Theorem 3 shows that G(s) = fn(s)
ln(s)

does.
Example 3: Consider G(s) = l4(s)

f6(s)
= s4+4s2+2

s5+4s3+3s . The

system is not loss-less, since G(s) = (s2+0.5858)(s2+3.414)
s(s2+1)(s2+3) .

Theorem 3: G(s) = fn(s)
ln(s)

represents the transfer function
of a controllable and observable loss-less system of order n.

Proof. Let’s calculate the zeros Zh and poles Th of G(s):

Zh = 2i cos hπ
n , 2izh, 1 ≤ h ≤ n− 1

Th = 2i cos (2h−1)π
2n , 2ith, 1 ≤ h ≤ n

(23)

All the poles and zeros of G(s) thus have zero real part.
Moreover, they alternate in frequency.

In fact, zh < th, since h
n > h

n − 1
2n , and th+1 < zh, since

h
n + 1

2n > h
n , so that in conclusion:

t1 > z1 > t2 > z2 > . . . > tn−1 > zn−1 > tn

which demonstrates that the poles Th and zeros Zh of
G(s) = fn(s)

ln(s)
alternate in frequency. ⋄

Example 4: As an example of Theorem 3, consider
G(s) = f6(s)

l6(s)
, i.e.

G(s) =
s5 + 4s3 + 3s

s6 + 6s4 + 9s2 + 2

G(s) can be factorized as follows:

s(s2 + 1)(s2 + 3)

(s2 + 0.2679)(s2 + 2)(s2 + 3.732)

This is the transfer function of a loss-less system. For
instance, the pole-zero map shown in Fig. 3 illustrates how
the poles and zeros of this system are all on the imaginary
axis and alternate. ⋄

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re s

Im
 s

Fig. 3. Pole-zero map of system G(s) in Example 4.

Finally, in the next theorem another way to generate loss-
less transfer functions starting from Lucas and Fibonacci
polynomials is shown.

Theorem 4: G(s) = fn(s)
sln−1(s)

represents the transfer func-
tion of a loss-less system and the minimal form is of order
n, if n is odd, or of order n− 1, if n is even.
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Proof. Analogously to the previously discussed theorems,
let’s calculate the zeros Zh and poles Th of G(s):

Zh = 2i cos hπ
n , 2izh, 1 ≤ h ≤ n− 1

Th = 2i cos (2h−1)π
2n , 2ith, 1 ≤ h ≤ n− 1

(24)

Beyond the poles in Eq. (24) another pole Tn = 0 should
be considered since the denominator of G(s) is given by
sln−1(s).

All the poles and zeros of G(s) have zero real part.
Moreover, they alternate in frequency.

In fact, th > zh if h < n
2 , while th < zh if h > n

2 (this
can be easily verified taking into account that 2h−1

2(n−1) < h
n

if h < n
2 , while 2h−1

2(n−1) >
h
n if h > n

2 ).
Therefore, one obtains:

t1 > z1 > t2 > z2 > . . .

. . . > t[n2 ]
≥ z[n2 ]

> z[n2 ]+1 > t[n2 ]+1 > . . . > zn−1 > tn−1

Taking also into account the further pole Tn = 0, this
demonstrates that the poles Th and zeros Zh of G(s) =
fn(s)

sln−1(s)
alternate in frequency. The considerations about the

order of the minimal form of the system directly follow from
the fact that, if n is even, both numerator and denominator
polynomial have a root in s = 0. ⋄

Example 5: As an example of Theorem 4, consider
G(s) = f7(s)

sl6(s)
, i.e.

G(s) =
s6 + 5s4 + 6s2 + 1

s7 + 6s5 + 9s3 + 2s
.

G(s) can be factorized as follows:

(s2 + 0.1981)(s2 + 1.555)(s2 + 3.247)

s(s2 + 0.2679)(s2 + 2)(s2 + 3.732)

This is the transfer function of a loss-less system. For
instance, the pole-zero map shown in Fig. 4 illustrates how
the poles and zeros of this system are all on the imaginary
axis and alternate. ⋄

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re s

Im
 s

Fig. 4. Pole-zero map of system G(s) in Example 5.

IV. GENERATING RELAXATION SYSTEMS FROM
RECURSIVELY DEFINED POLYNOMIALS

Theorem 5: Gn(s) =
Jn(s)

Jn+1(s)
represents the transfer func-

tion of a controllable and observable positive real relaxation
system of order [n/2].

Proof. The proof proceeds by induction. Consider n = 4
(the case with n < 4 is trivial), so G4(s) =

s+1
2s+1 , which is

clearly relaxation.
Consider now the following transfer function F4(s) =

2s+1
s(s+1) obtained as Fn(s) = Jn+1(s)

sJn(s)
, i.e., Fn(s) =

1/(sGn(s)) with n = 4. F4(s) is clearly a relaxation system,
with alternating real negative poles and zeros and with a pole
at the origin. We now proceed by induction to prove that,
given that Fn−1(s) is relaxation with a pole at the origin,
also Fn(s) is relaxation with a pole at the origin.

Consider equation (12) with x = s and rewrite it as:

Jn(s)

sJn−1(s)
=

1

s
+

Jn−2(s)

Jn−1(s)

i.e.,

Fn−1(s) =
1

s
+

1

sFn−2(s)
(25)

Since by hypothesis Fn−2(s) is relaxation with a pole
at the origin, so sFn−2(s) is relaxation with finite positive
values for s = 0 and for s → ∞. Therefore, we can consider
its inverse (which is relaxation too) and rewrite it in the form
of continued fractions as in Eq. (5) as follows:

1

sFn−2(s)
=

1

h1 +
1

h2

s
+ . . .

Substitute this expression into equation (25) to get:

Fn−1(s) =
1

s
+

1

h1 +
1

h2

s
+ . . .

(26)

which is the continued fraction expansion of a positive real
relaxation function with a pole at the origin.

Finally, given that Fn(s) is a relaxation transfer function
with a pole at the origin, it is immediate to derive that Gn(s)
is a positive real relaxation system. The order is given by the
polynomial at denominator, i.e., [n/2]. ⋄

Example 6: As an example of Theorem 5, consider
G8(s) =

J8(s)
J9(s)

, i.e.

G8(s) =
4s3 + 10s2 + 6s+ 1

s4 + 10s3 + 15s2 + 7s+ 1

G8(s) can be factorized as follows:

G8(s) =
4(s+ 1.707)(s+ 0.5)(s+ 0.2929)

(s+ 8.291)(s+ 1)(s+ 0.426)(s+ 0.2831)

which is the transfer function of a relaxation system having
all the poles and zeros on the real axis and alternating, as also
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illustrated in Fig. 5 where the pole-zero map of the system
is shown. ⋄

−8 −6 −4 −2 0
−1

−0.5

0

0.5

1

Re s

Im
 s

Fig. 5. Pole-zero map of system G8(s) in Example 6.

Theorem 6: Gn(s) = Kn(s)
Kn+1(s)

represents the transfer
function of a controllable and observable positive real re-
laxation system of order [n/2].

Proof. The proof is analogous to that of theorem 5 and is
therefore omitted. ⋄

Example 7: As an example of Theorem 6, consider
G7(s) =

K7(s)
K8(s)

, i.e.

G7(s) =
4s3 + 7s2 + 2s

s4 + 9s3 + 9s2 + 2s

G7(s) can be factorized as follows:

G7(s) =
4s(s+ 1.39)(s+ 0.3596)

s(s+ 7.892)(s+ 0.7858)(s+ 0.3225)

which is the transfer function of a relaxation system having
all the poles and zeros on the real axis and alternating, as
also shown in Fig. 6. ⋄

−8 −6 −4 −2 0
−1

−0.5

0

0.5

1

Re s

Im
 s

Fig. 6. Pole-zero map of system G7(s) in Example 7.

We now examine Morgan-Voyce polynomials. Also these
polynomials can be used to generate transfer functions of
relaxation systems.

Theorem 7: Gn(s) =
bn(s)

bn+1(s)
represents the transfer func-

tion of a controllable and observable positive real relaxation
system of order n+ 1.

Proof. We prove that Gn(s) = bn(s)
bn+1(s)

is the transfer
function of a positive real relaxation system by showing
that its zeros and poles are real, negative and alternate in
frequency. The zeros Lh and the poles Mh of Gn(s) are
the zeros of bn(s) and bn+1(s), respectively. So, thanks to
property 6, they can be explicitly calculated:

Lh = −4 sin2 (2h−1)π
(4n+2) , 0 ≤ h ≤ n− 1

Mh = −4 sin2 (2h−1)π
(4n+6) , 0 ≤ h ≤ n

(27)

Note that (2h−1)π
(4n+2) ∈ [0, π/2] and (2h−1)π

(4n+6) ∈ [0, π/2].
Since in the interval [0, π/2], sin2 x is a monotonically
increasing function and (2h−1)π

(4n+2) > (2h−1)π
(4n+6) for 0 ≤ h ≤

n− 1, then

Lh < Mh (28)

for 0 ≤ h ≤ n− 1.
Moreover, since (2n−3)π

(4n+2) < (2n−1)π
(4n+6) , then

Ln−1 > Mn (29)

From Eqs. (28) and (29) it follows that

M1 > L1 > M2 > L2 > . . . > Mn−1 > Ln−1 > Mn

which complete the proof. ⋄
Example 8: As an example of Theorem 7, consider

G3(s) =
b3(s)
b4(s)

, i.e.

s3 + 5s2 + 6s+ 1

s4 + 7s3 + 15s2 + 10s+ 1
(30)

G3(s) can be factorized as follows:

(s+ 3.247)(s+ 1.555)(s+ 0.1981)

(s+ 3.532)(s+ 2.347)(s+ 1)(s+ 0.1206)
(31)

This is the transfer function of a positive real relaxation
system. For instance, the pole-zero map shown in Fig. 7
illustrates how the poles and zeros of this system are all on
the real axis and alternate. ⋄

Theorem 8: Gn(s) = Bn(s)
Bn+1(s)

represents the transfer
function of a controllable and observable positive real re-
laxation system of order n+ 1.

Proof. The proof of this theorem is similar to that of
theorem 7. In fact, it is based on showing by direct cal-
culation that the zeros and poles of this transfer function
are real, negative and alternate in frequency. Let the zeros
and the poles of Gn(s) = Bn(s)

Bn+1(s)
be indicated as Uh and

Vh, respectively. Thanks to property 7, they can be explicitly
calculated:

Uh = −4 sin2 hπ
(2n+2) , 0 ≤ h ≤ n− 1

Vh = −4 sin2 hπ
(2n+4) , 0 ≤ h ≤ n

(32)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 2, Volume 6, 2012 185



8

It is immediate to derive that: i) hπ
(2n+2) ∈ [0, π/2] and

hπ
(4n+6) ∈ [0, π/2]; ii) hπ

(2n+2) > hπ
(2n+4) for 0 ≤ h ≤ n − 1;

iii) nπ
(2n+2) <

(n+1)π
(2n+4) . Therefore, it follows that

V1 > U1 > V2 > U2 > . . . > Vn−1 > Un−1 > Vn

which complete the proof. ⋄
Example 9: As an example of Theorem 8, consider

G8(s) =
B8(s)
B9(s)

, i.e.

G8(s) =
s8 + 16s7 + 105s6 + 364s5 + 715s4 + 792s3 + 462s2 + 120s+ 9

s9 + 18s8 + 136s7 + 560s6 + 1365s5 + 2002s4 + 1716s3 + 792s2 + 165s+ 10
(33)

G8(s) can be factorized as follows:

G8(s) =
(s+ 3.879)(s+ 3.532)(s+ 3)(s+ 2.347)(s+ 1.653)(s+ 1)(s+ 0.4679)(s+ 0.1206)

(s+ 3.902)(s+ 3.618)(s+ 3.176)(s+ 2.618)(s+ 2)(s+ 1.382)(s+ 0.8244)(s+ 0.382)(s+ 0.09789)
(34)

−4 −3 −2 −1 0
−1

−0.5

0

0.5

1

Re s

Im
 s

Fig. 7. Pole-zero map of system G3(s) in Example 8.

This is the transfer function of a positive real relaxation
system. For instance, the pole-zero map shown in Fig. 8
illustrates how the poles and zeros of this system are all on
the real axis and alternate. ⋄

−4 −3 −2 −1 0
−1

−0.5

0

0.5

1

Re s

Im
 s

Fig. 8. Pole-zero map of system G8(s) in Example 9.

Finally, let us remark that not all recursively defined poly-
nomials generate loss-less or relaxation transfer functions as
discussed in the following example.

Example 10: Let us consider polynomials defined by:

Dn(s) = Dn−1(s) + sDn−2(s) (35)

with D1 = s2 + 2s + 2 and D2 = s2 + s + 1. Eq.
(35) is analogous to Eq. (12), but they differ for the initial
polynomials.

Consider then D3(s) = s3 + 3s2 + 3s + 1 and D4(s) =
2s3+4s2+4s+1 and the transfer function defined as G(s) =
D3(s)
D4(s)

= s3+3s2+3s+1
2s3+4s2+4s+1 . This is neither loss-less or relaxation.

In fact, it can be rewritten as:

G(s) =
0.5(s+ 1)3

(s+ 0.3522)(s2 + 1.648s+ 1.42)

which shows that the zeros and poles do not satisfy the con-
ditions required for the system to be loss-less or relaxation.
⋄

V. CONCLUSIONS

Fibonacci, Lucas, Jacobsthal, Morgan-Voyce polynomials
are all sequences of polynomials recursively defined, which
have several interesting properties. In this paper it has
been shown that, thanks to their characteristics, SISO LTI
systems with peculiar properties can be defined. In fact, it
has been demonstrated that single-input single-output linear
time-invariant systems having as transfer function the ratio
between two successive Fibonacci polynomials, the ratio be-
tween two successive Lucas polynomials, the ratio between a
Fibonacci polynomial of order n and a Lucas polynomial of
order n or the ratio between a Fibonacci polynomial of order
n and a Lucas polynomial of order n− 1 multiplied by the
complex variable s, are loss-less. Furthermore, it has been
shown that, when Jacobsthal or Morgan-Voyce polynomials
are considered, passive relaxation systems are obtained.
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TABLE V
LIST OF THE FIRST TEN MORGAN-VOYCE POLYNOMIALS b(x)

Order Morgan-Voyce polynomials b(x)
n = 0 b0(x) = 1
n = 1 b1(x) = x+ 1
n = 2 b2(x) = x2 + 3x+ 1
n = 3 b3(x) = x3 + 5x2 + 6x+ 1
n = 4 b4(x) = x4 + 7x3 + 15x2 + 10x+ 1
n = 5 b5(x) = x5 + 9x4 + 28x3 + 35x2 + 15x+ 1
n = 6 b6(x) = x6 + 11x5 + 45x4 + 84x3 + 70x2 + 21x+ 1
n = 7 b7(x) = x7 + 13x6 + 66x5 + 165x4 + 210x3 + 126x2 + 28x+ 1
n = 8 b8(x) = x8 + 15x7 + 91x6 + 286x5 + 495x4 + 462x3 + 210x2 + 36x+ 1
n = 9 b9(x) = x9 + 17x8 + 120x7 + 455x6 + 1001x5 + 1287x4 + 924x3 + 330x2 + 45x+ 1

TABLE VI
LIST OF THE FIRST TEN MORGAN-VOYCE POLYNOMIALS B(x)

Order Morgan-Voyce polynomials B(x)
n = 0 B0(x) = 1
n = 1 B1(x) = x+ 2
n = 2 B2(x) = x2 + 4x+ 3
n = 3 B3(x) = x3 + 6x2 + 10x+ 4
n = 4 B4(x) = x4 + 8x3 + 21x2 + 20x+ 5
n = 5 B5(x) = x5 + 10x4 + 36x3 + 56x2 + 35x+ 6
n = 6 B6(x) = x6 + 12x5 + 55x4 + 120x3 + 126x2 + 56x+ 7
n = 7 B7(x) = x7 + 14x6 + 78x5 + 220x4 + 330x3 + 252x2 + 84x+ 8
n = 8 B8(x) = x8 + 16x7 + 105x6 + 364x5 + 715x4 + 792x3 + 462x2 + 120x+ 9
n = 9 B9(x) = x9 + 18x8 + 136x7 + 560x6 + 1365x5 + 2002x4 + 1716x3 + 792x2 + 165x+ 10
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