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Abstract—Anaerobic decomposition of landfill garbage produces 

gases like CH4 and H2S at subsurface. These gases diffuse through 
the foundation and come out to pollute the indoor building 
environment above. CH4 is highly flammable and causes explosion 
whereas H2S causes equipment failure and significant pulmonary 
ailments in human beings over long term exposure. This work 
focuses on 3D ad-hoc wireless sensor network (WSN) based 
localization and risk assessment of such a gas source buried at 
subsurface. Experiments are performed to emulate the gas diffusion 
process at underground. Experiments also help to determine gas 
propagation constants over the surface. Higher precision of the three-
step maximum likelihood (ML) based source localization method 
enhances the accuracy of source risk assessment process. Simulation 
results indicate that the proposed localization algorithms with limited 
sensor node mobility offer higher accuracy of estimation using lesser 
network resources. Finally, we propose an analysis for remote source 
concentration measurement. This help estimate severity of threat 
possessed by the buried landfill gas source. Also a method is 
proposed for 3D ad-hoc WSN based source location estimation with 
obstructed paths for surface gas propagation. 
 

Keywords—Buried landfill source, gas source localization, risk 
assessment, 3D ad-hoc wireless sensor networks. 

I. INTRODUCTION 
UE to space crunch in megacities, new buildings are 
constructed over not so old former garbage landfill sites. 

Anaerobic decomposition of the wastes at moist and humid 
subsurface produce hazardous gases like CH4, CO2, H2S, 
benzene, trichloroethene, toluene, xylene etc. Under the effect 
of negative pressure, these gases diffuse through the soil and 
concrete foundation and come out to pollute the building 
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environment above [1]-[3]. In Grand Riviera Princess Hotel at 
Playa Del Carmen, Mexico, accumulation of methane from 
nearby swamp caused huge explosion at basement. It rendered 
many deaths and severe financial damage [4]. In another 
incident at Malad office of Mindspace BPO, Mumbai 
subsurface H2S infiltrated through the floor and led to 
incessant crashing of computers, and electrical equipments 
[1]. In less aerated offices, industries, and residential 
buildings, the ailing effects of such gases on human beings 
can create nausea, headache, and serious lung diseases like 
asthma, bronchitis, and even cancer [2]. In such scenarios, it is 
of immediate necessity to track the source of contamination 
and identify the degrees of threat that the gas sources posses 
towards employees and equipments within [5]. This helps the 
proper authorities to deal with the crisis and restraining the 
hazardous effects through preventive measures. 

Landfill gases (LFG) generally contains CO2 and CH4 as 
dominant emission elements (45-50% each), and H2S (3-5%) 
and other volatile organic compounds (VOC-1%) as trace 
elements. For its distinct rotten smell, presence of H2S in the 
indoor environment is easily felt even for ppm level 
concentration. But CH4 concentration determination at source 
is highly challenging as CH4 is odorless and colorless. 5 to 
15% of CH4 in indoor environment produces a highly 
flammable mixture in presence of O2/air [2]. Over a large 
surface area, manual localization of such gas sources and 
remote monitoring of gas effusion rate would be highly 
cumbersome and ineffectual. But with the help of dedicated 
self-powered wireless sensor nodes, this type of critical event 
monitoring becomes lot easy. These multi sensor nodes when 
networked together can provide quick real-time detection, 
identification and threat assessment with higher accuracy.  
Examples include monitoring of the accidental spillage of 
toxic waste by ships, factories etc that contaminate the sea and 
the air, early detection of fires, nuclear radiation monitoring, 
and other environmental monitoring and so on [6].  

Environmental monitoring and toxic gas source localization 
is one of the most promising fields of research since it 
enhances human safety in adverse residential and industrial 
environments [7]. One of the common issues has been that 
most detection of chemicals with mobile robots has been 
based on experimental setups where the distance between the 
source and the sensor following an odor trail has been 
minimized to limit the influence of turbulent transport [8]-
[10]. In many cases mobile robots are also used for 
localization of toxic chemical plume source for explosive 

3D ad-hoc sensor networks based localization 
and risk assessment of buried landfill gas source 

Saurav Mitra, Siddhartha P. Duttagupta, Kushal Tuckley, Samsul Ekram 

D

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Issue 1, Volume 6, 2012 75

who
Text Box



 

2 
 

detection [8], [11]-[13]. Robot based biologically-inspired 
search strategy for locating odor source is also reported which 
solves the problems of repetitive search [14]. But, robot based 
systems have some inherent shortcomings as such systems 
cannot function satisfactorily in all types of non-cooperative 
environments of factory or mines. Moreover if the monitoring 
area is too big and there are many obstacles in the site, the 
robots face big problems. In addition, high cost and energy 
consumption of the robot based systems also cannot be 
ignored [15]. Sensor network based schemes on the other 
hand can be planned to use in most of the scenarios where 
mobile robots cannot be deployed. Sensor networks can 
instantly detect the plume source whereas the mobile robot 
based scanning is more time consuming [6], [16]. Sensor 
network is more flexible in terms of reconfiguration of data 
routing path in case of few node failures [6]. Moreover, a 
dedicated sensor network does not require thorough human 
attention during target detection. Modeling for plume source 
based location estimation is explained in detail in [11]-[13]. 
The energy model, routing protocols, topology, and network 
connectivity related issues of H2S monitoring using sensor 
networks has been explored in [17]. Remote threat estimation 
of the toxic H2S source explained here can be very useful in 
oil and gas resource industries [16].  

Main contribution in this paper is determination of gravity 
of threat of a buried subsurface hazardous gas source in real 
time. The novel 3D sensor node configuration proposed here 
can satisfactorily perform source risk assessment even when 
the gas propagation paths in certain directions from source are 
blocked by obstacles. The three step source localization 
strategy uses maximum likelihood (ML) estimation technique. 
In our simulations, the initial localization is carried out 
considering gas concentration readings from all sensor nodes. 
Next, refined source location information is obtained with 
strategically chosen lesser number of sensor nodes. Finally, 
with limited directive mobility applied to the subset sensor 
nodes, highly precise source localization is achieved. The 
proposed source localization criteria give highly accurate 
result with limited network resources. Finally, the 
proportionate emission rate of noxious H2S at source with 
respect to CH4 emission is remotely estimated using a single 
closest sensor node. This is also a novel contribution. The 
criteria help estimate lethality of the source and criteria for 
intervention.   

The paper is organized as follows. In Section II, we present 
an equivalent experimental set up that emulates subsurface 
multiple path gas diffusion process. Surface gas propagation 
constants for CH4 and H2S are also determined from this 
experiment. In Section III, we present the model and 
assumptions for CH4 propagation within the target area. The 
common criterion for determination of theoretical lower 
bound of source estimation error is also explained in this 
section. The criteria for sensor node placement, subset node 
selection, limited node mobility, and remote gas effusion rate 
determination at source are explained in detail in section IV. 
In Section V, we present a representative case for three 

dimensional sensor node based gas source localization process 
and related assumptions. Section VI contains the simulation 
results for above explained cases. We conclude with Section 
VII where plans for future works are presented. 

II. EXPERIMENTAL SETUP 
The water-cement ratio in soil and basement concrete is 

increased due to higher moisture concentration at subsurface. 
This accelerates pore formation in concrete which in turn 
facilitates gas diffusion through it. The nature of migration of 
gases through such porous media is the subject of extensive 
literature and has been studied in several occasions. The 
fundamental mechanism of gas migration is due to an imposed 
pressure gradient (bulk or preamble) and composition gradient 
(diffusion migration) [18], [19]. The mixture of subsurface 
gases when effuse through the surface crack follows 
Graham’s law of effusion. According to this law, the rate of 
gas effusion from the point of leak is inversely proportional to 
the square root of its molar mass. Hence CH4 release rate is 
1.46 times than that of H2S. Being lighter, CH4 propagates 
isotropically whereas heavier H2S spreads slowly alongwith 
the floor. It makes CH4 a more suitable element for 2D and 3D 
gas source localization than H2S. The one dimensional 
molecular gas diffusion process is described by Fick’s first 
law –                 

                              J(x) = - D. (dc/dx)                              (1) 
where J(x) is the gas flux, dc/dx is the gradient of 
concentration and D is the gas diffusion coefficient.  

An experimental test bed of dimension 3×1×1.2 cubic 
meters emulates the subsurface gas diffusion process, Fig. 1. 
The cubical box is divided into upper (surface) and lower 
(subsurface) chambers which are separated by solidified 
porous hydrated cement paste layer or hcp barrier (soil-
concrete foundation). Three intentionally induced cracks in 
the hcp layer were three dominant effusion points which 
created bias in gas diffusion. Three multisensor nodes were 
designed with both CH4 (MQ4 with sensitivity 200-10000 
ppm) and H2S sensors (ME4 with sensitivity 0-200 ppm) to 
obtain gas concentration readings at various points in the 
upper chamber. For CH4 concentration in the upper chamber, 
we observed a combined almost Gaussian pattern in the left 
side around effusion points 1 and 2. A Gaussian pattern 
around effusion point 3 was observed in the right side of the 
chamber, Fig. 2. The proximity of effusion points 1, and 2 
caused the single combined diffusion pattern in the left side. 
During experiment for a lone CH4 source we observed that gas 
concentration varies inversely with power of 2.3 of the 
Euclidean distance between source and the measuring point at 
room temperature of 30oC. For H2S, this constant was 
observed to be 2.6. The value of gas propagation constant is a 
function of relative humidity, ambient temperature, and gas 
partial pressure at source etc [20]. These findings decide the 
criteria for 2D and 3D sensor placement towards obtaining 
highest sensitivity and highest source localization accuracy in 
real scenario. 
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Fig. 1 test bed emulates the process of CH4, and H2S gas diffusion 
 

 
 

Fig. 2 CH4 concentration pattern at upper chamber 
 

Fig. 3 shows a case with three CH4 sources. Q1 is the mean 
for a combined CH4 sources and Q2 is an independent source. 
Sensor kept at A would sense combined CH4 concentration-  
for Q1, concentration at A = 1200 ppm / 2 2.3 = 256 ppm 
for Q2, concentration at A = 300 ppm / 2 2.3 = 61 ppm  
As the minimum sensing threshold for MQ4 is 200 ppm, the 
sensor at A would detect Q1 source with higher accuracy.  

III. CH4 PROPAGATION MODEL AND ESTIMATION ERROR 
Over a large target area, it is really a challenging job to 

estimate the domain of CH4 effusion point in 2D and 3D 
environment. It is assumed that both CH4 and H2S effuse from 
the same source at a constant rate. Initially, through proximity 
measurements, precise CH4 effusion region estimation is 
obtained. Using this information and the gas propagation 
constants as apriori, CH4 to H2S concentration ratio at source 
is estimated consequently. Here, CH4 acts as proxy for H2S 
source location estimation.  

A.  CH4 Propagation Model in Indoor Environment 
The gas propagation and sensing model explained in this 

section does not account for potential impacts of wind flow 
and obstacles in the field. N numbers of CH4 sensor nodes are 
assumed to be present in the target area. Also assumed that the 
concentrations of the K number of CH4 sources (when K>1) 
will be linearly superimposed without any interaction on all 
the CH4 sensors [21]. The concentration signal received at the  

 
 

Fig. 3 representative case for sensing multiple gas sources at distance  
 

ith sensor node (i =1, 2, ..N) during discrete time interval n is               
 

                        ( ) ( ) ( )i i ix n s n nυ= + ,                            (2) 
 
where si(n) is the actual CH4 concentration without noise and 
measured at ith sensor node due to all CH4 sources. υi(n) is the 
background additive white Gaussian noise (AWGN). If T is 
the time window over which N sensor nodes pick up CH4 
concentration reading and if M is the number of sample points 
per time window, then T = M / fs, where fs is the sampling 
frequency [21]. Ri(t) or the average CH4 concentration 
measurements over the time window [t-T/2, t+T/2] is the 
addition of signal energy [Rsi(t)] and noise energy [εi(t)] as 
given below – 

     ( )
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CH4 concentration information received by ith sensor node at 
time index t can be expressed as [21] – 

            1

( )( ) ( ) ( ) ( ),
( )

K
k

i si i i i
k ik

S tR t R t t g t
d tαε ε

=

= + = +∑            (4)  

 
where, Sk(t) is the signal concentration energy at unit distance 
away from the kth source, dik is the Euclidean distance 
between the ith sensor and the kth source, α is propagation 
constant of CH4 in the media, ri=[xi, yi]T is the known location 
of the ith sensor node, and ρk = [uk, vk]T

 is the unknown 
location of the kth source (ρk is to be estimated). The term gi is 
the gain factor of the ith sensor node. The square of the 
background noise υi

2(n) will have a Chi-Square distribution 
with mean equal to E[υi

2(n)]=ςi
2
 and variance equal to 2ςi

4/M. 
If M is sufficiently large ( > 30) then according to the Central 
Limiting theorem, εi can be approximated with a normal 
distribution εi ~ N (ςi

2, 2ςi
4/M). For convenience, later in 

derivation, μi and σi
2 are denoted as ςi

2 and 2ςi
4/M respectively 

[21]. The validity of this 2D CH4 propagation model in an 
indoor environment has been verified with simulation results 
in section VI.  

 B.  ML Estimation Based Source Localization Model 
Source location determination for various environmental 

parameter monitoring has produced vast literatures over the 
years. For accurate detection of mineral distributions in the 
study area by means of the spectral analysis of Hyperion data 
has been reported [22]. But the system cost of image based 
and mobile robot systems are too high for small scale 
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applications.  RF based source localization is comparatively 
cheaper solution for such problems in an indoor environment 
[23]. The gas source location estimation problem as explained 
in this paper is based on a single set of superimposed reading 
of gas concentrations at different sensor nodes with known 
coordinates. Time index T is omitted for briefness. The 
matrices for initial and coarse source localization are  
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where ξi = (εi - µi) / σi ~ N (0,1) are independent Gaussian 
random variables. Equation, (4) can be represented as 
 
                       Z = GDS + ξ = HS + ξ.                            (6) 

The joint probability density function of Z is expressed as                                                        

       2 1( ) (2 ) exp{ ( ) ( )}
2

N
Tf Z Z HS Z HSθ

−
= Π − − − ,      (7) 

where,  1 2 1 2[ ] ,T T T T
K KS S Sθ ρ ρ ρ= " "      (8) 

is the vector for unknown parameters. The negative likelihood 
objective function can be expressed as  

                                   
2( )l Z GDSθ = − .                  (9) 

Thus the maximum likelihood parameter estimation of θ is 
obtained by minimizing l(θ) in (9). To minimize l(θ) for CH4 
source (K=1) [24], solution must lie on stationary point where  
 
                                    ( ) 0l

S
θ∂

=
∂

                           (10)               

and                                     ( ) 0lρ θ∇ = .                           (11) 

For K=1, S is given as [24] 
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 .                     (12) 

H† is the pseudo-inverse of matrix H [24]. The single source 
objective function of (9) now becomes          
                     
               2

1
( )

N
i i i

i i i i

R g Sl Z GDS
dα

μθ
σ σ=

⎛ ⎞−
= − = −⎜ ⎟

⎝ ⎠
∑ .       (13) 

With initial possibility of point source to be present 
anywhere within the target area (point ρ1), the value of S is 
calculated from (12). Then, putting this value of S in (13), 
value of l(θ) is obtained. The point ρ which produces least l(θ) 
is the estimated location of the CH4 effusion source in the 
target area [24].  

 C.  Theoretical Lower Bound of Source Estimation Error 
Cramer Rao Bound (CRB) is the theoretical lower bound of 

the variance of an unbiased parameter estimate. It is the 
inverse of the Fisher information matrix. Fisher’s matrix is 
given by [21] 

                    
ln ( | )

T

J E f Z θ
θ θ
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 Substituting (7) into equation (14), we get                                                
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General form of B can be found after solving from (10), (11), 
and (13) as [21] 
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∂ is a unit vector from kth source to 

the ith sensor. For [ ]1 2 kB B B B= " , Fisher 

information matrix J, always nonnegative definite is  [21] 
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Eigen decomposition of J returns the Eigen vectors and 
Eigen values (λ), Fig. 4. The Eigen vectors decide the 
direction or tilt of the 2D dilation ellipse (for K = 1) and the 
Eigen values determine the elliptical area of the dilation. 
Larger elliptical area indicates higher estimation error and 
vice versa. Another criterion for better estimation is the major 
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Fig. 4 CRB based estimated error dilation ellipse area determination  
 
axis to minor axis length ratio which is termed as aspect ratio 
here. Aspect ratio closer to unity indicates better 2D source 
location estimation [25], [26].  

IV. CRITERIA FOR NODE DEPLOYMENT, SUBSET SELECTION, 
MOBILITY OF SENSOR NODES, AND SOURCE RISK ASSESSMENT 

Wireless sensor networks consist of small, low-power 
multisensor nodes that interact with the physical environment. 
The ability to add new functionality criteria to perform 
required measurements without physically reaching each 
individual sensor node is a smart and essential service, even at 
the limited scale [27]. In this section few such criteria are 
proposed that would perform precise CH4 source localization 
and source threat estimation in a stepwise manner.     

A. 2D Deployment Criteria for CH4 Senor Nodes  
In order to monitor an area of interest, a large number of 

sensor nodes cooperate among themselves. Several physical 
properties can be monitored by a WSN such as temperature, 
humidity, pressure, ambient light, and odor concentration at 
distance. The collected information at sensor nodes must be 
integrated to identify the location of the event. Hence, sensor 
node positioning is a key part of successful operation of WSN 
[28], [29]. Optimal placement of base stations in WSN is also 
a very important issue. An optimal placement of base station 
ensures connectivity to all deployed sensor nodes within the 
area with minimum overall communication link distance. This 
geometrical issue reduces the energy consumption of sensor 
nodes related to data communication which in turn enhances 
network overall lifetime [30].  

Placement of the 2D planar sensor node elements strongly 
affects the accuracy of the source location estimation [31]. To 
obtain the initial CH4 source localization within a rectangular 
target area (p1×p2), 8 sensors (A to H) are placed elliptically 
around the base station or data sink Z0 Fig. 5. For accurate 
single source localization in 2D, readings from at least three 
sensors are required. Sensing range of each sensor must be at 
least CZ3 so that even if a CH4 source is at farthest corner (like 
Z3), it could be tracked (by C, D, and E nodes). CZ3 should be 
greater than length m1 and m2 which are half of the major axis 
and minor axis of the sensor placement ellipse respectively 
Fig. 5. CRB analysis of the source localization gives minimum  

 
 

Fig. 5 CH4 node placement criteria for initial source belief estimation  
 

theoretical error covariance bound of the estimation. The 
coarse dilation ellipse, estimated at the end of the first step is 
termed as initial belief. For initial belief estimation, gas 
concentration reading from all eight sensor nodes is 
considered. Hence communication energy required for the 
initial belief estimation is found to be highest.    

B.  Subset Node Selection for Higher Estimation Accuracy  
The main purpose of the sensor nodes with WSN is to 

collect local useful data and transmit them back to the base 
station for possible needs of further processing and data 
extraction [32]. These sensor nodes function in an extremely 
energy constrained environment. Hence, the energy usage by 
each node needs to be very carefully planned to have longer 
monitoring capability. Within an indoor environment, sensor 
nodes can directly transmit the data to base station.  

In this second step of estimation for refinement of coarse 
initial belief, readings from a specific subset of nodes are only 
considered. This set is an optimal subset of initially used 
sensor nodes. It is assumed here that the subset array should 
contain half the number of initially used sensor nodes which 
are closest ones from the already estimated initial belief. Other 
nodes are steered into idle state to save communication energy 
and save network energy resources. In high uncertainty case 
(initial belief estimation in first case) it pays off to use all 
sensor node readings to estimate the source position. But in 
low uncertainty scenario of the second case (apriori 
knowledge of initial belief reduces uncertainty) a judiciously 
chosen subset of closest sensor nodes render more precise 
estimation result. It seems that for every uncertainty level 
(measured as the variance of noise) there is an optimal number 
of sensors that need to be involved in the measurement in 
order to achieve satisfactory results while, at the same time, be 
energy efficient [6]. 

The more precise source localization obtained in this step 
by using subset sensor nodes is termed as updated belief. Fig. 
6 gives the pictorial view of the criteria where the initial belief 
is assumed to be at Q. Here, closest subset nodes D, E, F, and 
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Fig. 6 CH4 node placement criteria for initial source belief estimation  
 

G are chosen for updated belief estimation whereas nodes A, 
B, C, and H go into idle state. This saves almost half of the 
communication energy for data transfer between nodes A, B, 
C, and H each to data sink Z0. Simulation results in section VI 
A shows considerable improvement in updated belief 
estimation over initial belief are with this proposed criterion.   

C.  Further Refinement of Updated Estimation Belief with 
Limited and Directional Sensor Node Mobility 

Mobility of sensor nodes within a WSN is a vast topic of 
research. In most of the applications, the feature of node 
mobility is embedded into the sensor nodes to ensure 
communication link connectivity between nodes or between 
sensor nodes and base station [33], [34]. But in our case, 
limited directional mobility is applied to subset sensor nodes 
to further enhance the precision of updated estimation belief.  

Fig. 7 to Fig. 9 shows three different proposed node 
mobility criteria. Fig. 7 shows the criterion of subset senor 
node mobility towards the major axis of the updated belief. 
This criterion helps to reduce the Mahalanobis distance 
between the measuring nodes and the covariance of the 
updated belief [25]. ML source localization obtained with 
measurements by sensor nodes at their new locations shows 
considerable reduction in estimation error. This belief is 
termed as final estimation belief. Fig. 8 shows movement of 
sensor nodes toward the mean of the updated belief. The 
criterion shown in Fig. 9 is more complicated than the 
previous two. Here, first the perpendicular distances to each 
sensor locations are calculated from the major axis and minor 
axis of the updated belief. Then for a particular sensor, these 
two distances are compared. Finally, the sensor is moved 
towards that axis of the updated belief which is far from the 
current node location. The logic is reduction of higher 
uncertainty between a sensor node and the updated belief. Fig. 
9 shows that node SN1 and SN4 are comparatively far from the 
minor axis compared to their respective distances from the 
major axis of the updated belief. Hence sensors SN1 and SN4 
are given mobility towards minor axis of the updated belief. 
With the same logic, node SN2 and SN3 are moved towards  

 
 

Fig. 7 node mobility towards the major axis of the updated belief 
 

 
 

Fig. 8 directive node mobility towards the mean of the updated belief 
 

 
 

Fig. 9 node mobility towards higher uncertainty of the updated belief 
 
the major axis of the updated belief. Directive mobility 
provides huge reduction in estimation uncertainty and better 
aspect ratio. Aspect ratio is the ratio between major axis and 
minor axis of the dilation ellipse. If the gas source location is 
within the initially placed elliptical node array, then mobility 
criteria incur lesser communication link length. Improvement 
in precision of estimation should be considerably high 
compared to the energy spent for successful node mobility.  
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D.  Criteria for Remote Gas Effusion Rate Determination 
The three step gas source localization process explained in 

previous subsections aids the remote source concentration 
measurement and source threat estimation process. CH4 and 
H2S gases effused from the same source have different 
propagation properties and hazardous effects. Presence of H2S 
in air is very easily detected for its very low odor threshold. 
Several landfills in different parts of the United States that 
have been collecting large amounts of debris are installing gas 
processing equipment to treat H2S concentrations in excess of 
3% to 5% (30,000-50,000 ppmv) [35]. Hence, LFG source 
concentration ratio for CH4 to H2S is taken to be 45:3 or 15:1 
[2]. Apart from its tendency to explode in presence of 
Oxygen, CH4 is not directly as lethal as H2S for human health. 
H2S affects human health directly when its concentration in air 
is in the range of 10 to 50 ppm. This causes headache, nausea 
and breathing difficulties in human beings. H2S concentration 
of 50 to 200 ppm in air causes severe conjunctivitis, acute 
respiratory ailment, coma, and even death in certain cases 
[36]. Hence it becomes important to track the concentrations 
of both these gases from the landfill source to mitigate their ill 
effects. Detailed energy model for H2S detection with the help 
of WSN has been reported [37], [38].  

After accurate source localization, CH4 and H2S effusion 
rate measurement from source becomes the next important 
job. Time varying CH4 and H2S concentrations readings are 
picked up by only one multisensor node which is nearest to 
the final source estimation belief (node F), Fig. 6. All 
remaining seven nodes are kept in idle mode during this 
operation. H2S sensors should have minimum sensing range of 
(z1z3/4) where z1z3 is the length of the diagonal of the 
rectangular target area Fig. 6. Using the remote steady state 
readings of CH4 and H2S concentrations at node F, and the 
known propagation constants of both these gases, their 
concentration ratio is estimated at source. Lesser the ratio, 
higher would be the H2S based threat possessed by the LFG 
source [39]. Calculation for source threat estimation is 
explained in section VI C with the help of remote gas 
concentration graph and values obtained at closest node.  

V. INDOOR GAS SOURCE LOCALIZATION BY 3D WSN IN 
PRESENCE OF OBSTRUCTION IN GAS PROPAGATION PATH  

Indoor gas source localization and risk assessment criteria 
explained so far did not consider any obstruction in the gas 
propagation path. The 2D WSN placed on the floor losses its 
effectiveness in presence of an obstruction on floor. In such 
cases the initial gas source domain estimation can be carried 
out by placing sensor nodes in the ceiling. This is a common 
practice in non-cooperative environmental monitoring. Many 
environmental factors, such as the presence of pyrophoric CH4 
and other hazardous gases, water, and dust need be monitored 
in long and narrow underground tunnels to ensure safe 
working conditions for coal miners. Here, stationary sensor 
nodes are deployed on the walls and ceiling of tunnels to form 
a mesh sensor network [40]. In a mobile robot and sensor 

node based hybrid navigational system, sensor nodes attached 
to the ceiling act as signposts to guide the robot along the 
routing path on floor. The ceiling sensors inform the ground 
based robot of the next node that it has to pass through. The 
robot exchanges distance information with each ceiling sensor 
nodes and follows along the routing path on ground [41].  

For CH4 source localization with obstacles on basement 
floor, eight planar sensor nodes are fixed to the ceiling in 
same elliptical fashion as in Fig. 5. As CH4 is a light gas, after 
effusion it would reach the unobstructed ceiling in a short 
span of time. Ceiling based concentration measurements also 
produce authentic source localization. CH4 concentration 
readings picked up by the ceiling sensor nodes are transmitted 
to the base station. ML based source localization is carried out 
with these readings at base station to obtain coarse initial 
belief at ceiling. The belief is then projected back on the floor. 
CRB based initial belief is found to have very large dilation 
area. It happens because gas concentration signal strengths 
obtained at ceiling are far less than that on basement floor.   

 

 
 
Fig. 10 source localization with obstacle by 3D sensor networks 
 
From this first step, the relative position of the gas source 

on floor is successfully determined with respect to the 
obstacle, Fig 10. The direction of the CH4 distribution is also 
found from this step. With these two apriori information, in 
the next step, a planar elliptical network with judiciously 
chosen four sensor nodes are placed on the floor for updated 
belief estimation. The sensor nodes on the floor are to be 
deployed according to the criteria explained in section IV B 
keeping position of obstruction into consideration. Criteria for 
node mobility and selection of a single sensor node for remote 
determination of gas concentration ratio at source would 
follow next. Results and related assumptions explained in 
section VI D strongly validates this 3D senor network based 
CH4 source localization process in presence of obstacles on 
floor. The impact of wind flow is not considered in this case. 

VI. RESULTS AND DISCUSSION 
In this section, simulation results and related analysis are 

discussed with the help of graphs and tables. Simulations have 
been performed using MATLAB version 7.9. Following are 
the results for the representative cases.  
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A. 2D Node Based CH4 Source Updated Belief Estimation   
For simulation based localization of the CH4 gas source 

within a 100×80 square unit rectangular area, an elliptically 
placed planar network of eight sensor nodes (A to H) has been 
considered. One unit corresponds to 0.1 meter. The assumed 
sensor node coordinates are shown in Fig. 11. The gas source 
is assumed to be at [55, 45]. The base station is at [50, 40] 
which is also the centre of the target area. The source energy 
is set as 4000 and background noise is set at µi = 2.3 for all 
sensor nodes. The noise energy variation εi (t) is modeled as a 
Gaussian random variable N (µi, 2µi

2/M) with M = 30. 
Objective function reduction result for initial belief estimation 
is shown in Fig. 12. The least value of objective function was 
obtained at coordinate [55, 47]. This is the most likely 
position of the CH4 source obtained by using the measured 
readings of gas concentration at all eight sensor nodes. The 
estimated source position is 2 units off from the assumed 
source position. CRB based estimation analysis shows initial 
belief dilation area to be very wide 78.1 square units, Table I. 
It indicates large source localization error. This error is 
minimized next by judiciously selecting four sensor nodes 
closest to the initially estimated belief (case 2, Table I). Now 
the CH4 concentration readings only from node B, C, D, and E 
are considered and again ML based source localization is 
carried out, Fig. 13. CRB based updated belief dilation area 
obtained after the second case is reduced by 61.5% than that 
in case 1, Table I. Aspect ratio of 4.26 of initial belief is 
improved to 3.44 during updated belief estimation.    

 
TABLE I 

% IMPROVEMENT IN PERFORMANCE PARAMETERS (COMPARED 
TO CASE 1) FOR ALL DIFFERENT SENSOR NODE CONFIGURATIONS  

Case Sensor Node Geometry 
Dilation 
Area Sq. 

Units 

Aspect 
Ratio 

Link 
Length 
Units 

1 8 sensor nodes 78.1 4.26 200 

2 
4 closest sensor nodes            

no node mobility 
30.1 

61.5% 
3.44 

19.2% 
100 
50% 

3 
4 closest nodes, 1 unit  mobility 

towards major axis 
9.3       

88 % 
3.34 

21.6% 
98.2 
51% 

4 
4 closest nodes, 1 unit  mobility 

towards mean 
8.44 

89.2% 
3.57 

16.2% 
96.8 

51.6% 

5 
4 closest nodes, 1 unit mobility 

towards higher uncertainty 
8.98 

88.5% 
3.25 

23.7% 
97.25 
51.4% 

6 
4 closest nodes, 2 units  mobility 

towards major axis 
2.96 

96.2% 
3.15 
26% 

95.6 
52.2% 

7 
4 closest nodes, 2 units  mobility 

towards mean 
2.6 

96.7% 
3.7 

13.1% 
92.93 
53.5% 

8 
4 closest nodes, 2 units mobility 

towards higher uncertainty 
2.8 

96.4% 
3 

29.5% 
93.74 
53.1% 

 
 

Fig. 11 2D sensor placement for initial belief estimation by 8 sensors 
 

 
 

Fig. 12 objective function reduction for initial belief estimation 
 

 
 

Fig. 13 optimal subset node selection for updated belief estimation 
 

B.  Final Belief Estimation with Limited Node Mobility   
After judicious selection of subset nodes and after carrying 

out the updated belief estimation, limited mobility of one unit 
and two units are applied to the subset sensor nodes in steps. 
Node mobility towards a predefined direction logically 
reduces the estimated final belief area and hence offers very 
high degree of precision in source position estimation. Among 
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the three mobility criteria it is found that ‘node mobility 
towards estimated mean of the source’ (case 4, Table I) 
provides most precise source localization. For this, the third 
column results of third fourth and fifth rows of Table I are 
compared. Case 4 shows as much as 89.2% reduction in 
estimation belief as compared to that of case 1, Table I. It is 
also observed from fifth row of Table I that ‘mobility toward 
higher uncertainty direction of updated belief’ provide best 
aspect ratio of final belief estimation. The aspect ratio 0f 4.26 
in the first case has been improved to best 3.25 using this 
criterion. New node positions after ‘mobility of 1 unit toward 
mean direction’ (case 4, Table I) are depicted in Fig. 14. 

  

 
 

Fig. 14 one unit mobility towards mean of the updated belief 
 

Important observations regarding overall communication 
link length and network energy resource optimization were 
made from Table I. The 8 communication links with base 
station in case 1 (Fig. 11) is reduced to only 4 links in the case 
2 (Fig. 13). This saves 50% communication energy in case 2. 
At the same time it enhances the estimation accuracy by 
reducing dilation ellipse area by 61.5% compared to case 1. 
The results validate the proposed subset node selection 
criteria. Link length reduction is minimal due to limited 
mobility in sensor nodes. This is highly subjective and totally 
depends upon the relative position between updated belief and 
the subset sensor node positions. In our example, the criterion 
of ‘node mobility towards mean’ (case 4, Table I) shows 
minimum communication link length during final belief 
estimation and hence maximum network energy saving.   

 C.   Gas Source Risk Assessment Analysis 
Simulation for measurements of remote gas concentration 

from a mixed gas source has the basic assumption that CH4 
and H2S are emitted from the same source at a constant rate. 
As the source concentration of H2S is generally low and as the 
concentration gradient of H2S falls sharply, far away H2S 
sensors from source are found to generate more noise. They 
do not generate reasonable gas concentration readings. This 
adds to estimation inaccuracies. Hence only the closest H2S 
sensor measurements are considered for remote source threat 
analysis purpose. It is evident that the accuracy of the source 

localization process is the most important factor in selection of 
that very closest H2S sensor node which would remotely track 
the time varying H2S concentration most accurately.    

From Fig. 13 it is found that sensor node D of the optimal 
subset is the closest (DQ Euclidean distance = 15.75 units) 
from the mean of the updated belief. After 1 unit mobility of 
the subset nodes towards updated belief mean, DQ (refereed 
as‘d’) reduces to 14.75 units, Fig. 14. By using experimental 
setup of Fig. 1, time varying CH4 and H2S concentrations 
were picked up at distance of 14.75 units from the mixed gas 
source. As the tracking took place within the test bed, the 
effects of wind velocity did not affect the measurements. We 
found that the CH4 sensor attained the steady state lot earlier 
than H2S sensor, Fig. 15. It happened because CH4 travels 
faster with a lesser propagation constant than H2S. Fig 15 
shows that the steady state CH4 as to H2S ratio at distance of 
14.75 units from source is 1: 0.237 after 300s. Actual CH4 to 
H2S concentration ratio at source is now back calculated using 
gas propagation constants of gases as 

CH4 to H2S gas concentration ratio at source  
= ( d αH2S / d αCH4 ) × (steady state CH4 : H2S ratio at 14.75  
                                 units distance from mixed gas source) 
=  ( 14.75 2.60 / 14.75 2.30 )  × ( 1 / 0.237 )  
= 9.46 : 1 
As this ratio is 37% less than the standard LFG CH4 to H2S 

ratio (which is 15:1), the source is considered to be highly 
dangerous from noxious H2S gas based hazards point of view 
and requires faster intervention. 

 
Fig. 15 remote CH4 and H2S concentration measurement over time 

 

   D.  Source Localization with Obstacles using 3D Nodes  
The result for 3D ceiling and ground node based source 

belief estimation is explained here. The assumed position of 
obstacle on ground with respect to the initially configured 
elliptical node array is shown in Fig. 16. Elliptical placement 
of sensor nodes on ground (as shown in Fig. 11) is impractical 
as source position with respect to the obstacle is initially 
unknown. For gas concentration measurement at ceiling, 
sensor coordinates of Fig. 11 are placed onto ceiling with a 
third dimension of 30 which is the assumed height of the 
room.  Hence sensor A coordinate at ceiling is now [24, 40, 
30], coordinate of ceiling sensor B becomes [36, 60, 30], and  
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Fig. 16 obstacle on ground with initial elliptical ground node array 
 

so on. Base station is at [50, 40, 0]. CH4 source coordinate is 
assumed at [55, 45, 0] on floor. The objective function 
reduction (3D) at ceiling for source domain estimation is 
shown in Fig. 17. At ceiling the estimated mean is at [56, 46]. 
For this estimation source and noise assumptions are kept 
same as mentioned in section VI A. An important fact here is           

 
 

Fig. 17 objective function reduction by ceiling based measurements 
 
that all the received signal strengths at ceiling sensor nodes 
are given a gain (g) of 2.8. The mean value is then projected 
on the ground which falls in the left side of the obstruction 
shown in Fig. 16. CRB based error estimation is carried out 
next which shows very wide dilation area of 516 sq. units. The 
large dilation error is caused by very weak received signal 
strength at the ceiling sensor nodes. But the direction of the 
gas distribution is found from this CRB estimation. In next 
step, a planar sensor node is deployed in the left side area of 
the obstacle and the initial belief area is reduced to determine 
the updated belief. Directional node mobility and source risk 
assessment can be carried next as explained in IV C and IV D.     

VII. CONCLUSION 
This work explains a novel remote and proximity probe 

approach for 2D and 3D ad-hoc WSN based hazardous gas 

source detection and threat estimation technique. The 
mathematical model explained here enhances speed of gas 
effusion source localization for multiple sources. Simulation 
results show that probability of success for precise source 
detection increases with proper selection of sensor nodes. It 
also produces a more meaningful measurement reading which 
adds to the localization accuracy. The remote gas 
concentration estimation at source and its risk assessments are 
carried out without much complexity. Propagation constant of 
respective gases in the media is deduced experimentally.  

Future works include CO2 source detection and tracking as 
CO2 is another dominant landfill gas. Higher CO2 
concentration in a closed environment also has severe adverse 
effects on human health. Apart from that, VOC threat analysis 
of the LFG source can be also carried out. Remote source 
localization and gas concentration determination at source in a 
constrained 3D environment in presence of environmental 
nonlinearities like wind flow, temperature, and humidity is 
also another work to be carried out in future.  
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