
 

 

 
Abstract— The sampling procedure of the arithmetic operation with  
two Binary Markov Processes (BMP) is considered in detail, 
especially for the sum of BMP. The result of the sum can have four 
or three states. In the first case there is a Markovian process, in the 
second case the process is non Markovian. We investigate sampling 
procedure of any realization of this case. The investigation method 
takes into account the probability of the state omission and 
probability densities functions of staying times in each state. We 
obtain the algorithm for choosing of sampling intervals for each state. 
They are different. One non trivial example is given. The obtained 
results are generalized for other arithmetic operations: the 
multiplication and division. One rather important variant of the 
application of such processes in the random field model is given at 
the final paragraph. 
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I. INTRODUCTION 
HE problem of sampling - reconstruction procedure (SRP) 
of realizations of random processes is extensively 
examined in literature. Majority of publications are 

devoted to the SRP investigation of realizations of continuous 
processes. SRP of realizations of discontinuous processes is 
weakly considered. Here we mention some papers connected 
with the discussed problem [1, 2]. In [1] sampling of 
realizations of the Binary Markov Process (BMP) is 
investigated in order to describe new Binary processes. In [2] 
SRP of realizations of a function of BMP is analyzed. But this 
analysis is based on the covariance approach only. There are 
some authors publications [3 - 7] devoted to SRP of 
discontinuous process realizations. Investigations in [5 - 7] are 
based on the Conditional mean Rule. In results we obtained 
the statistical description of sampling procedure and to 
estimate the q quality of the reconstruction. It is necessary to 
mention that there is a great difference between the SRP 
methods for continuous [8 – 11] and discontinuous [5 - 7, 12, 
13] process realizations.  
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In the present paper we consider SRP of realizations of 
discontinuous process which is the arithmetic operation with 
two independent BMP processes. Such a problem is 
interesting in some control and telemetry systems. There are 
two different cases: 1) the sampled process has four different 
states; 2) the process has three different states. The first 
variant can be considered by the Markov method suggested in 
[5 - 7]. The investigation of the second case is more difficult 
in comparison with the first one because the process under 
consideration becomes non Markov. Here a new aspect of 
SRP problem is occurred. In the first time, we need to 
investigate the determination of the instant moment of the next 
sample, when the locations of previous samples are known. 
This problem must be solved taking into account the given 
probability of a state omission. This SRP problem is 
investigated in detail. Finally, there is one non trivial example.  

II. THE STUDIED VARIANT 
For the sake of simplicity, we consider the variant of sum of 
two BMP realizations in detail. At the end of paper other 
arithmetic operations will be discussed. 
Let ( )1 tξ  and ( )2 tξ  are independent BMP with 
corresponding states: {x0, x1} and {y0, y1}, x0 < x1, y0 < y1, 
and with transition densities (or with the intensities) {λ0, λ1} 
and {µ0, µ1}. These densities have a known sense, for 
instance, λ0

P{x
: 

0 → x1, ∆t} = λ0
Let us introduce a two dimensional Markov process 

∆t + o(∆t) etc. 

( ) ( ){ }1 2,t tξ ξ with four states. The process graph is presented 
in Fig. 1. Here one can see states with all possible transitions 
and corresponding densities.  
We consider a sum  
                       ( ) ( ) ( )1 2t t tξ ξ ξ= + . 

 
Fig. 1 Graph of the two dimensional process ( ) ( ){ }1 2,t tξ ξ  

Sampling Procedure of the Arithmetic 
Operations with two Binary Markov Process 

Realizations 
Y. Goritskiy, V. Kazakov 

T 

(x0, y1) 

(x0, y0) (x1, y0) 

(x1, y1) 

µ0 µ1 µ1 µ0 

λ1 

λ0 

λ0 

λ1 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 6, 2012 213

mailto:goritskiy@yandex.ru�
mailto:vkaz41@hotmail.com�


 

 

 
 

The process ( )tξ  is observable. We have to obtain a sampling 
algorithm for any realization of this process with the principal 
condition: the probability of a state omission must be no more 
of a given value γ.  
Let us consider two different cases. 
 

A. The First Case 
When 
                          ∆x ≡ x1 - x0 ≠ ∆y ≡ y1 - y0

the process 
;                         (1) 

( )tξ  has four states z0, z1, z2, z3

                    z
: 

0 = x0 + y0, z1 = x0 + y1
                     z

,  
2 = x1 + y0,   z3 = x1 + y

Since z
1 

1 ≠ z2, taking into account (1) we have z2 - z1 = (x1 - 
x0) – (y1 - y0 ( )tξ) ≠ 0. Then the process  is Markovian. The 
graph of this process is given in Fig. 2. In this case the 
probability density function (pdf) of staying time iη  in the 

states ( 0,1, 2,3)iz i =  is exponential ( )iE α with parameters: 

0η ∼ E(α0 = λ0⋅+ µ0 1η),      ∼ E(α1 = λ0⋅+ µ1

2η
), 

∼ E(α2 = λ1⋅+ µ0 3η),        ∼ E(α3 = λ1⋅+ µ1

 
)                (2) 

 
Fig. 2. Graph of transitions of the ( )tξ  process for the first case 

 
The transition probabilities are determined by the following 
formulas: 

                P01
0

0 0

µ
µ λ+

 = ,    P02
0

0 0

λ
µ λ+

 = ,   

                P31
1

1 1

λ
λ µ+

 = ,   P32
1

1 1

µ
λ µ+

 =                 (3) 

In (3) we give some required expressions only. In order to 
describe SRP of such type of the process, it is necessary to use 
the method [5 - 7]. 

  

B. The Second Case 
When 
                ∆x ≡ x1 - x0 = ∆y ≡ y1 - y0

the process 

;                       
 (4) 

( )tξ  has three states z0, u, z3

      z

: 

0 = x0 + y0, u = x0 + y1,= x1 + y0, z3= x1 + y
The state u is formed by the union of two states z

1  

1 and z2

( )tξ

 of 
the process in the first case. Fig. 3 illustrates the expression 
(4): the line of the constant sum passes through two states of 
the two dimensional process. The graph of transitions of the 
process is shown in Fig. 4. 

 
Fig.3. Graph of the process ( )tξ  for the second case 

 

 
Fig.4. Graph of the transitions of the process ( )tξ  for the second 

case 
 
Let us discuss the situation with the time states. The pdf of 
time staying 0η and 3η  in the states z0 and z3

0α
 are the same as 

in (2), i.e. they are exponential with the parameters  and 

3α  correspondingly. The situation with pdf of staying time 

uη  in the state u is another. The pdf of the staying time uη
depends on the previous state ( )0,3iz i = . If the realization 
comes into the state u from 0z  

uη
, then the pdf of the staying 

time  will be determined by the formula of the total 
probability 
                  ( ) ( ) ( )01 1 02 20 , ,uf t p E t p E tα α= +                  (5a) 

If the realization comes into the state u from 3z  

uη
, then pdf of 

the staying time  will be determined by another formula of 
the total probability 
                     ( ) ( ) ( )31 1 32 23 , ,uf t p E t p E tα α= +                (5b) 
It means that pdf of staying time is not exponential. In this 
case it is necessary to apply analysis which is valid for non 
Markovian processes, or for an arbitrary pdf. 

III. THE ESTIMATION OF THE SAMPLING INTERVAL 
Let us introduce some designations (Fig. 5):  
i, j, k  – the past, the presence, and the future states. 

z0 u z3 

x0 
 

x1 
 

y0 
 

y1 
 

x+y= const 
 

z0 
 

u 
 

z3 
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Lt  - the last time moment of the measurement of the state 

( )Lt iξ =  and ( )L it T j iξ + = ≠ . This means that the change 

of the state occurs in the interval ( ),L L it t T+ . 

ijτ  - the random time interval from Lt  until the time moment 

of the change state i j→ . 

( ) ,0 ,ij iw x x T< <  - the corresponding pdf of the random time 
interval. 

jη  - the random staying time in the state j ; it is described by 

the pdf ( )jf t  and by the distribution function ( )jF t . 

jς  - a random time interval of the output from the state j ; 

this interval has its initial value at the moment Lt : 
                                           j ij jς τ η= +                               (6) 

( )jh t  - the pdf of the random variable jς ; this pdf is 
expressed by the formula 

          
( ) ( ) ( )

( )min ,

0
,0

t T j

j j ijh t f t x w x dx t= − < < ∞∫              (7) 

Below we shall investigate the value it T≥ ; then the upper 

limit in (7) will be iT . 
Let us assume that there were some samples (it is possible one 
sample) and pt  is the time moment in the present, i.e. 

( )pt jξ = . 

p Lt tθ = −  - is an interval from Lt  until a current present time 

pt , iTθ ≥ . 

ζθj θ – a remainder of :  a waiting time for output from j if ζ j

j
 > 

θ. It means that there was not any output from  during the 
interval, i.e.  
                 ( )j j jθς ς ς θ θ= > −  

The corresponding pdf is determined by  
                         ( )1 ,0j jh c h t tθ θ= + < < ∞                           (8) 

 
 

Fig. 5. The illustration of designations 
 

Here 1c  is a normalizing coefficient: 

                 
( ) ( ) ( )1

0
)j j jc h t dt R h t dtς

θ
θ θ

∞ ∞
= + = =∫ ∫             (9) 

The sampling interval Tj   

        

can be chosen taking into account 
the required demand for the probability of the omission of the 
next state k:  

{ }
{ } ( )

 max P{ } P

P ; , ,

j k j j jkk

j j

T T

T F T j k

θ θς η ς η

θ γ

∗

∗
Σ

+ < = + < =

= Σ < = =
        

(10)  

where ( ); , ,F t j k θΣ – is the probability distribution function 
of the sum  
                                      Σ ≡ ζθj + ηk

k∗
                                 (11) 

- is a number of state which gives the minimal value of 
the interval jT .  
Taking into account the expression (8) and the independence 
of the items, the distribution function ( ); , ,F t j k θΣ is 
determined by the integral: 

              

( ) ( ) ( )

( ) ( )

1
0

1

; , ,
t

j k

t

j k

F t j k c h x F t x dx

c h x F t x dx
θ

θ

θ θ

θ

Σ

+

= + − =∫

= + −∫

         (12) 

Let us consider two different cases: the random staying time 
is described by: A) the exponential law and B) the non 
exponential law. 
 

A. The PDF of the Staying Time is Exponential 
If a current state j is equal to z0 or z3

, 0;3j jθς =

 (they have the 
exponential pdf), the remainders of waiting states 

 have the same pdf and they do not depend on θ. 
Then we have fj(t) = E(t, αj uη), j = 0; 3. The staying time  
depends on j. Its pdf is determined by the combination of 
two exponential pdf, corresponding to states z1 and z2

uη
. Pdf 

for  is described by the expression (see, (5a) and (5b)): 

                      fu
2

1
( ; )js s

s
p E t α

=
∑(tj) = ,  = 0; 3.                  

(13) 
Let us designate: 
                           ( ) ( ), ; 1t tR t j e F t eα αα− −= = −               (14) 
and then 

         ( ) ( ){ } ( )
2

1
;u u js s

s
R t j P j t p R tη α

=
= > = ∑  

Let us introduce intensities 1λ  and 2λ  of two exponential 
laws. The distribution function of the sum of two independent 
exponential random variables can be simply found by the 
formula: 

                
( )

1 2
2 1

1 2 1 2
2 1 1 2

; , 1 ,
t te eG t if

λ λλ λ
λ λ λ λ

λ λ λ λ

− −

= − − ≠
− −       

(15) 

                   ( ) ( )1
1 2 1 1 2; , 1 1 ,tG t e t ifλλ λ λ λ λ−= − + =           (16) 

Then the distribution function ( ); ,jF t z uΣ for the expression 
(13) is written in the form: 

   
( ) ( ) ( )2

1
; , ; , ; ,j j js j s

s
F t z u F t z u p G t α αΣ Σ

=
= = ∑ , j=0;3      (17) 

Thus, taking into account (10), (15) – (17), 
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sampling intervals 0T  and 3T  can be determined from the 
equations: 
                                 ( ); , , 0;3jF T j u jγΣ = =                       (18) 

 

B. The PDF of the Staying Time is not Exponential 
Let us assume the current state j is the state u. Then the 
sampling interval depends on: 1) the previous state ( 0z  or 3z ), 
2) the staying time θ  in the current state u , 3) the future 
state, which gives the minimal value of the interval.  
Below pdf ( )( )0ij iw x x T< <  plays an important part. So, we 
make a note about this pdf: the distribution of a transition 
moment in the next interval can be found on the basis of the 
distribution in the previous interval. Therefore we can assume 
that pdf ( )ijw x  is known in time L it T+ . 

Now we determine the distribution ( )zuw t  for the time 
moment zuτ  of the transition from iz  into u.  
Taking into account results [5, 6] and the expression (13), one 
can obtain the following formula for pdf  

( ) ( ) , 0;3zu iuw t w t i= =  as a linear combination of two 
exponential truncated pdf. The argument of this pdf is 
restricted by the value iT . We designate this pdf by ( );Ti isE t µ

( , 0;3, 1;2is i s i sµ α α= − = = ) 

             
( ) ( ) 1

1 , 0
;

1/ , 0

is is it T
is is

Ti is

i is

e e if
E t

T if

µ µµ µ
µ

µ

−− − − ≠= 
=

         (19) 

The expression for the required pdf has the form: 

               ( ) ( )
2

1
; , 0;3, 1;2.iu is Ti is

s
w t p E t i sµ

=

= = =∑              (20) 

On the basis of (20) one can find some initial and central 
moments.  
The next step of our investigation is connected with the 
determination of pdf for the sum u kθς ηΣ = + . 

Pdf of the output time moment uς  can be found by (7) with 
the change j u→ . The  
calculations are illustrated by the following formulas: 

       

( ) ( ) ( )

( ) ( )

2 2

1 10

2 2

1 1 0

; ;

; ;

i

i

T

u is s ir Ti ir
s r

T

is ir s Ti ir
r s

h t i p E t x p E x dx

p p E t x E x dx

α µ

α µ

= =

= =

= − =

= − =

∑ ∑∫

∑∑ ∫  

      

2 2 2

1 1 1
, 0;3.s st t

is ir irs s is s
r s s

p p d e q e iα αα α− −

= = =

= = =∑∑ ∑              (21) 

where 

        

( ) ( )

( )
( )

( )

0

( )

; ;

1
, 0, 0,

( ) 1

, 0, 0,
1

1, 0

i

s

ir s i

ir i

ir i

s i

s i

T
t

irs s s Ti ir

T
ir

ir ir sT
ir s

ir i
ir ir sT

T

irT

d e E t x E x dx

e
if

e

T
if

e

e if

α

µ α

µ

µ

α

α

α α µ

µ
µ µ α

µ α

µ
µ µ α

µ

− −

−

−

= − =

 −
 ≠ − ≠
 − −

= ≠ − =

−


− =


∫

          

(22) 

                             
2

1
, 0;3, 1, 2.is is ir irs

r
q p p d i q

=

= = =∑            (23) 

We note that irsd  involves the information about the previous 
transition. Let us determine some other functions. 

                    
( ) { } ( )

2

1
, 0;3.s

u u u
t

t
is

s

R t i P t i h x i d x

q e i

ς

α

ς
∞

−

=

= > = =

= =

∫

∑
            (24) 

Here uς  is a remainder of a waiting time of the output from 
the state u with the condition :uς θ>  

                   ( )u u uθς ς ς θ θ= > −   
The corresponding pdf will be: 
                           ( )2 ,0u uh c h t i tθ θ= + < < ∞                    (25) 

where 2c  is the normalizing coefficient: 

                    
( ) { }

( )

1
2

0
2

1

s

u u

u is
s

c h t i dt P

R q e α θ
ς

θ ς θ

θ

∞
−

−

=

= + = > =

= =

∫

∑
               (26) 

The next sampling interval uT  will be determined from the 
expression (10). In order to do this, we find the principal 
expression for the function ( ); , ,F T u k θΣ : 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

0

2
0

2

2
10

; , ,

1s k

t

u k k

t

u u k

t
x t x

is s
s

F T u k P t i P t x

h x i dx c h x i F t x dx

c q e e dx

θ

θ

α θ α

θ ς η η

θ

α

Σ

− + − −

=

= + < = < − ×

× = + − =

= − =

∫

∫

∑∫
          

( )

( ) ( )

2

2 2
10

2
0

2 2

2
1 1

1 , 0

, 0

s k

sk

sk

s k

t
t

u is s
s

t
x

u u

t

skt
is s sk

s s
sk

c h x dx c q e e

e dx c R i R t i

e if
c q e e

t if

α θ α

ν
ς ς

ν

α θ α

θ α

θ θ

ν
α ν

ν

− −

=

−

−

− −

= =

= + − ×

 × = − + − 

 −
≠− × =

 =

∑∫

∫

∑∑
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( )

( ) ( )

2 2

2 2
1 1

2

1
2

1

1

, 0

, 0

1
,

s s s

k s

k

s s

s

t
is is s

s s

t t

sk
sk

t
sk

t
is sk

s

is
s

c q e e c q e

e e if

e if

q e e b t

q e

α θ α α θ

α α

α

α θ α

α θ

α

ν
ν

ν

− − −

= =

− −

−

− −

=

−

=

= − − ×

 −
≠× =

 =

 − − 
=

×

∑ ∑

∑

∑

(27) 

                
( ) , 0

, 0

k s

k

t tk
sk

sksk
t

k sk

sk s k

e e if
b

te if

α α

α

α
µ

µ
α µ

µ α α

− −

−

 − ≠= 
 =

= −

               (28) 

For these cases one can determine sampling intervals 
( ), , 0;3uT i iθ =  following the equation 

                               ( ); , ,uF T u k iθ γ∗
Σ =                       (29) 

In order to find the reconstruction algorithm it is necessary to 
determine pdf for the transition time moment ukτ . Following 
[13], one can write 

( ) ( ) ( ) ( )3 ,0 , ,uk u k u u u uw t c h t i R T t t T T T iθ θ= − < < = Using 
expressions (21), (25), we obtain  

               ( )
2

3
1

,0s sk t
uk is s u

s
w tс q e e t Tα θ µα − −

=

= < <∑          (30) 

( , 0;3i k = ). 
The normalizing coefficient 3c  is determined by 

           

( ) ( )
2

1
3

10

1 , 0

, 0

u

s

sk u

T

u k u is s
s

T

sk
sk

u sk

c h t i R T t dt q e

e if

T if

α θ
θ

µ

α

µ
µ

µ

−−

=

−

= − = ×

 −
≠×

 =

∑∫

    

(31) 

On the basis of (30) and (31) one can find the expression for 
two initial momemts ( ), , 1;2lm u k l =  : 

             

( ) ( )

( )

2

3
10

1
0

1

,

! 1 , 0
!

, 0, 0;3, 1;2
1

u

s

sk u

T
l

l uk is s
s

l
sk uT

skl
isk

l
u

sk

m u k t w t dt c q e

Tl e if
i

T
if k l

l

α θ

µ

α

µ
µ

µ

µ

−

=

−
+

=

+

= = ×

  
− ≠  

  ×


= = = +

∑∫

∑

      

(32) 

IV. EXAMPLE 
In order to illustrate the influence of staying interval in the 
state u on the SRP, it would be better to choose different 
values of 1α  and 2α (for instance, 1 2 , 1k kα α=  ). Besides 
this, it is better to choose 31 1 02 21 , 1p pε ε= − = − ; 1 2, 1ε ε  . 
Then the intensities of the initial processes can be written:  

( ) ( )0 2 0 2 1 1 1 11 , , 1 ,k h k h h hλ ε µ ε λ ε µ ε= − = = − =  

here h  is a positive constant. Let us put: 
1 25, 0.1, 2k h cε ε= = = = , then we have 

01 31 02 31

1 2 0 3

0.1, 0.9, 0.9, 0.1,
9.2 , 2.8 , 10 , 2

p p p p
c c c cα α α α

= = = =
= = = =

 

Putting c=1/56 we obtain the following values of staying 
times:  

0zT  = 5.6, 1zT = 6.1, 2zT  = 20, 3zT  =28. 
The average staying time in the state u  depends on the 
previous state: if the process realization comes into uz  from 

0z , then ( )0 18.6uT z = ; if the process realization comes from 

3z  then ( )3 7.4uT z = . In  

Fig. 6 two conditional pdf ( ) , 0;3u if t z i =  are presented.  
 

 
Fig. 6. The conditional pdf ( )u if zη  for two values zi

 
 (i=0; 3).  

 
Fig. 7a. Pdf of the sum (11). 

 
As one can see the distribution of the staying time in the state 
u are different depended on the previous state: the curve 1 
corresponds to the state 0z ; the curve 2 corresponds to the 
state 3z .  
In Fig. 7a two pdf (13) for the sum (11) are shown. These 
curves correspond to states 0z  and 3z . Fig.7b illustrates the 
initial parts of the corresponded distribution functions (10). 
The graphs of the time length ( ), ,uT i kθ ∗  in the state u as a 
function of the staying time θ  with a different previous states 

0 10 20 30 400

0.05

0.1

0.15

fu t 0,( )

fu t 3,( )

t
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i=0; 3 are given in Fig. 8. The worst future state is 0k∗ =  
because 0 3T T< . 
 

 
Fig. 7b. Distribution functions of the sum (11). 

 
Let us choose the required probability of a state omission 

0.02γ = . The investigated realization ( )tξ is the consequence 
of states 0z =0, u=1.5, 3z =3, u=1.5, 3z =3. We put the initial 
value ( )0 0 0tξ = = . The concrete corresponding random 
staying times are equal: 5.1, 15, 21.1, 5.2.  
 

 
Fig. 8. Time length ( ), ,uT i kθ ∗  in the state u. 

Calculations of the sampling intervals iT  and ( )u iT z  are 
 
 
 
 

 
characterized by the following results:  
1) 0 2.1T = ; 3 3.02T = . 2) ( )0uT z =2.11, 2.15, 2.18, 2.21, 

2.23, 2.25, 2.26; ( )3uT z =1.34, 1.35, 1.36.  

In Fig 9, one realization of the process ( )tξ is presented. 
Besides this, there are some samples designated by crosses. As 
one can see, the sampling intervals ( )0z∆  and ( )3z∆  are 
constant and they do not changed in time because both pdf of 
the staying times are exponential. But the intervals are 
different, because they depend on pdf of staying times in 
considered and future states. The intervals in the state u are 
different as well and they are changed in time. However this 
dependence is rather small. This effect is determined by 
previous state 0z  or 3z  and by the conditional pdf of the 
staying times.  
In order to describe reconstruction points and to estimate the 
reconstruction error it is necessary to determine the 
conditional pdf of the jump instant time between two neighbor 
samples.  

V. OTHER ARITHMETIC OPERATIONS 
One can investigate SRP of realizations which form by a 
multiplication and a division of two realizations of 
independent BMP. The general situation is the same like we 
have in the sum operation.  
In the case of the multiplication we consider 
                            ( ) ( ) ( )1 2t t tξ ξ ξ=                                    (33) 

If 0 1 1 0x y x y≠ , the process ( )tξ  has four states and this 

process is Markovian. If  0 1 1 0x y x y= , the process ( )tξ  has 
three states and this process is non Markovian.  
In the case of the division we consider 
                           ( ) ( ) ( )1 2/t t tξ ξ ξ=                                   (34) 

The condition 0 0 1 1x y x y≠  means that the process ( )tξ  has 
four states and this process is Markovian. If 0 0 1 1x y x y= , the 
process ( )tξ  has three states and this process is non 
Markovian.  
The investigation method for the Markovian case is described 
in n. 2 and in [5, 6]. The non Markovian case is the main 
content of the presented paper. 

 

Fig. 9. One realization of the sum process and the set of samples 
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VI. ABOUT THE APPLICATION OF OBTAINED RESULTS 
    The above considered process formed by the arithmetic 
operations can be applied in the description of the 
mathematical model of random fields with jumps [14].  This 
field is formed in following manner: we fix two realizations of 
different BMP along each axis. A brightness of any point of a 
field can be determined by the arithmetic function 

( )1 2,z g ξ ξ=  of BMP realizations. This field is 
characterized by four (or three) states. It is clear that this field 
is non Gaussian. It is possible to find the principal 
characteristic of such field – its space covariance function. Let 
us restrict by the case of four numbers of states. Then the 
general expression for the space covariance function is 
determined by the formula: 

( ) ( ) ( )

( ) ( ) ( )

, ,

2

,

, , ,

, ; , ; , , ,

i j l k
x x y yi l j k

i j l k i j i j
x yi j

K x y g x y g x y

P x y x y x y g x y P x y

′ ′
′ ′∆ ∆ = ×∑ ∑

 
′ ′× ∆ ∆ − ∑ 

  

      (35) 

where  
x∆ , y∆ are the distances between ,i lx x′  and ,j ky y′  

correspondingly; ( )P   is the probability of correspondent 
random variables. 
Because ( )1 tξ  and ( )1 tξ are independent, it is sufficiently to 

know the probabilities ( ) ( ), , , , , ,i l j kP x x x P y y y∆ ∆ ( ) ,iP x  

and ( )jP y . These probabilities can be found from the 
solution of the system of Kolmogorov´s  differential equations 
for the Markovian chains with continuous time. We have 
following results for the process ( )1 tξ : 

          ( ) ( )
2

1 1
0 0 2, , 1 x xx x

xx
P x x x e eλ λλ λ

λλ
− ∆ − ∆′ ∆ = − +            (36) 

        ( ) ( ) ( )0 1
0 1 1 0 2, , , , 1 xx

x
P x x x P x x x e λλ λ

λ
− ∆′ ′∆ = ∆ = −        (37) 

           ( ) ( )
2

0 0
1 1 2, , 1 x xx x

xx
P x x x e eλ λλ λ

λλ
− ∆ − ∆′ ∆ = − +            (38) 

where 0 1xλ λ λ= +  
Putting 0x∆ = , from (36) – (38) we obtain 

                              ( ) ( ) 01
1 0,

x x
P x P x λλ

λ λ
= =                        (39)  

The corresponding expressions for probabilities of the process 
( )2 tξ can be written by the change letters “ λ ” into “ µ ” with 

corresponding indexes. 
Taking into account (35) – (39), one can obtain the general 
expression for the space covariance function: 

( ) ( ) ( ) ( ){
( )

2 2 2
0 0 0 1

2 2
1 0 1 1 0 1

, , ,x y

y xy x
xy

K x y g x y g x y

e eµ λ

λ µ

λ µ µ λ λ µ γ

−

− ∆ − ∆

 ∆ ∆ = + × 

× + + +
 

( ) ( ) (2 2 2
1 0 1 1 0 0 1, , )yy

xyg x y g x y ë µ λ µ µ γ− ∆ + + + +   

 

+

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2
0 0 0 1 1 1 0

2
1 0 0 0 0 1 1

0 0 1 1 0 1 1 0

2 , , 1

2 , , 1

2 , , , ,

y yy y
xy

x xx x
xy

xy

g x y g x y e e

g x y g x y e e

g x y g x y g x y g x y

µ µ

λ λ

λ µ µ γ

λ λ µ γ

γ

− ∆ ∆

− ∆ ∆

 + − + − +  
 + − + − +  

+ + ×  

 

( ) ( ) ( ) 2
0 1 1 1 1 0 11 2 , ,y x xy x xe e g x y g x y eµ λ λ µ λ λ∆ ∆ − ∆× − − + − +

( ) ( ) ( ) }2
1 0 1 1 1 0 12 , , 1y yy y

xyg x y g x y e eµ µλ µ µ γ− ∆ − ∆ + + −  
 

                       (40) 

where 0 1 0 1
x yx y

xy e λ µγ λ λ µ µ − ∆ − ∆=  
The formula (40) is principal for the calculations. Below we 
give the final expressions of the space covariance functions for 
all arithmetic operations. 

1)  ( ) ( ) ( )1 2t t tξ ξ ξ= ±  

( ) ( ) ( )2 20 1 0 1
0 1 0 12 2, yx yx

x x
K x y x x e y y e µλλ λ µ µ

λ µ
− ∆− ∆∆ ∆ = − + −  

                       (41) 
2) ( ) ( ) ( )1 2t t tξ ξ ξ=  

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ]

2 2 2
0 1 0 1 1 0 0 1

2 2
0 1 1 0 0 1 1 0 0 1 0 1

2 2
1 0 1 0

, yy
x y

xx

x yx y

K x y y y x x e

x x y y e

y y x x e

µ

λ

λ µ

λ µ µ µ λ λ

λ λ µ µ λ λ µ µ

− − ∆

− ∆

− ∆ − ∆

∆ ∆ = − + +

+ − + + ×

× − −

                       (42) 
          3)  ( ) ( ) ( )1 2/t t tξ ξ ξ=  

( ) ( ) ( )

( )

( ) ]

2
2 2

0 1 0 1 1 0
0 1

201
0 |1 1 0 0 |1 0 1

0 1
2

2
1 0

0 1

1 1,

1 1

x y

y xy x

yx yx

K x y x x
y y

e x x e
y y

x x e e
y y

µ λ

µλ

λ µ µ µ λ λ

µµλ λ λ λ µ µ

−

− ∆ − ∆

− ∆− ∆

  
∆ ∆ = + − ×  

 
 

× + + − + × 
 

 
× − − 

 

(43)

 
One can find the expressions for the space power spectra 

( ),x yS ω ω , which is determined by the formula 

       ( ) ( ) ( ) ( ) ( ), , x yx y
x yS K x y e d x d yω ω

ω ω
− ∆ + ∆

= ∆ ∆ ∆ ∆∫ ∫  (44) 
 Let us specify the formula (44) for the covariance function 
(42): 

( ) ( ) ( ) ( )2 2
0 1 0 1 1 0 0 1,x y x yS y y x xω ω λ µ λ λ λ λ

−
= − + ×  

( ) ( )

( ) ( ) ( ) ( )

2 2
0 1 1 0 0 1 1 02 2 2 2

2 2
0 1 0 1 1 0 1 0 2 2 2 2

2 2

4

y x

y y x x

x y

x x y y

x x y y

x x y y

µ λλ λ µ µ
µ ω λ ω

λ µ
λ λ µ µ

λ ω µ ω

× + − + +
+ +

+ − −
+ +
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It is quite possible to obtain corresponding expressions for 
other variants of covariance functions. 
We note that mathematical models found on the basis of some 
arithmetic operation with BMP provide a great possibility to 
change their features owing many parameters. The SRP of 
random processes and random fields on the basis of BMP can 
be described using results of the present paper. 

VII. CONCLUSION 
In the first time a sampling problem of special realizations is 
solved. These realizations are formed by the arithmetic 
operation with two binary Markovian processes. The 
Markovian and non Markovian cases are investigated. The 
algorithms for choosing intervals are obtained. One rather 
important variant of the application of such processes in the 
random field model is given.  
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