International Journal of Circuits, Systems and Signal Processing

   
E-ISSN: 1998-4464
Volume 15, 2021

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of NAUN Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.

Main Page

Submit a paper | Submission terms | Paper format

 


Volume 15, 2021


Title of the Paper: The Method of Communication System Fault Diagnosis Based on Deep Belief Net

 

Authors: Juan Li, Bin Chen

Pages: 978-985 

DOI: 10.46300/9106.2021.15.105     XML

Certificate

Abstract: To meet the need of fault diagnosis for military communication system, an effective method based on deep belief (DBN) net is proposed. During the fault diagnosis, the bottom layer of DBN model is used to receive the input fault signals to extract the fault features and the fault classification results will be outputted after softmax classified. Accordingly, algorithms for DBN model and training and RBM parameter learning have been designed. To reduce the running time, parallel solutions based on MapReduce framework have been provided. In order to test and verify the effect of DBN fault diagnosis, the communication experiment system is built in the laboratory which the output signals of the transmitter and the receiver are measured and collected as the original data for further learning and training. Compared with the traditional fault diagnosis methods, it can be found that DBN method has high accuracy in fault diagnosis and the process is simple and friendly. It is impossible to realize real-time diagnosis and online diagnosis for the communication system. The research can be applicated to the health management of communication equipment, and it will provide advanced technical support and software program for the health of communication equipment