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Multiresolution surface representation using
combinatorial maps

M-H MOUSA M-K HUSSEIN

Abstract—Multiresolution surfaces are traditionally represented bthe obtained surface quality regardless of the structure of the un-
data structures based on quadtrees which are derived directly from therlying data. This leads to the use of non optimal structures for
subdivision operations. However, these data structures suffer fronr@presenting and manipulating 3D objects. The commonly used
number of drawbacks. First of all, they are restricted to triangular adata structure is the quadtrees which is naturally generated from
quadrilateral grids and must be developed specifically for each metie faces hierarchy generated by the subdivision algoritims[9].
type separately. Moreover, the time complexity of adjacency query is On the other hand, topological operations, which generates
not optimal. In this paper, we present a data structure for representingultiresolution surfaces, do not work uniformly on all types
multiresolution meshes. This data structure extends.ttienensional  of meshes; some are applied to triangular meshes and others
generalized maps. Given a 3D mesh, the proposed data structuregspolygonal meshes. The data structures based on quadtrees
defined as a hierarchy of nestedimensional maps, i.e. each level of gre limited to triangular and quadrilateral meshes and should be
details of the mesh is defined as a sepagatiimensional map. This implemented separately for each type. Moreover, the adaptive
inherits the generality and effectiveness of the originahap data subdivision generates holes in the mesh topology. In addition,
structure. Additionally, we define, based on the multiresolution 2-maphe adjacency queries are executedifiog(n)). Some solu-
the dual multiresolution representation which allows the topologicalons have been proposed to overcome the last issue[[16],[13].
description of the traditional mesh operations. The multiresolutioowever, they have other limitations, such as the lack of adap-
2-map enables the representation of arbitrary meshes and support e representation.
adaptivity and efficiency of the adjacency operators. We apply the Tq this end and many others, the main objective of this work
proposed framework to the representation of progressive meshes. s tg define a unified and effective representation of multireso-

lution meshes while maintaining the topological consistency of

Keywords-Hypermaps, 2-Maps, Progressive meshes. the mesh in the adaptive case. In addition, we improve the ef-
fectiveness of the adjacency queries to be executed in a constant
. INTRODUCTION time. The combinatorial maps[8].[18].[17] are the start point for

such representation. We propose a multiresolution 2-map as a
M ULTIRESOLUTION representations of geometric objectshierarchy of nested combinatorial 2-maps. Each resolution level
have gained much of interest in many computer graphigg described by a separate combinatorial 2-map. Indeed, the lat-
areas, especially geometric modeling. The multiresolution reger can represent arbitrary meshes, perform adjacency operators
resentation has various applications such as mesh compressignsonstant time. Therefore, The proposed model inherits the
progressive transmission, adaptive visualization and multiresgenera"ty and the effectiveness of the composing maps.
lution mesh editing. In boundary representations, a surface isthig paper is organized as follows. Sectlo II. gives an

described by a polygonal mesh, i.e. a finite subdivision cOmys eriew of the basic definition of the combinatorial 2-maps
po;ed of vertices, nges and faces.. In multlre_solutlon represekvell as hypermaps. Sectlon]|l. introduces how to extend the
tations, the surface is no longer defined by a single mesh, but By 1\hinatorial 2-maps to multiresolution 2-maps and their mul-
a sequence of nested meshes along with a number of rules forsq)ion duals. An application of the proposed data structure
passing from one to another of these meshes. The sequencegf,e progressive meshes is given in Sedfioh IV.. A simple C++
meshes represents the different levels of details of the given oz <5 interfaces as well as an analysis of the time and storage

ject. The multiresolution representation is called adaptive if th@omplexity of the proposed data structure is given in Section
highest resolution is not the same over all areas of the surfqgg Finally, we conclude in SectidiVl..

of the object.

Many techniques have been proposed for constructing mul-
tiresolution surface$ [20].[19], such as inserting sharp edges|[3], .
applying boolean surface operatians[2] or cutting-and-pasting

surface elements[4]. In general, these techniques arefocusedl%ré 2-maps, the combinatorial maps of dimension 2, and
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A. Hypermaps < 1 T 2 <1
The hypermaps provide a general framework to define regular 7 6 3
topological models. They can describe the topology of differ- <7 £l ]
ent types of geometric objects such as volumes and surfaces; [ N
either open, closed, oriented or non-oriented. This topology 8 3 4
is described by subdividing the objects into elements of differ- 1o Y .

ent dimensions (e.g. vertices, edges, faces, etc.) sharing inci-

dence relations. We focus here on the representation of surface

meshes. Fig. 2: An example of a 2-map consists of four vertices, five
A hypermap consists of a set of darts, connected together byges and three faces.

relationships. Formally, given a finite set of dastand permu-

tationsag anda; over the ses, a hypermap is the triple:

10 -

,.
!
[Ye)

Figure[2 presents an example of a 2-map. This map consists
H = (8, a0, 1) (1) of four vertices:{2,3}, {4,5,10}, {8,9}, {1,7,6}; five edges:
{1,2}, {8,4}, {9, 10}, {7, 8}, {5,6}; and three face<1, 3,5},
The multiresolution elements are not explicitly representef, 10,8}, {7,9,4,2}.
in the model, but are implicitly defined by subsetsfofThese
subsets are achieved through the orbit notation. Given a perm@: The dual 2-map
tationo over 3, the orbit ofx € 3 is a subset off denoted by

(o) (x) and is defined as: Given a 2-map\l = (f3, ag, a1), the tripleM" = (5,1, ¢2),

wherep; = ap o a; andyp, = «y, is also a 2-map and is called
(o) () = {z,0(), Jz(x)7 N ’Uk(x)}’ ) theldual map of\/. The relationp; is a permutation ang- is
an involution.

wherek is the minimum positive integer such thaft*!(z) =
z. Itis clear that all the elements ¢f) (z) have the same orbit.
Practically, starting by a dast € 3, the orbit(c) (x) is the set
of reachable darts from by a successive application of

Such a model describes only the topology of the subdivision
of the objects. To complete the object representation, we should
therefore define a model embedding the geometric data to edeig. 3: From left to right: a dual 2-map dart, permutation
cell of the mesh. The 0-embedding is the simplest geometrimd involutiony, respectively.
embedding, i.e. only the cells of dimension 0 are inserted. For
example, we associate a 3D point to each vertex of the meshFigure[3 shows the graphical representation of the dual 2-
The embedding of other cells is obtained by linear interpolanap. A dart is represented by an arrow. A sequence of darts
tion of the embedded vertices. Another Sophisticated embeﬁhked by the Ol’bit<<p1> composes an oriented face. The relation
ding models can be used, e.g. associating curves to edges ads used to link two oriented faces along the shared edge. The
surface patches to faces. vertices are defined by the orlbit; o ©,), the edges by the orbit
{p9), and the faces by the orhjp). Figure[4 shows the dual

A 4
N

B. 2-Maps

The 2-map is a hypermap with the following conditian, is an
involution, i.e. a permutation such thét € 5: ap(ag(z)) =

x andag(xz) # z. This model enables the representation of
the meshes of closed orientable 2-manifolds, i.e. meshes that
enclosing volumes. Figuid 1 shows a graphical representation

{2

=
Y Fig. 4: The dual 2-map of the same example given in Filre 2.

of the 2-map presented in Figurk 2.
Fig. 1: From left to right: a graphical representation of atdar
involution oy and the permutation; respectively. I1l. THE MULTIRESOLUTION 2-MAP

of a dart and its relations according to the permutatiopnand We present here the multiresolution hypermaps as an extension
aq. The vertices are defined by the orbit; ), the edges by the of the traditional hypermaps presented earlier in Sedtidn I1..
orbit (o) and the faces the orbjtvy o o). Next, we will present the multiresolution 2-maps and their dual.
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A. The multiresolution hypermaps

Y
The multiresolution hypermaps provide a framework allowing
to define the topology of multiresolution objects. Each resolu-
tion level is presented as a hypermap. This forms a set of nested <
hypermaps and a set of darts describing the given level. €

Formally, the multiresolution hypermap consists of a set of
darts and the relationships between these darts. The darts of
B are indexed by the resolution level where they were firstly ;.—, Vo r }
introduced. The darts describing the object at its coarsest level =d -
belong to the seB’. Some darts are added &3, in order to

Yy

describe the object in higher level (finer level), and form the set @
B'. To describe each resolution level, we add some darts to th-
set of darts describing the coarser level. f n
Therefore, in a hypermap with a maximum resolution level
k, the set of dart® is the sequence of subse{'u@i}ie[&k] such 2
that : -
B cpcpic..cp=B. 3 ¥
The subseB’ is a subset 0B and contains the darts introduced N
at a level lower than or equal fo The subsef’ — 3°~! contains :

the darts introduced at the level The cardinality ofg is the f_
number of darts of the map describing the mesh at the fines
level. (b) (c)

The topological relations between the darts are parameterized
by the resolution level. For a permutatiorand a dart: € 3¢,  Fig. 5: A mutiresolution 2-map. (a) A 2-map consists of 4 ver-
o'(z) is the dart linked tac by the relations at the resolution tices, 4 edges and 2 faces at lexe(b) and (c) possible exam-
leveli. Therefore, the multiresolution hypermap is the triplet: ples of the: + 1 level. The red darts represent the introduced

darts in the two cases.

M = (B, {agYicon> {4 Yieto.h) (4)
such that for alli € [0, k], the tripletM? = (8%, af,al) isa vertices at levet and the new vertex at levé+ 1. For some
hypermap describing the resolution level darts of 3%, the linking relations are different from the linking
relations at level + 1. We have, here, 5 vertices, 7 edges and 4
faces.

B. The multiresolution 2-map

A multiresolution 2-map is a multiresolution hypermap with the
following condition: o is an involution without fixed point,
i.e., a permutation such thet € [0,%], Vo € 5%, af(af(z)) = Given a  multiresolution  2-map M =
r andag(z) # x. This is the same condition that defines the(3, {ag}ie[%], {Ofi}ie[o,k]), the dual of M is defined by
2-map. The multiresolution 2-map allows to represent the topathe triplet:

ogy of the closed oriented 2-manifolds. Each resolution Igvel

. The dual multiresolution 2-map

i € [0, k], isrepresented by a 2-mag’ = (3%, o), ). The set M' = (8,{¢% Yicio.rp {5 }icio.n) (5)
of yertices, edges and faces at a leivid defined by the orbits
(a1), {ap) and(ay o af) respectively. wherep! = ol o o andyl, = of. M’ is also a multiresolution

Figure[5(d) presents an example of a multiresolution 2-mapmap sincey! are permutations ang, are involutions without
at a leveli. This 2-map consists of 4 vertices, 4 edges and fed point. Each resolution leveli € [0, k], is represented by
faces. Figures 5(b) afd 5(c) show possible examples afthe the dual 2-map:
level. The red darts, in the two cases, are the darts introduced M= (8,48, 45) - (6)
between the level and the level + 1. These darts belongs to
the subseBi*! — 3%, According to the insertion of the darts, theThe vertices, edges and faces are defined by the orhitso
relations linking the darts at levelre not necessarily different %), (p5) and{p?) respectively.
from the linking relations at leveh-1. In Figurg 5(b), the edges  Figure[® shows a two successive levels of a multiresolution
of the map at level are cut. For the darts g, the relations 2-map dual. Figurds 6(d), 6{b) and 6(c) are the dual of the mul-
aé“ are not equal to the relations). However, the degree of tiresolution 2-maps presented in Figures H(a),]5(b)[and 5(c) re-
the vertices are not changed, so for the dart§'dhe relations spectively. Some darts, red arrows, are inserted between:level
ai“ are equal to the relationsi. The 2-map at level + 1 and leveli + 1. For certain darts of?, the linking relations at
consists of 8 vertices, 8 edges and 2 faces. In Figuré 5(c), Eveli+ 1 are different from the corresponding relations at level
edges at level is cut and new edges are inserted between sonie
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(b) © Fig. 8: The multiresolution dual map corresponding to the edge

. . ] contraction operator. (a) The dual 2-map before the application
Fig. 6: The multiresolution 2-map duals that correspond to thgf the operator. (b) and (c) are the newly created dual 2-maps
multiresolution 2-maps presented in Figlre 5. after the application of the operator.

IV. APPLICATION TO PROGRESSIVE MESHES

We will show here how to apply the presented multiresolution
model to the construction of multiresolution meshes using thaalfedges belonging to the sk§. The edge contraction deletes
simplification technique based on the operators edge contrd@o triangular faces from the mesh. The deleted halfedges,
tion and its inverse, vertex split, see Figlte 7. The mesh simplithich correspond to the deleted faces, are removed from the
fication based on these operators have been popularly used sifeblo and added to the set of halfedges at the next finer level,
the introduction of the progressive meshes [10] which allow thé:1. The adjacent triangles are compacted together at layel
access of different level of details of the mesh. These progrei¢-form the mesh at the new simplified levl.
sive meshes are used in many applications such as storage and
progressive transmission of huge triangular meshes. These apAny simplification process consists only of a single type of a
plications use the topological information of the mesh to accesequence of these operations. This creates as many levels as the
the neighborhood of the vertices. A model providing an opaumber of applied contractions. However, any set of indepen-
timal adjacency queries at all levels can provide a significamfent topological contractions may also be performed at the same
efficiency gain in the performance of these applications. time while generating a coarser level containing about 20% of
vertices.

Figure[® shows an example of a prgressive mesh handled us-
ing the proposed multiresolution 2-map. Each resolution level
corresponds to a union of a set of nested 2-maps. This set of 2-
maps is constructed using the described edge contraction oper-
ators. In this example, the successive simplifications is applied
while pushing the removed triangles as far as possible in the hi-

(@) (b) erarchy. This results in a topological multiresolution structure
having exactly the same properties as those of the subdivision
Fig. 7: A graphical representation of the edge contraction arglirfaces. The different meshes corresponding to the intermedi-
vertex split operators. (a)—(b) is the application of the edgate levels can be navigated simply and more effective than of the
contraction operator and (b)—(a) is the application of the vertesonventional half-edges structures. The algorithms, which use
split operator. the adjacency relations to calculate the geometric properties of
the mesh, can be performed in an optimal time. In fact, the nav-

Figure[8 illustrates the multiresolution dual 2-map structur@gation along the geometric information can be performed with-
of the application of the edge contraction operation on a triarut having to rebuild the intermediate topology of the meshes,
gular mesh. The mesh, presented in Fidure|8(a), depicts thiace they are already available in the levels of the multiresolu-
dual 2-map of the mesh at levél,. This dual 2-map contains tion dual 2-map structure.

I
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bedding is stored in an array. Similar to the relatignthe darts
store only a limited number of the necessary pointers to the 3D
points. Leta is the insertion level of of the dast andk is the
maximum resolution level, the dartstores onlyk — a pointers

to 3D points. Hence, the reference of the embedding of the ver-
tex of the dartz in leveli is given by the pointer gt —a)*" cell

in the array. LisfIL give an example of a C++ implementation of

Algorithm 1

class Ml tiresol uti onMap{
vector < list < Dart > > map;

h

class Dart {
vector <Dart %> aO;
Dart * al;
vector <Poi nt 3D x> enD;

}

Fig. 9: A prgressive mesh example of the Horse model. Ea¢he multiresolution 2-map and the dart.
resolution level corresponds to a union of a set of nested 2-As we mentioned above, the cells of the subdivision are rep-
maps. resented implicitly at each resolution leveby the subsets®
and constructed using the orbits. The navigation of an orbit can
be simply implemented by iterators. The code for a face itera-
V. IMPLEMENTATION AND DISCUSSION tor can be as shown in Listilg 2. This iterator is constructed by

In this section, we present an example of a data structure thaligorithm 2

implements the model of multiresolution 2-map that we have Facel

described later. We focus here on the primal representatiod, 2SS Facel terator{
Lo . Dart «first, =xcurrent;

but the dual version is similarly defined. We then compare the int level -

time and storage_ compIeX|t|es_of this data structure wnh those Facelterat or (Dart b, int n){

of quad-trees which is conventionally used for representing the ¢ ;¢

adaptive multiresolution subdivision surfaces. | evel

current = b;
n;

voi d next (){

A. Data structure current =

The multiresolution 2-map consists of a set of darts. The sgb'fent->al pha0(l evel)->al phal();
of dartsf3 is defined as a sequen¢g’};c (o ) such thats® c

Bt c --- c BF = B, see Sectiof A.. Therefore, the darts can
be stored in an array of lists. TH& cell of the array contains
the set of dartg /31, i.e. the darts inserted at the resolutio
level i. Each dart contains pointers to other darts realizing the

topological relations. The "nk_"l is represented directly by a two parameters, a given dart and the desired resolution Igvel
po!nter to another dart. The I'nk%_ are stored as an array O,f is obviously necessary that the given dart has already been in-
pomter.s. Any dart has no topolog!cal relation at' the reSOIUtIOQerted into the map at a lower level. Any two iterators, that are
levels inferior to the proper insertion level of this dart. leet at the same level and initialized by two darts belonging to the

: . . 71 .
'i the |n_sert|on Ievlel .Of Olf th? dhantd(x UG p*/6°"") andk is same orbit, are considered to be equal. The iterators of the other
the maximum resolution level, the dartioes not store N0 More q¢ of the subdivision are implemented in the same way.

thgnkh—a r?Ia_tlonstfo. I_—|enc§, tI:]e refgrence of tge d?}”"”"?‘?‘ to Any cell iterator can be used in an object corresponding to
< Dy the relationy, Is given by the pointer stored at the positionyis ce|| and have methods that act on that cell. Such an object

i —ainthe array. can be implemented as shown in Listidg 3. This type of object is

The geometric information is attached directly in the dart§.reated on-the-fly when processing an operation on that object.
We use here the 0-embedding, i.e. each dart contains a pointer

to a 3D point. All darts of the same vertex are linked to the

same 3D point. The embedding of the 3D point is parameteé—
ized by the resolution level since the vertex does not receive any
embedding until their insertion level and this embedding can Ha the framework of the subdivision surfaces, the adjacency
changed from this resolution level to another. Therefore the erguery between the vertices are one of the most common op-

bool end() {
return current == first;

Time complexity
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Algorithm 3 the link o at the given resolution level.
In quad-tree representations, neighborhood queries between
two faces, sharing a commun edge, are performed by navigat-

cl ass Face{
Facel terator f;

Face(Dart b, int n):f(b,n){ ing the tree to reach a common parent of the two faces. These
queries are executed i(log(n)), wheren is the depth of the
voi d Display(); tree, i.e. the maximum resolution level. Although in practice
Poi nt 3D Normal (); log(n) does not reach a very high value, it is not a constant time.
voi d Subdi vide(); Additionally, these operations are commonly used for updating
} the object during mesh editing process, this improvement is of

significant impact.

erations_. This operati_on is needed for the execution of bdath te Storage complexity
synthesis and analysis operators.

In multiresolution hypermaps, the adjacency queries are exi-this subsection, we compare the memory cost of the multires-
cuted in a constant time regardless of the considered resolutiolition 2-map and the multiresolution triangular quad-trees.
level. Indeed, the adjacent cells are retrieved directly by followSince no general formulation is given for the adaptive subdivi-
ing a certain number of pointers. The multiresolution 2-maps
inherits this property from the multiresolution hypermaps. For
example, at the resolution levglvisiting all the vertices neigh-
boring a vertex defined by a dartcan be performed as shown
in Listing[4. We simply trace the orbit of the vertex:ofising a

Algorithm 4

class Vertexlterator {
Dart «first, xcurrent;
int |evel;
Vertexlterator (Dart xb, int n) {
first current = b;

| evel f n- (a) Quadtree (b) Multiresolution 2-map
voi d next () { Fig. 10: Regular Catmul-Clark subdivision using (a) quadtree
current = current->al phal(); and (b) multiresolution 2-map.
bool end() { sion and that the regular subdivision is the worst case for mem-
return current == first: ory requirements, see Figurel 10, we perform this comparison in
} the regular case.
b Let |5| be the total number of darts a multiresolution 2-map.
|8| is equal to the number of necessary darts describing the ob-
class Vertex { ject at the maximum resolution level. L&§ be the number of

Vertexlterator it;

) . darts at the resolution level 0 arkdbe the maximum resolu-
Vertex (Dart b, int n): it(b,n) {

tion level. Using the primal subdivision schemes, the number

\};oi d Visit Neighboring Vertices(){ of darts is multiplied by 4 at each subdivision step, we get
while(lit.end()){ B =8 -4~. (7)
|/ processi ng the nei ghbor vertex using
/1 Vertex(it.current->alphaO(it,n), it.n) To calculate the total cost of the topological information, we
it.next(); need to compute the number of pointers attached to each dart.
} Regarding the relationy, we have to add the size of the array
} of pointers contained in each dart. The size of this array is a
} function of the insertion level of the dart. Note tt3qtl of darts

are inserted at the maximum resolution level, and they have ex-

vertex iterator. For each dart inside this orbit, we reachighne actly a single linkay. Moreover33/4 of the rest of the darts, i.e.
bor vertex by traversing the corresponding edge. This is doridg16, has two linksay. More formally, for the levef € [1, k],
by following the involutionag at the corresponding level. there ares - % darts that each attached array hatements. The

Similar procedures can be written, for example, to visit thelarts describing the level 0 ha¥et 1 elements in their arrays.
adjacent faces to a certain face at a given resolution igeet).  The total number of elements contained in the array of links
in order to calculate the angles between the normal of the givéor all darts is given by:
face and those of the neighbor faces). This is done be traversing i
the orbit representlng that face and for ea}ch dart in this orbit we Bo-(k+1)+B0-3- ZZ gh—i @)
reach a dart belonging to the corresponding neighbor face using =
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For the relatior, each dart has exactly a single link. In ~ We see that our data structure requires only about 3% more stor-
other terms, there at@| or 3, - 4* stored pointers. age space than that of quad-trees. Taking into account the cost
The geometric information is attached to the darts by an arraf storage of the 3D points, which is equal in both structures,

of pointers to 3D points. Since the embedding of these pointkis ratio is so weak.
may be modified at each level, this embedding is parameterizedUsing an interpolating subdivision scheme makes this ratio
by the resolution level. Therefore, the size of the array of thesm advantage point for the multiresolution 2-maps than for the

pointers has exactly the same size as thatyof guad-trees. Indeed, since the vertices are located on the surface
The total number of the pointers attached to the darts is thefdgeundary upon their insertion, the embedding information is no
fore equal to: longer needed to be parametrized by the resolution level. The
arrays of pointers to the 3D points contained in the darts are

k
Bo-4*+2- (50'(k+1)+50'3'zi-4ki

) ©) thus reduced to a single pointer. In this case, the ratio between
=1

the multiresolution 2-map and the quadtree%%s Our model
here requires about 6% less memory space.

The summation in Expressi@h 9 can be identified by the follow-

ing integer series)_, -, n - 2" = 7=z, Where|z| < 1. Re- VI. CONCLUSION

placingn by i andx by i, we get (neglecting the termis> k):
The multiresolution hypermaps defined in this paper provide

k , 1 a framework for the representation of multiresolution surface
S iabia g — (10) meshes. This framework is defined as an extension of the hyper-
i=1 1-3%) maps which is a general notion based on combinatorial maps.

. . S . . The multiresolution hypermap is used here to define the mul-
Expressiold is then simplified to (neglecting the minor terms}i'resolution 2-maps andytpheir dEaI representation. We have ap-

33 . plied these data structure here to the representation of the mul-
9 “Po -4 (11)  tiresolution subdivision surfaces. In this context, they provide
a number of advantages over the usually used data structures
The quadtrees store 5 pointers per node for the topological ifased on quadtrees. The multiresolution maps allow, within
formation: 4 pOinterS to the children and one to the parent nOd@}e same model, the representation of surfaces generated by a
The roots of the quadtrees store seven pointers: 4 to their chidrge number of subdivision schemes. The ability to represent
dren and 3 for the adjacency information between these r00%|ygona| meshes is an additional advantage in the adaptive
For the geometrical information, 3 pointers to 3D points argase, where the existence of different levels of resolution pro-
stored in each node. This makes a total of 10 pointers per rogiyces non-triangular or non-quadrilateral faces, which are not
and 8 pointers for each of the other nodes. fetbe the number  sypported by conventional structures and then create topolog-
of faces of the mesh at level 0 atcbe the maximum resolu- jcal holes. Adjacency queries are performed more efficiently,
tion level. Since the number of faces is multiplied by 4 at eacthey are performed in constant time regardless of the resolution

subdivision step, the total number of stored pointers is: level. In addition, there no requirements to have a great memory
. space.
10- fo+8- fo Z 4 (12) We have shown in this paper that the multiresolution 2-maps

can be applied to the representation of multiresolution surfaces
generated by topological operators such as edge contraction and
The summation term in Expressibnl 12 can be identified by theertex splitting [11]. This allows to answer adjacency gueries
following formula"" , z* = 2" 1 Therefore, we get at any resolution level without the need to reconstruct the mesh

i=1

,._1 . .
! to the required resolution level.
k .
. 4k+1 -1
v -
24 - 3 L. (13) REFERENCES
i=1
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