
Multiresolution surface representation using
combinatorial maps

M-H MOUSA M-K HUSSEIN

Abstract–Multiresolution surfaces are traditionally represented by
data structures based on quadtrees which are derived directly from the
subdivision operations. However, these data structures suffer from a
number of drawbacks. First of all, they are restricted to triangular or
quadrilateral grids and must be developed specifically for each mesh
type separately. Moreover, the time complexity of adjacency query is
not optimal. In this paper, we present a data structure for representing
multiresolution meshes. This data structure extends then dimensional
generalized maps. Given a 3D mesh, the proposed data structure is
defined as a hierarchy of nested2 dimensional maps, i.e. each level of
details of the mesh is defined as a separate2 dimensional map. This
inherits the generality and effectiveness of the originaln map data
structure. Additionally, we define, based on the multiresolution 2-map,
the dual multiresolution representation which allows the topological
description of the traditional mesh operations. The multiresolution
2-map enables the representation of arbitrary meshes and support the
adaptivity and efficiency of the adjacency operators. We apply the
proposed framework to the representation of progressive meshes.

Keywords–Hypermaps, 2-Maps, Progressive meshes.

I. INTRODUCTION

MULTIRESOLUTION representations of geometric objects
have gained much of interest in many computer graphics

areas, especially geometric modeling. The multiresolution rep-
resentation has various applications such as mesh compression,
progressive transmission, adaptive visualization and multireso-
lution mesh editing. In boundary representations, a surface is
described by a polygonal mesh, i.e. a finite subdivision com-
posed of vertices, edges and faces. In multiresolution represen-
tations, the surface is no longer defined by a single mesh, but by
a sequence of nested meshes along with a number of rules for
passing from one to another of these meshes. The sequence of
meshes represents the different levels of details of the given ob-
ject. The multiresolution representation is called adaptive if the
highest resolution is not the same over all areas of the surface
of the object.

Many techniques have been proposed for constructing mul-
tiresolution surfaces [20],[19], such as inserting sharp edges[3],
applying boolean surface operations[2] or cutting-and-pasting
surface elements[4]. In general, these techniques are focused on

Manuscript received January 25, 2012.
M-H MOUSA is with the Faculty of Computers & Informatics, Is-

mailia, 41522 Egypt. (phone: 201110673699; e-mail: mohamedmousa@
ci.suez.edu.eg).

M-K HUSSEIN is with the Faculty of Computers & Informatics, Ismailia,
41522 Egypt. (e-mail: mkhamiss@ ci.suez.edu.eg).

the obtained surface quality regardless of the structure of the un-
derlying data. This leads to the use of non optimal structures for
representing and manipulating 3D objects. The commonly used
data structure is the quadtrees which is naturally generated from
the faces hierarchy generated by the subdivision algorithms[9].

On the other hand, topological operations, which generates
multiresolution surfaces, do not work uniformly on all types
of meshes; some are applied to triangular meshes and others
to polygonal meshes. The data structures based on quadtrees
are limited to triangular and quadrilateral meshes and should be
implemented separately for each type. Moreover, the adaptive
subdivision generates holes in the mesh topology. In addition,
the adjacency queries are executed inO(log(n)). Some solu-
tions have been proposed to overcome the last issue [16],[13].
However, they have other limitations, such as the lack of adap-
tive representation.

To this end and many others, the main objective of this work
is to define a unified and effective representation of multireso-
lution meshes while maintaining the topological consistency of
the mesh in the adaptive case. In addition, we improve the ef-
fectiveness of the adjacency queries to be executed in a constant
time. The combinatorial maps[8],[18],[17] are the start point for
such representation. We propose a multiresolution 2-map as a
hierarchy of nested combinatorial 2-maps. Each resolution level
is described by a separate combinatorial 2-map. Indeed, the lat-
ter can represent arbitrary meshes, perform adjacency operators
in constant time. Therefore, The proposed model inherits the
generality and the effectiveness of the composing maps.

This paper is organized as follows. Section II. gives an
overview of the basic definition of the combinatorial 2-maps
as well as hypermaps. Section III. introduces how to extend the
combinatorial 2-maps to multiresolution 2-maps and their mul-
tiresolution duals. An application of the proposed data structure
to the progressive meshes is given in Section IV.. A simple C++
class interfaces as well as an analysis of the time and storage
complexity of the proposed data structure is given in Section
V.. Finally, we conclude in Section VI..

II. 2-MAPS

The 2-maps, the combinatorial maps of dimension 2, and
their extensions[14],[15] are the base of many research
studies[1],[7],[5],[12]. These models are defined in a more gen-
eral form based on the concept of hypermaps[6]. This section
presents a brief description for Hypermaps, 2-Maps and The
dual 2-map.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

103

A. Hypermaps

The hypermaps provide a general framework to define regular
topological models. They can describe the topology of differ-
ent types of geometric objects such as volumes and surfaces;
either open, closed, oriented or non-oriented. This topology
is described by subdividing the objects into elements of differ-
ent dimensions (e.g. vertices, edges, faces, etc.) sharing inci-
dence relations. We focus here on the representation of surface
meshes.

A hypermap consists of a set of darts, connected together by
relationships. Formally, given a finite set of dartsβ and permu-
tationsα0 andα1 over the setβ, a hypermap is the triple:

H = (β, α0, α1) (1)

The multiresolution elements are not explicitly represented
in the model, but are implicitly defined by subsets ofβ. These
subsets are achieved through the orbit notation. Given a permu-
tationσ overβ, the orbit ofx ∈ β is a subset ofβ denoted by
〈σ〉 (x) and is defined as:

〈σ〉 (x) = {x, σ(x), σ2(x), . . . , σk(x)}, (2)

wherek is the minimum positive integer such thatσk+1(x) =
x. It is clear that all the elements of〈σ〉 (x) have the same orbit.
Practically, starting by a dartx ∈ β, the orbit〈σ〉 (x) is the set
of reachable darts fromx by a successive application ofσ.

Such a model describes only the topology of the subdivision
of the objects. To complete the object representation, we should
therefore define a model embedding the geometric data to each
cell of the mesh. The 0-embedding is the simplest geometric
embedding, i.e. only the cells of dimension 0 are inserted. For
example, we associate a 3D point to each vertex of the mesh.
The embedding of other cells is obtained by linear interpola-
tion of the embedded vertices. Another sophisticated embed-
ding models can be used, e.g. associating curves to edges and
surface patches to faces.

B. 2-Maps

The 2-map is a hypermap with the following condition,α0 is an
involution, i.e. a permutation such that∀x ∈ β: α0(α0(x)) =
x andα0(x) 6= x. This model enables the representation of
the meshes of closed orientable 2-manifolds, i.e. meshes that
enclosing volumes. Figure 1 shows a graphical representation

Fig. 1: From left to right: a graphical representation of a dart,
involutionα0 and the permutationα1 respectively.

of a dart and its relations according to the permutationsα0 and
α1. The vertices are defined by the orbit〈α1〉, the edges by the
orbit 〈α0〉 and the faces the orbit〈α0 ◦ α1〉.

Fig. 2: An example of a 2-map consists of four vertices, five
edges and three faces.

Figure 2 presents an example of a 2-map. This map consists
of four vertices:{2, 3}, {4, 5, 10}, {8, 9}, {1, 7, 6}; five edges:
{1, 2}, {3, 4}, {9, 10}, {7, 8}, {5, 6}; and three faces:{1, 3, 5},
{6, 10, 8}, {7, 9, 4, 2}.

C. The dual 2-map

Given a 2-mapM = (β, α0, α1), the tripleM ′ = (β, ϕ1, ϕ2),
whereϕ1 = α0 ◦α1 andϕ2 = α0, is also a 2-map and is called
the dual map ofM . The relationϕ1 is a permutation andϕ2 is
an involution.

Fig. 3: From left to right: a dual 2-map dart, permutationϕ1

and involutionϕ2 respectively.

Figure 3 shows the graphical representation of the dual 2-
map. A dart is represented by an arrow. A sequence of darts
linked by the orbit〈ϕ1〉 composes an oriented face. The relation
ϕ1 is used to link two oriented faces along the shared edge. The
vertices are defined by the orbit〈ϕ1 ◦ ϕ2〉, the edges by the orbit
〈ϕ2〉, and the faces by the orbit〈ϕ1〉. Figure 4 shows the dual

Fig. 4: The dual 2-map of the same example given in Figure 2.

of the 2-map presented in Figure 2.

III. THE MULTIRESOLUTION 2-MAP

We present here the multiresolution hypermaps as an extension
of the traditional hypermaps presented earlier in Section II..
Next, we will present the multiresolution 2-maps and their dual.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

104

A. The multiresolution hypermaps

The multiresolution hypermaps provide a framework allowing
to define the topology of multiresolution objects. Each resolu-
tion level is presented as a hypermap. This forms a set of nested
hypermaps and a set of darts describing the given level.

Formally, the multiresolution hypermap consists of a set of
dartsβ and the relationships between these darts. The darts of
β are indexed by the resolution level where they were firstly
introduced. The darts describing the object at its coarsest level
belong to the setβ0. Some darts are added toβ0, in order to
describe the object in higher level (finer level), and form the set
β1. To describe each resolution level, we add some darts to the
set of darts describing the coarser level.

Therefore, in a hypermap with a maximum resolution level
k, the set of dartsβ is the sequence of subsets{βi}i∈[0,k] such
that :

β0 ⊂ β1 ⊂ β2 ⊂ · · · ⊂ βk = β. (3)

The subsetβi is a subset ofβ and contains the darts introduced
at a level lower than or equal toi. The subsetβi−βi−1 contains
the darts introduced at the leveli. The cardinality ofβ is the
number of darts of the map describing the mesh at the finest
level.

The topological relations between the darts are parameterized
by the resolution level. For a permutationσ and a dartx ∈ βi,
σi(x) is the dart linked tox by the relationσ at the resolution
level i. Therefore, the multiresolution hypermap is the triplet:

M =
(

β, {αi
0}i∈[0,k], {α

i
1}i∈[0,k]

)

(4)

such that for alli ∈ [0, k], the tripletM i = (βi, αi
0, α

i
1) is a

hypermap describing the resolution leveli.

B. The multiresolution 2-map

A multiresolution 2-map is a multiresolution hypermap with the
following condition: αi

0 is an involution without fixed point,
i.e., a permutation such that∀i ∈ [0, k], ∀x ∈ βi, αi

0(α
i
0(x)) =

x andαi
0(x) 6= x. This is the same condition that defines the

2-map. The multiresolution 2-map allows to represent the topol-
ogy of the closed oriented 2-manifolds. Each resolution leveli,
i ∈ [0, k], is represented by a 2-mapM i = (βi, αi

0, α
i
1). The set

of vertices, edges and faces at a leveli is defined by the orbits
〈αi

1〉, 〈α
i
0〉 and〈αi

0 ◦ α
i
1〉 respectively.

Figure 5(a) presents an example of a multiresolution 2-map
at a leveli. This 2-map consists of 4 vertices, 4 edges and 2
faces. Figures 5(b) and 5(c) show possible examples of thei+1
level. The red darts, in the two cases, are the darts introduced
between the leveli and the leveli + 1. These darts belongs to
the subsetβi+1−βi. According to the insertion of the darts, the
relations linking the darts at leveli are not necessarily different
from the linking relations at leveli+1. In Figure 5(b), the edges
of the map at leveli are cut. For the darts ofβi, the relations
αi+1
0 are not equal to the relationsαi

0. However, the degree of
the vertices are not changed, so for the darts ofβi the relations
αi+1
1 are equal to the relationsαi

1. The 2-map at leveli + 1
consists of 8 vertices, 8 edges and 2 faces. In Figure 5(c), an
edges at leveli is cut and new edges are inserted between some

(a)

(b) (c)

Fig. 5: A mutiresolution 2-map. (a) A 2-map consists of 4 ver-
tices, 4 edges and 2 faces at leveli. (b) and (c) possible exam-
ples of thei + 1 level. The red darts represent the introduced
darts in the two cases.

vertices at leveli and the new vertex at leveli + 1. For some
darts ofβi, the linking relations are different from the linking
relations at leveli+ 1. We have, here, 5 vertices, 7 edges and 4
faces.

C. The dual multiresolution 2-map

Given a multiresolution 2-map M =
(

β, {αi
0}i∈[0,k], {α

i
1}i∈[0,k]

)

, the dual of M is defined by
the triplet:

M ′ =
(

β, {ϕi
1}i∈[0,k], {ϕ

i
2}i∈[0,k]

)

, (5)

whereϕi
1 = αi

0 ◦α
i
1 andϕi

2 = αi
0. M ′ is also a multiresolution

2-map sinceϕi
1 are permutations andϕ2 are involutions without

fixed point. Each resolution leveli, i ∈ [0, k], is represented by
the dual 2-map:

M i =
(

β, ϕi
1, ϕ

i
2

)

. (6)

The vertices, edges and faces are defined by the orbits:〈ϕi
1 ◦

ϕi
2〉, 〈ϕ

i
2〉 and〈ϕi

1〉 respectively.
Figure 6 shows a two successive levels of a multiresolution

2-map dual. Figures 6(a), 6(b) and 6(c) are the dual of the mul-
tiresolution 2-maps presented in Figures 5(a), 5(b) and 5(c) re-
spectively. Some darts, red arrows, are inserted between leveli
and leveli + 1. For certain darts ofβi, the linking relations at
level i+1 are different from the corresponding relations at level
i.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

105

(a)

(b) (c)

Fig. 6: The multiresolution 2-map duals that correspond to the
multiresolution 2-maps presented in Figure 5.

IV. APPLICATION TO PROGRESSIVE MESHES

We will show here how to apply the presented multiresolution
model to the construction of multiresolution meshes using the
simplification technique based on the operators edge contrac-
tion and its inverse, vertex split, see Figure 7. The mesh simpli-
fication based on these operators have been popularly used since
the introduction of the progressive meshes [10] which allow the
access of different level of details of the mesh. These progres-
sive meshes are used in many applications such as storage and
progressive transmission of huge triangular meshes. These ap-
plications use the topological information of the mesh to access
the neighborhood of the vertices. A model providing an op-
timal adjacency queries at all levels can provide a significant
efficiency gain in the performance of these applications.

(a) (b)

Fig. 7: A graphical representation of the edge contraction and
vertex split operators. (a)→(b) is the application of the edge
contraction operator and (b)→(a) is the application of the vertex
split operator.

Figure 8 illustrates the multiresolution dual 2-map structure
of the application of the edge contraction operation on a trian-
gular mesh. The mesh, presented in Figure 8(a), depicts the
dual 2-map of the mesh at levelL0. This dual 2-map contains

(a) L0

(b) NewL0 (c) L1

Fig. 8: The multiresolution dual map corresponding to the edge
contraction operator. (a) The dual 2-map before the application
of the operator. (b) and (c) are the newly created dual 2-maps
after the application of the operator.

halfedges belonging to the setL0. The edge contraction deletes
two triangular faces from the mesh. The deleted halfedges,
which correspond to the deleted faces, are removed from the
setL0 and added to the set of halfedges at the next finer level,
L1. The adjacent triangles are compacted together at levelL0

to form the mesh at the new simplified levelL0.

Any simplification process consists only of a single type of a
sequence of these operations. This creates as many levels as the
number of applied contractions. However, any set of indepen-
dent topological contractions may also be performed at the same
time while generating a coarser level containing about 20% of
vertices.

Figure 9 shows an example of a prgressive mesh handled us-
ing the proposed multiresolution 2-map. Each resolution level
corresponds to a union of a set of nested 2-maps. This set of 2-
maps is constructed using the described edge contraction oper-
ators. In this example, the successive simplifications is applied
while pushing the removed triangles as far as possible in the hi-
erarchy. This results in a topological multiresolution structure
having exactly the same properties as those of the subdivision
surfaces. The different meshes corresponding to the intermedi-
ate levels can be navigated simply and more effective than of the
conventional half-edges structures. The algorithms, which use
the adjacency relations to calculate the geometric properties of
the mesh, can be performed in an optimal time. In fact, the nav-
igation along the geometric information can be performed with-
out having to rebuild the intermediate topology of the meshes,
since they are already available in the levels of the multiresolu-
tion dual 2-map structure.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

106

Fig. 9: A prgressive mesh example of the Horse model. Each
resolution level corresponds to a union of a set of nested 2-
maps.

V. IMPLEMENTATION AND DISCUSSION

In this section, we present an example of a data structure that
implements the model of multiresolution 2-map that we have
described later. We focus here on the primal representation,
but the dual version is similarly defined. We then compare the
time and storage complexities of this data structure with those
of quad-trees which is conventionally used for representing the
adaptive multiresolution subdivision surfaces.

A. Data structure

The multiresolution 2-map consists of a set of darts. The set
of dartsβ is defined as a sequence{βi}i∈[0,k] such thatβ0 ⊂

β1 ⊂ · · · ⊂ βk = β, see Section A.. Therefore, the darts can
be stored in an array of lists. Theith cell of the array contains
the set of dartsβi/βi−1, i.e. the darts inserted at the resolution
level i. Each dart contains pointers to other darts realizing the
topological relations. The linkα1 is represented directly by a
pointer to another dart. The linksαi

0 are stored as an array of
pointers. Any dart has no topological relation at the resolution
levels inferior to the proper insertion level of this dart. Leta
is the insertion level of of the dartx (x ∈ βa/βa−1) andk is
the maximum resolution level, the dartx does not store no more
thank−a relationsα0. Hence, the reference of the dart linked to
x by the relationαi

0 is given by the pointer stored at the position
i− a in the array.

The geometric information is attached directly in the darts.
We use here the 0-embedding, i.e. each dart contains a pointer
to a 3D point. All darts of the same vertex are linked to the
same 3D point. The embedding of the 3D point is parameter-
ized by the resolution level since the vertex does not receive any
embedding until their insertion level and this embedding can be
changed from this resolution level to another. Therefore the em-

bedding is stored in an array. Similar to the relationα0, the darts
store only a limited number of the necessary pointers to the 3D
points. Leta is the insertion level of of the dartx andk is the
maximum resolution level, the dartx stores onlyk− a pointers
to 3D points. Hence, the reference of the embedding of the ver-
tex of the dartx in level i is given by the pointer at(i−a)th cell
in the array. List 1 give an example of a C++ implementation of

Algorithm 1

class MultiresolutionMap{
vector < list < Dart > > map;

};

class Dart{
vector <Dart ∗> a0;
Dart ∗ a1;
vector <Point3D ∗> em0;

};

the multiresolution 2-map and the dart.
As we mentioned above, the cells of the subdivision are rep-

resented implicitly at each resolution leveli by the subsetsβi

and constructed using the orbits. The navigation of an orbit can
be simply implemented by iterators. The code for a face itera-
tor can be as shown in Listing 2. This iterator is constructed by

Algorithm 2

class FaceIterator{
Dart ∗first, ∗current;
int level;
FaceIterator (Dart ∗b, int n){
first = current = b;
level = n;

}
void next(){
current =

current->alpha0(level)->alpha1();
}
bool end(){
return current == first;

}

}

two parameters, a given dart and the desired resolution level. It
is obviously necessary that the given dart has already been in-
serted into the map at a lower level. Any two iterators, that are
at the same level and initialized by two darts belonging to the
same orbit, are considered to be equal. The iterators of the other
cells of the subdivision are implemented in the same way.

Any cell iterator can be used in an object corresponding to
this cell and have methods that act on that cell. Such an object
can be implemented as shown in Listing 3. This type of object is
created on-the-fly when processing an operation on that object.

B. Time complexity

In the framework of the subdivision surfaces, the adjacency
query between the vertices are one of the most common op-

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

107

Algorithm 3

class Face{
FaceIterator f;
Face(Dart ∗b, int n):f(b,n){
}
void Display();
Point3D Normal();
void Subdivide();

}

erations. This operation is needed for the execution of both the
synthesis and analysis operators.

In multiresolution hypermaps, the adjacency queries are exe-
cuted in a constant time regardless of the considered resolution
level. Indeed, the adjacent cells are retrieved directly by follow-
ing a certain number of pointers. The multiresolution 2-maps
inherits this property from the multiresolution hypermaps. For
example, at the resolution leveli, visiting all the vertices neigh-
boring a vertex defined by a dartx can be performed as shown
in Listing 4. We simply trace the orbit of the vertex ofx using a

Algorithm 4
class VertexIterator {
Dart ∗first, ∗current;
int level;
VertexIterator (Dart ∗b, int n) {

first = current = b;
level = n;

}
void next(){

current = current->alpha1();
}
bool end(){

return current == first;
}

};

class Vertex {
VertexIterator it;
Vertex (Dart ∗b, int n): it(b,n) {
}
void Visit Neighboring Vertices(){

while(!it.end()){
//processing the neighbor vertex using
//Vertex(it.current->alpha0(it,n), it.n)
it.next();

}
}

}

vertex iterator. For each dart inside this orbit, we reach a neigh-
bor vertex by traversing the corresponding edge. This is done
by following the involutionα0 at the corresponding level.

Similar procedures can be written, for example, to visit the
adjacent faces to a certain face at a given resolution leveli (e.g.
in order to calculate the angles between the normal of the given
face and those of the neighbor faces). This is done be traversing
the orbit representing that face and for each dart in this orbit we
reach a dart belonging to the corresponding neighbor face using

the linkα0 at the given resolution level.
In quad-tree representations, neighborhood queries between

two faces, sharing a commun edge, are performed by navigat-
ing the tree to reach a common parent of the two faces. These
queries are executed inO(log(n)), wheren is the depth of the
tree, i.e. the maximum resolution level. Although in practice
log(n) does not reach a very high value, it is not a constant time.
Additionally, these operations are commonly used for updating
the object during mesh editing process, this improvement is of
significant impact.

C. Storage complexity

In this subsection, we compare the memory cost of the multires-
olution 2-map and the multiresolution triangular quad-trees.
Since no general formulation is given for the adaptive subdivi-

(a) Quadtree (b) Multiresolution 2-map

Fig. 10: Regular Catmul-Clark subdivision using (a) quadtree
and (b) multiresolution 2-map.

sion and that the regular subdivision is the worst case for mem-
ory requirements, see Figure 10, we perform this comparison in
the regular case.

Let |β| be the total number of darts a multiresolution 2-map.
|β| is equal to the number of necessary darts describing the ob-
ject at the maximum resolution level. Letβ0 be the number of
darts at the resolution level 0 andk be the maximum resolu-
tion level. Using the primal subdivision schemes, the number
of darts is multiplied by 4 at each subdivision step, we get

β = β0 · 4
k. (7)

To calculate the total cost of the topological information, we
need to compute the number of pointers attached to each dart.
Regarding the relationα0, we have to add the size of the array
of pointers contained in each dart. The size of this array is a
function of the insertion level of the dart. Note that3/4 of darts
are inserted at the maximum resolution level, and they have ex-
actly a single linkα0. Moreover,3/4 of the rest of the darts, i.e.
3/16, has two linksα0. More formally, for the leveli ∈ [1, k],
there areβ · 3

4i darts that each attached array hasi elements. The
darts describing the level 0 havek + 1 elements in their arrays.
The total number of elements contained in the array of linksα0

for all darts is given by:

β0 · (k + 1) + β0 · 3 ·
k
∑

i=1

i · 4k−i. (8)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

108

For the relationα1, each dart has exactly a single linkα1. In
other terms, there are|β| or β0 · 4

k stored pointers.
The geometric information is attached to the darts by an array

of pointers to 3D points. Since the embedding of these points
may be modified at each level, this embedding is parameterized
by the resolution level. Therefore, the size of the array of these
pointers has exactly the same size as that ofα0.

The total number of the pointers attached to the darts is there-
fore equal to:

β0 · 4
k + 2 ·

(

β0 · (k + 1) + β0 · 3 ·

k
∑

i=1

i · 4k−i

)

. (9)

The summation in Expression 9 can be identified by the follow-
ing integer series:

∑

n≥0 n · xn = x
(1−x)2 , where|x| < 1. Re-

placingn by i andx by 1
4 , we get (neglecting the termsi > k):

k
∑

i=1

i · 4k−i ≈ 4k ·
1
4

(

1− 1
4

)2 (10)

Expression 9 is then simplified to (neglecting the minor terms):

33

9
· β0 · 4

k (11)

The quadtrees store 5 pointers per node for the topological in-
formation: 4 pointers to the children and one to the parent node.
The roots of the quadtrees store seven pointers: 4 to their chil-
dren and 3 for the adjacency information between these roots.
For the geometrical information, 3 pointers to 3D points are
stored in each node. This makes a total of 10 pointers per root,
and 8 pointers for each of the other nodes. Letf0 be the number
of faces of the mesh at level 0 andk be the maximum resolu-
tion level. Since the number of faces is multiplied by 4 at each
subdivision step, the total number of stored pointers is:

10 · f0 + 8 · f0

k
∑

i=1

4i (12)

The summation term in Expression 12 can be identified by the
following formula

∑n

i=0 x
i = xn+1−1

x−1 . Therefore, we get

k
∑

i=1

4i =
4k+1 − 1

3
− 1. (13)

Expression 12 is then simplified to (neglecting the minor terms):

32

3
· f0 · 4

k (14)

Now, we can calculate the ratio between the memory cost of
the multiresolution 2-maps, Expression 9, and the memory cost
of the quadtrees, Expression 12. Given that for the triangular
meshes, each triangle has 3 darts. Therefore,f0 = β0

3 . The
required ratio becomes

33
9 β04

k

32
9 β04k

=
33

32
. (15)

We see that our data structure requires only about 3% more stor-
age space than that of quad-trees. Taking into account the cost
of storage of the 3D points, which is equal in both structures,
this ratio is so weak.

Using an interpolating subdivision scheme makes this ratio
an advantage point for the multiresolution 2-maps than for the
quad-trees. Indeed, since the vertices are located on the surface
boundary upon their insertion, the embedding information is no
longer needed to be parametrized by the resolution level. The
arrays of pointers to the 3D points contained in the darts are
thus reduced to a single pointer. In this case, the ratio between
the multiresolution 2-map and the quadtrees is30

32 . Our model
here requires about 6% less memory space.

VI. CONCLUSION

The multiresolution hypermaps defined in this paper provide
a framework for the representation of multiresolution surface
meshes. This framework is defined as an extension of the hyper-
maps which is a general notion based on combinatorial maps.

The multiresolution hypermap is used here to define the mul-
tiresolution 2-maps and their dual representation. We have ap-
plied these data structure here to the representation of the mul-
tiresolution subdivision surfaces. In this context, they provide
a number of advantages over the usually used data structures
based on quadtrees. The multiresolution maps allow, within
the same model, the representation of surfaces generated by a
large number of subdivision schemes. The ability to represent
polygonal meshes is an additional advantage in the adaptive
case, where the existence of different levels of resolution pro-
duces non-triangular or non-quadrilateral faces, which are not
supported by conventional structures and then create topolog-
ical holes. Adjacency queries are performed more efficiently,
they are performed in constant time regardless of the resolution
level. In addition, there no requirements to have a great memory
space.

We have shown in this paper that the multiresolution 2-maps
can be applied to the representation of multiresolution surfaces
generated by topological operators such as edge contraction and
vertex splitting [11]. This allows to answer adjacency queries
at any resolution level without the need to reconstruct the mesh
to the required resolution level.

REFERENCES

[1] Yves Bertrand and Jean-François Dufourd. Alge-
braic specification of a 3d-modeler based on hypermaps.
CVGIP: Graphical Models Image Processing, 56:29–60,
1994.

[2] Henning Biermann, Daniel Kristjansson, and Denis Zorin.
Approximate boolean operations on free-form solids. In
Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’01,
pages 185–194, 2001.

[3] Henning Biermann, Adi Levin, and Denis Zorin. Piece-
wise smooth subdivision surfaces with normal control.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

109

In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH
’00, pages 113–120, 2000.

[4] Henning Biermann, Ioana Martin, Fausto Bernardini, and
Denis Zorin. Cut-and-paste editing of multiresolution sur-
faces.ACM Transaction on Graphics, 21:312–321, 2002.

[5] David Cazier and Jean-François Dufourd. A formal spec-
ification of geometric refinements.The Visual Computer,
15:279–301, 1999.

[6] Jean-François Dufourd. Formal specification of topolog-
ical subdivisions using hypermaps.Computer Aided De-
sign, 23:99–116, 1991.

[7] Jean-François Dufourd. Algebras and formal specifi-
cations in geometric modeling.The Visual Computer,
13:131–154, 1997.

[8] J. Edmonds. A combinatorial representation of polyhedral
surfaces.Notices of the American Mathematical Society,
7, 1960.

[9] L.De Floriani, L.Kobbelt, and E. Puppo. A survey on data
structures for level-of-detail models.Advances in Mul-
tiresolution for Geometric Modelling, Series in Mathemat-
ics and Visualization, pages 49–74, 2004.

[10] Hugues Hoppe. Progressive meshes. InProceedings of the
23rd annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’96, pages 99–108, 1996.

[11] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-
Peter Seidel. Interactive multi-resolution modeling on ar-
bitrary meshes. InProceedings of the 25th annual con-
ference on Computer graphics and interactive techniques,
SIGGRAPH ’98, pages 105–114, 1998.

[12] Pierre Kraemer, David Cazier, and Dominique Bechmann.
Multiresolution half-edges. InProceedings of Spring Con-
ference on Computer Graphics, SCCG ’07, 2007.

[13] Michael Lee and Hanan Samet. Navigating through trian-
gle meshes implemented as linear quadtrees.ACM Trans.
Graph., 19:79–121, 2000.

[14] Pascal Lienhardt. Subdivisions ofn-dimensional spaces
andn-dimensional generalized maps. InProceedings of
the fifth annual symposium on Computational geometry,
SCG ’89, pages 228–236, 1989.

[15] Pascal Lienhardt. Topological models for boundary rep-
resentation: a comparison with n-dimensional generalized
maps.Computer Aided Design, 23:59–82, 1991.

[16] Günther Schrack. Finding neighbors of equal size in linear
quadtrees and octrees in constant time.CVGIP: Image
Understanding, 55:221–230, 1991.

[17] W. Tutte. Graph theory. In Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1984.

[18] A. Vince. Combinatorial maps.Journal of Combinatorial
Theory, Series B, pages 1–21, 1983.

[19] Denis Zorin. Modeling with multiresolution subdivision
surfaces. InACM SIGGRAPH 2006 Courses, SIGGRAPH
’06, pages 30–50, 2006.

[20] Denis Zorin, Peter Schröder, and Wim Sweldens. Interac-
tive multiresolution mesh editing. InProceedings of the
24th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’97, pages 259–268, 1997.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

110

