
 

 

  

Abstract—Airborne laser scanning (ALS) and multispectral 

photography have synergic capabilities for information extraction. 

Feature detection methodologies are very important in the context of 

spatial data capture and updating for GIS applications. These 

methodologies can be based on either LIDAR data or 

photogrammetric data or even on a combination between them. True 

orthoimages were generated by orthorectification of digital camera 

images using DSM from LIDAR data. Leica Photogrammetric Suite 

(LPS) module of Erdsa Imagine 9.2 software was utilized for 

processing. 

Several classifications based on supervised maximum likelihood 

classifier were conducted on the five different datasets.  

The first classification was performed using the intensity image. 

The second classification was performed using three digital aerial 

image channels. The third classification was performed using the 

three digital aerial image channels and two LIDAR feature images 

(average and standard deviation). The fourth classification was 

performed using two LIDAR feature images. The last classification 

was performed using the three digital aerial image channels combined 

with intensity metric and two LIDAR feature images (average and 

standard deviation). Quantitative accuracy assessments of the 

classification results were performed. A comparison between these 

five approaches has been carried out. After that morphological 

operations were performed in order to remove noise.  

The results revealed that the last approach is the best followed by 

the third approach then the second approach then the fourth approach 

followed by the first approach.  

The last approach result has been improved by applying neural 

network classification. ENVI 4.8 software was utilized for this 

purpose. The overall accuracy was 97%, and kappa coefficient was 

0.94. It was found that the neural network classification gives better 

classification accuracy than maximum likelihood classification. 

The results of the best approach of the maximum likelihood 

classification (fifth) and the results of the neural network 

classification were compared with those obtained using only 

information from the intensity image and showed an increase in 

accuracy of land-use discrimination up to 35% and 36.7%, 

respectively. 
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INTRODUCTION 

Urban Land use   land cover information is essential for 

planning, urban development, emergency management and 

monitoring the environment. The land-cover information 

extraction from remote sensing imagery, however, is a difficult 

task depending on the complexity of the landscape and the 

spatial and spectral resolution of the imagery. Improving the 

accuracy of land-cover classifications is thus a fundamental 

research topic [ 15]. 

Aerial images and Light Detection And Ranging (Lidar) 

data are common sources for feature extraction. In digital 

photogrammetry, features of objects are extracted using 3D 

information from image matching or DSM/DTM data, 

spectral, textural and other information sources [1].   

LIDAR provides very accurate position and height 

information, but less direct information on the geometrical 

shape of objects within the field of view. High-resolution 

imagery on the other hand offers very detailed information on 

object attributes, such as spectral signature, texture and shape 

[6]  

Raw LIDAR data derived from LIDAR pulse returns is 

known as a point cloud [21]. In addition to the X, Y and Z 

triplets, LIDAR systems are able to record the intensity of the 

returns, which is a measure of the amount of energy reflected 

back to the sensor. The intensity recorded by LIDAR systems 

is a function of many variables such as laser power, incidence 

angle, target reflectivity and area, atmospheric absorption and 

the range (sensor target distance) [12] 

Classifications have until recently been attempted with 

multispectral imagery. 

LIDAR intensity information has not been greatly used 

either in the commercial sector or in academia, yet it could be 

an important factor for feature extraction or land cover 

classification [13]. LIDAR intensity images often appear 

heterogeneous and speckled, due to the excessive noise and 

artefacts caused by the sensor scanning. The main source of 

intensity noise is the angle of reflection, as some land covers 

Improving automatic feature detection from 

LIDAR intensity by integration of LIDAR 

height data and true orthoimage from digital 
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have different intensity values as the angle of reflection varies 

[20]. 

 

To enhance the quality of the intensity data classification, 

some studies have been conducted by incorporating ancillary 

data [14]. 

Digital photogrammetric cameras can capture high dynamic 

images at a good signal-to-noise ratio. Compared to the use of 

scanned analogue images, these features are especially 

advantageous with respect to the accuracy, reliability and 

density of automatic point transfer [2]. The main advantages of 

digital aerial cameras over their analogue counterparts are a 

completely digital data flow line, a significantly improved 

radiometric image quality, together with the possibility to 

simultaneously acquire panchromatic, colour and near-infrared  

imagery[3]. 

Direct georeferencing has become more and more popular 

in the last decade. Direct georeferencing is mainly used for 

orthophoto production. With high resolution images an 

aerotriangulation is still mandatory because the sub-pixel 

precision potential of the high resolution images cannot be 

achieve with direct georeferencing [4], [5]. 

Photogrammetry and LIDAR have their unique advantages 

and drawbacks for feature extraction [6]. 

Quite some efforts have been spent in the past to 

automatically extract feature from digital aerial images or from 

digital surface models (DSM) derived from laser scanner data. 

The most recent achievements in the field of automated 

acquisition of features are based on the integration of data 

from two or more sources in order to overcome the drawbacks 

of specific sensor types. In this research feature detection has 

been performed based on two supervised classifiers, maximum 

likelihood and neural network. 

 

Maximum likelihood classification was performed using 

five different data sets (approaches). 

1) intensity image, 2) true Orthomosaic resulted from 

orthorectification of digital camera images using DSM from 

LIDAR data (the three digital aerial image bands), 3) true 

orthomosaic from digital camera (the three digital aerial image 

bands) combined with height metrics (average and standard 

deviation ), 4) height metrics alone (average and standard 

deviation ),and 5) height metrics combined with intensity 

metric and true Orthomosaic from digital camera. 

Neural network was performed using the fifth data sets 

ΙΙ. STUDY AREA AND DATA SET 

The data used in this paper are free sample data for 

Vaihingen/Enz, Germany, kindly provided by the International 

Society of Photogrammetry and Remote Sensing (ISPRS) 

commission III -working group III / 4 (area2). Aerial 

measurements with laser scanner and digital camera were 

made. The images were taken with a large-format frame 

camera (Intergraph / ZI DMC) from an altitude of 900 m 

above ground on 24 July and 6 August 2008. The focal length 

of the camera 120 mm and the coordinates of principal point 

(0,0) In total, the block consisted of five overlapping strips 

with two additional cross strips at both ends of the block. The 

test area is visible in two of these strips, namely strips 4, and 5. 

The aerial image used here is a 3 channel (RGB) image with 8 

cm ground sampling distance (GSD). The forward overlap is 

60%. A set of orientation parameters,  determined by the 

Institute of Photogrammetry, University Stuttgart were 

provided with the images (Cramer, 2010) Table 1 indicates the 

exterior orientation of the digital images of the Vaihingen 

Block. 

The LIDAR data were extracted from laser scanning data 

generated using Leica ALS50 system with 45° field of view 

and a mean flying height above ground of 500°m. The average 

strip overlap is 30%, and the median point density is 6.7 points 

/ m
2
. Point density varies considerably over the whole block 

depending on the overlap, but in regions covered by only one 

strip the mean point density is 4 points / m
2
. The original point 

clouds were post-processed by strip adjustment to correct for 

systematic errors in georeferencing. In this process, object 

planes derived from the 8 cm DMC block were used as ground 

control, so that the georeferencing of the ALS data is 

consistent with the exterior orientation of the DMC images. As 

a result of the strip adjustment, the standard deviation derived 

from the median of absolute deviation in the overlap.  

 The test area is visible in five of LIDAR strips ,namely 

strips 3,5,7,9,10 

 

Table 1 Exterior orientation of the digital images of the 

Vaihingen Block. 

 
 

 

ΙΙΙ. METHODOLOGY 

 

 

• Photogrammetric project creation has been 
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performed in digital photogrammetric workstation 

Leica Photogrammetric Suite (LPS) module of 

Erdsa Imagine 9.2 software. 

• Digital aerial images (RGB) taken with a large-

format frame camera (Intergraph / ZI DMC) have 

been imported. 

• Image pyramids have been performed. 

• Interior orientation parameters and exterior 

orientation parameters were defined. 

• True Orthoimage were generated by true 

orthorectification of digital camera images using 

DSM from LIDAR data. Leica Photogrammetric 

Suite (LPS) module of Erdsa Imagine 9.2 software 

was utilized for true orthoimage generation. 

• Radiometric qualization of true orthoimages have 

been made.  

• Image mosaicking has been performed. 

• Lastools software was used for merging raw LIDAR 

data  ( .las files of LIDAR strips) .  

•  Lastools software was used for derivation of 

LIDAR metrics (intensity,  average , and  standard 

deviation ). 

• Filtering the noise of intensity image has been 

performed.  

• Subsetting of the intensity images, average, and  

standard deviation. 

• Coregistrtion of   the different feature sets. 

• Maximum likelihood classifier has been used for 

feature detection. Classification was performed 

using five different approaches. In the first 

approach, classification was performed using the 

intensity image while in the second approach, 

classification was performed using the three digital 

aerial image channels whereas in the third 

approach, classification was performed using the 

three digital aerial image channels and two LIDAR 

feature images(average and standard deviation ). In 

the fourth approach, classification was performed 

using two LIDAR feature images (average and 

standard deviation). In the last approach, 

classification was performed using a combination 

of three digital aerial image channels, intensity 

image and two LIDAR feature images (average and 

standard deviation). 

• Accuracy assessment of classifications was carried 

out using overall accuracy and kappa coefficient. 

Seventy randomly selected points were used for 

this purpose. 

• Morphological operations were performed in order 

to remove noise. 

• The last approach result has been improved by 

applying neural network. ENVI 4.8 software was 

utilized for this purpose.  

• Accuracy assessment of neural network 

classification was carried out using overall 

accuracy and kappa coefficient. 

 

A. Photogrammetric project creation 

 

Photogrammetric project creation means establish a 

coordinate system, datum and ground units for the project. A 

project was created to include digital camera images. Leica 

Photogrammetric Suite (LPS) module of Erdsa Imagine 9.2 

software was utilized for processing. Fig.1 shows block 

configuration.   

Interior orientation parameters and exterior orientation 

parameters were defined. 

 

 
Fig.1 Block configuration.   

 

B. Digital surface model (DSM) 

Airborne LIDAR is a potential data source for providing 

height information (DSM or DTM). 

Digital surface model (DSM) includes any buildings, 

vehicles, vegetation (canopy and understory), as well as the 

“bare ground". To generate the required ’bare-earth Digital 

Terrain Model (DTM), ground and non-ground features/data 

points must be distinguished from each other so that the latter 

can be eliminated before DTM building [6] . 

Fig.2 shows Lidar DSM of the study area. Fig3. illustrates 

height variation in Lidar DSM of the whole LIDAR survey. 

 

 
Fig2. Lidar DSM of the study area. 
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Fig3.Height variation in Lidar DSM of the whole LIDAR 

survey (units in meter). 

 

 

C. True orthoimage generation from digital 

photogrammetric aerial camera 

 

Digital aerial photographs acquired on-flight with a 

matricial sensor present a pronounced perspective caused by 

their broad field-of-view (FOV). Orthorectification is the 

process of geometrically adjusting a perspective image to an 

orthogonal image by transforming coordinates from the image 

space to the ground space and removing tilt and relief 

displacement [11]. In order to change the perspective into 

orthogonal projection and to formulate the topographic 

correction, internal and external image orientations (IO and 

EO) and a DEM are required [8]. 

The orthoimage generation process consists of five steps: 

interior orientation, exterior orientation, DEM generation and 

editing or using of existing DEM, orthoimages generation and 

mosaic creation [9].  

In many GIS applications orthophotos are used as 

background information enriching their look-and-feel. Due to 

the characteristic having a homogeneous geometry they are 

often applied in order to capture data in planimetry. However, 

the ortho-rectification of aerial imagery is partly geometrically 

inaccurate and/or incomplete, i.e. buildings are distorted from 

their true location as they are not modeled in the DTM. [10]. 

Orthophotos generated with a DTM have typically 

following shortcoming: a-Perspective displacement and areas 

occluded by objects (e.g. buildings) 

b- Partly geometrically inaccurate and/or incomplete 

orthophotos [10]. 

Corrective in order to avoid above mentioned effects would 

be the use of a Digital Surface Model (DSM) [10]. 

Fig.4 shows True ortho projection with a DSM. 

Digital aerial photographs were orthorectified to a 8 cm 

spatial resolution using Lidar DSM, though they were 

resampled with a bilinear convolution in order to keep the 

appearance of the objects represented and images were 

projected to the UTM coordinate system (datum WGS 84, 

Zone 32).  After that image mosaicking were made. The whole 

procedure was implemented in Leica photogrammetric suite 

LPS digital photogrammetric workstation. Fig.5 illustrates an 

example of digital orthophoto resulted from orthorectification 

of digital photogrammetric camera image using Lidar DSM.  

Fig.6   shows mosaic of digital orthophotos that resulted from 

orthorectification of digital photogrammetric camera images 

using Lidar DSM.             

Fig.7 shows coregistration between Lidar DSM and 

orthomosaic resulted from orthorectification of digital 

photogrammetric camera images using Lidar DSM. Swipe 

utility was used to check the coregistration.            

       

 
Fig 4. True ortho projection with a DSM. 

 

 

 

Fig5. Example of digital orthophoto resulted from 

orthorectification of digital photogrammetric camera  image 

using Lidar DSM. 

Intensity image was used for check Point collection. The 

accuracy of the generated orthoimages was less than one pixel. 

 

D.  Orthoimages and radiometric equalization 

 

Orthoimages are one of the most popular products directly 

derived from aerial images. In this case, from a customer's 
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point of view, one of the most critical aspects of orthoimages 

concerns their radiometry. Indeed, orthoimage creation from 

full-frame images is not a straightforward process when 

radiometric problems are taken into account. Radiometric in 

homogeneities existing in raw images are related to surface 

Bidirectional Reflectance Distribution Function (BRDF) 

effects, to variation in haze composition and importance, to 

temporal difference between images, and so on. As a 

consequence, pre-processing images with radiometric 

corrections is required, since mosaicking them directly to 

obtain orthoimages mosaic would give unacceptable results, 

where stitches between original images are blatantly visible. 

Radiometric corrections were already necessary with analogue 

film, but they are all the more essential in a digital framework, 

since full-frame digital images are currently relatively small 

[7]. 

 

Fig.6 Mosaic of digital orthophotos that resulted from 

orthorectification of digital photogrammetric camera images 

using Lidar  DSM .            

 
 

Fig.7 Overlay between Lidar DSM and orthomosaic resulted 

from digital photogrammetric camera.    

 

E. LIDAR-derived metrics 

 

Most LiDAR systems have a multiecho capability and may 

capture between two and five returns for every laser pulse by 

penetrating beyond the first reflective surfaces of the 

canopy[19]. In this research, first return was used to derive 

LIDAR-derived metrics. 

First-return Contains a combination of all data classes 

received from the first return of each laser pulse [21]. 

The ultimate goal of this study was to combine LiDAR point 

cloud data with digital orthophoto data (raster data) as a new 

analysis band, LiDAR data underwent a rasterization process 

at the same spatial resolution as the orthophoto (8 cm) 

 

E1. LIDAR Intensity  

 

In this study, first return was used to derive intensity metric. 

intensity image was generated from the cloud points. Lastools 

software was used for this purpose. Firstly .las files of the 

strips 3,5,7,9, and 10 have been merged using las merge 

module. After that las2grid was used for interpolation of the 

intensity data of the point cloud into grid data after that image 

filter (Lee) has been applied to remove noise within the 

intensity data. Fig.8 illustrates intensity image of the whole 

LIDAR survey.  

A subset that correspond to the area 2 was extracted. 

 
 

Fig.8 LIDAR intensity image of the whole LIDAR survey. 

 

 

E.2. LIDAR Average metric 

 

Average metric was calculated from the cloud points of the 

first pulse height data. 

Lastools software was used for this purpose. Firstly .las files 

of the strips 3,5,7,9,and 10 have been merged using las merge 

module. After that las2grid was used for interpolation of the 

average metric of the point cloud into grid data. 

A subset that correspond to the area 2 was extracted. 

 

E.3. LIDAR Standard deviation metric 

 

Standard deviation metric was calculated from the cloud 

points of first pulse height data. 

Lastools software was used for this purpose. Firstly .las files 
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of the strips 3,5,7,9, and 10 have been merged using las merge 

module. After that las2grid was used for interpolation of the 

standard deviation metric of the point cloud into grid data. 

A subset that correspond to the area 2 was extracted. 

 

F. Feature detection using classification  

 

Image classification is automatically procedures that to 

categorize all pixels in an image into land cover classes[18]. 

Classification plays an important role in the information 

extraction. The general classification approaches are 

supervised classification and unsupervised classification [17]. 

 

F.1. Maximum Likelihood Classifier 

 

Maximum Likelihood Classifier is most widely used 

supervised classifier for remote sensing image processing, 

available in most remote sensing software. The principle of 

this classifier is: the probability of an object belonging to each 

of a predefined set of classes is calculated, and the object is 

then assigned to the class for which the probability is the 

highest [16]. In order to improve classification accuracy, 

different feature sets were used.  

Supervised maximum likelihood classification was 

performed using five different feature sets.  Set 1, where only 

the LiDAR intensity image was analyzed; Set 2, where only 

the spectral information of the true orthoimage was analyzed; 

Set 3, where the true orthoimage data were analyzed along 

with two LiDAR heigh metrics (average and standard 

deviation) ; Set 4, where two LiDAR heigh metrics (average 

and standard deviation) were analyzed ; Set 5, where the 

treatment was the same as in Set3 along with intensity image. 

All the datasets were co-registered together firstly then 

Erdas imagine 9.2 was used for classification. Five classes 

were selected to represent the land use/land cover classes of 

the study area: buildings, roads, vegetation, water and 

shadows. Training samples have been collected for the five 

approaches .Thirty signatures have been collected in each 

class. The collected signatures were evaluated using histogram 

method, and the result is accepted before the classification 

process. Fig.9 shows an example of classified image using 

maximum likelihood classifier. 

 

F.1.1. Separability measures 

 

Separability measure results were slightly better when using 

LIDAR feature images (intensity and height) together with true 

orthimages. Table 2 shows average separabilities of the classes 

for the five approaches of the maximum likelihood classifier. 

In general, the computed values range from 0 to 2 where 

values greater than 1.9 indicate that the compared pairs have 

good separability, whereas very low values (less than 1) 

indicate that the compared spectra might be appropriate to be 

combined into a single one. The fifth approach has the best 

separability. 

Fig.10 shows separabilities of the classes for the five 

approaches of the maximum likelihood classifier. 

 

Table 2: Average separabilities of the classes for the five 

approaches of the maximum likelihood classifier: 0 < x < 1 

(very poor separability); 1 < x< 1.9 (poor separability); 1.9 < x 

< 2 (good separability). 
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Fig.10 Average separabilities of the classes for the five 

approaches of the maximum likelihood classifier. 
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Fig.9 Example of classified image using maximum 

likelihood classifier. 

Thematic accuracy for each approach was assessed using 

seventy check points. 

The overall accuracy of the first approach was 60.3%, and 

kappa coefficient was 0.56, the overall accuracy of the second 

approach was 91%, and kappa coefficient was 0.82, the overall 

accuracy of the third approach was 93%, and kappa coefficient 

was 0.85, the overall accuracy of the fourth approach was 

79%, and kappa coefficient was 0.76, and the overall accuracy 

of the last approach was 95.3%, and kappa coefficient was 

0.91.After that morphological operations were performed in 

order to remove noise. Morphological opening with kernel size 

of 5×5 followed by morphological closing with kernel size of 

5×5 have been used utilizing ENVI 4.8 software 

Table 3 indicates overall classification accuracy and kappa 

coefficient for the five approaches. Fig.11 illustrates overall 

classification accuracy and Kappa coefficient for the five 

approaches of the maximum likelihood classifier. 

 

 

F.2. Neural network Classifier 

 

A neural network consists of a number of interconnected 

nodes. Each node is simple processing element that responds 

to the weighted inputs it receives from other nodes [24]. 

The arrangement of the nodes is referred to as the network 

architecture. The first type of layer is the input layer, where the 

nodes are the element a feature vector. This vector might 

consist of the wave bands of a data set, the texture of the image 

or other more complex parameters. The second type of layer is 

the internal or hidden layer since it does not contain output 

units. There are no rules, but theory shows that one hidden 

layer can represent any Boolean function. An increase in the 

number of hidden layers enables the network to learn more 

complex problems, but the capacity to generalize is reduced 

and there is an associated increase in training time. 

 

Table 3. Overall classification accuracy and Kappa 

coefficient for the five approaches of the maximum likelihood 

classifier. 

 

 
 

Fig.11 Overall classification accuracy and Kappa coefficient 

for the five approaches of the maximum likelihood classifier. 

 

The third type of layer is the output layer and this presents 

the output data [26]. 

For image classification, the input layer is defined by the 

number of input data channels or feature layers whereas the 

output layer is defined by the number of desired classes. The 

network structure between these two layers consists of hidden 

layers with a specific number of hidden units (or neurons). The 
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number of hidden nodes usually defined at least as number of 

nodes in the input layer. Based on Kolmogorov theory, 2N+1 

hidden nodes should be used for one hidden layer (where N is 

number of input nodes) [23].   

One of the advantages of ANNs is the possibility to 

integrate multi sensor data types in one classification 

process[25]. 

Other advantages are inherent with the character of neural 

networks: lack of assumptions about normality in datasets, 

ability to capture non-linearity. However, there also have 

several weaknesses in neural network such as slow learning 

rate, difficult convergence, complex network structure and 

ambiguous meaning of network[22]. 

The neural network had afeed-forward architecture with two 

hidden layer. The learning algorithm, was the Back-

Propagation. The input layer consisted of 6 nodes, 

corresponding to the three digital aerial image channels, 

intensity image and two LIDAR feature images (average and 

standard deviation). The output layer was composed of 5 

nodes, one for each class of the resulted five classes. ENVI 4.8  

software was utilizes for neural network classification. A 

suitable number of region of interest “ROIs” “about 30 

signature “  have been selected in each land cover class of the 

five classes. The training data for two separate classes should 

not overlap.  Separability has been checked. The parameter of 

the neural network classifier has been set as number of hidden 

layer 2, learning rate 1, momentum 0, threshold 0.01, and 

number of iterations 1000,  the activation function used in both 

layers was the sigmoid. 

The overall accuracy was 97%, and kappa coefficient was 

0.94. 

Fig.12 Illustrates  neural network RMS plot. 

 

 

 

 
 

Fig.12 Neural network RMS plot. 

 

 

ΙV. RESULTS AND DISCUSSION 

 

LIDAR intensity was used a for feature detection. The 

LIDAR intensity image was created from the intensity values 

corresponding to the first return. LIDAR intensity data was 

integrated with photogrammetric data and LIDAR height 

metrics for improving the feature detection capabilities. The 

contribution of the individual channels has been evaluated. 

Firstly the true Orthoimages were generated by true 

orthorectification of digital camera images using DSM from 

LIDAR data utilizing Leica Photogrammetric Suite (LPS) 

module of Erdsa Imagine 9.2 software for processing. The 

accuracy of the generated orthoimage was less than one pixel. 

After that orthomosaic was generated. 

Secondly feature detection has been performed based on 

supervised classification (maximum likelihood). 

Maximum likelihood classification was performed on Erdas 

Imagine 9.2 using five different feature sets. 

The first segmentation was performed using the intensity 

image, the second segmentation was performed using the three 

digital aerial image channels whereas the third segmentation 

was performed using the three digital aerial image channels 

and two LIDAR feature images(average and standard 

deviation). The fourth segmentation was performed using two 

LIDAR feature images (average and standard deviation). The 

last segmentation was performed using a combination of three 

digital aerial image channels, intensity image and two LIDAR 

feature images (average and standard deviation). The 

separability analysis indicated that the integration of LIDAR 

data with photogrammetric data significantly improved the 

separability of classes. 

Quantitative accuracy assessments of the classification 

results were performed. Experimental results showed that the 

overall accuracy and kappa statistics of the classification 

results were calculated for the five classifications that were 

performed with the five datasets. The overall accuracy of the 

first approach was 60.3%, and kappa coefficient was 0.56, the 

overall accuracy of the second approach was 91%, and kappa 

coefficient was 0.82, the overall accuracy of the third approach 

was 93%, and kappa coefficient was 0.85, the overall accuracy 

of the fourth approach was 79%, and kappa coefficient was 

0.76, and the overall accuracy of the last approach was 95.3%, 

and kappa coefficient was 0.91. After that morphological 

operations were performed in order to remove noise. 

Overall accuracy of classifications improved  almost by 

35% when a combination of three digital aerial image 

channels, intensity image and two LIDAR feature images 

(average and standard deviation) were used  instead of 

intensity image only.  

 

For detection of man-made structures, especially, by 

combining information from digital aerial images and Lidar 

data. Separability measures proved that different buildings are 

easier to distinguish when both aerial images and LIDAR data 

were used together. Overall accuracies improved about 35 %. 

Difficulties occur in building detection by using LiDAR data 

only, especially due to various facilities such as antenna and 

rooftop structures on top of the building. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 3, Volume 6, 2012 228



 

 

The time complexity for the computation increased with 

increasing number of features.  

 

A multi-layer perceptron MLP neural network model using 

the back-propagation (BP) algorithm was used for improving 

classification  results and was fed with the three digital aerial 

image channels combined with intensity image and two 

LIDAR feature images (average and standard deviation).  

The overall accuracy was 97%, and kappa coefficient was 

0.94. It was found that the neural network classification gives 

better classification accuracy than maximum likelihood 

classification. 

 

V. CONCLUSIONS  

 

The use of LIDAR intensity data for land cover 

classification and object recognition has been explored. 

LIDAR intensity data was integrated with other ancillary 

data for improving the land cover classification accuracy. The 

contribution of the individual metrics has been evaluated. 

Leica Photogrammetric Suite (LPS) workstation has been 

used for producing true digital orthoimages from digital aerial 

camera images using DSM from LIDAR data. True 

orthomosaic was then generated. 

In this research two supervised classifiers have been used 

for feature detection. 

In the case of supervised maximum likelihood classification 

different feature were incorporated in the classification 

procedure in order to improve the results. The classification 

was performed on Erdas Imagine 9.2 using three different 

feature sets.  

In the first approach, classification was performed using the 

intensity image channels while in the second approach, 

classification was performed using the three digital aerial 

image channels whereas in the third approach, classification 

was performed using the three digital aerial image channels 

and two LIDAR feature images(average and standard 

deviation ). In the fourth approach, classification was 

performed using two LIDAR feature images (average and 

standard deviation).In the last approach, classification was 

performed using a combination of three digital aerial image 

channels, intensity image and two LIDAR feature images 

(average and standard deviation). 

  It was found that the last approach is the best followed by the 

third approach then the second approach then the fourth 

approach followed by the first approach. 

  In the case of a multi-layer perceptron MLP neural network 

classification, a combination of three digital aerial image 

channels, intensity image and two LIDAR feature images 

(average and standard deviation) were used. 

Regarding the two classifiers, neural network outperforms 

maximum likelihood classification. 

It is recommended to assess the effect of normalizing 

intensity data using geometric characteristics (angle and 

distance) on feature detection. 
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