
 

 

    

Abstract—Management of fuzzy and vague information has been 

a research problem for computer scientists, particularly in artificial 

intelligence, relational and temporal databases. Fuzzy set theory has 

been widely used to cater this problem. Rough set theory is a newer 

approach to deal with uncertainty. After many years of rivalry 

between the two theories, many researchers have started working 

towards a hybrid theory. In this paper we have discussed the 

fundamental concepts of fuzzy and rough set theories as well as their 

application in temporal database model. We have also presented a 

conceptual model of fuzzy rough temporal data processing along with 

a case study. 

 

Keywords— Temporal relational model, fuzzy rough sets, 

imprecise data, fuzzy rough temporal model.  

I. INTRODUCTION 

ELATION algebra forms the foundation of the 

relational database model (RDM) [1] which has been 

extensively used for a period of time to store and maintain 

huge amount of data. Many extensions have been proposed 

and implemented to the RDM in order to fulfill the increasing 

demands of users. However, RDM doesn’t fulfill all the 

requirements [2].  For example, the capability of handling time 

is of immense importance in many real world problems but 

relational database doesn’t offer much support in this regard. It 

only records the current state of the real world usually referred 

as a snapshot. Many applications such as insurance systems, 

online reservation systems, medical management information 

systems, decision support systems, CRM applications and HR 

applications require past information in addition to the most 

recent state.  

In the earlier era of relational database development, the 

management of temporal data was handled with the help of 

adhoc methods or through application programs. Extensive 

research has been conducted and dozens of temporal models 

have been proposed [3] [4]. An important survey of temporal 

database models was conducted by [2]. 
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Imprecise information is another issue that has bothered the 

database designers for a long time. Many proposals have been 

put forth for managing the inherent imprecision that 

accompanies the data from real world [5]. Fuzzy set theory is 

the approach that has been widely adopted to manage 

imprecise or vague data in the relational database environment 

[6] [7]. Since its introduction, the fuzzy set theory has had a 

significant impact on the way we represent vague information. 

Of late, it has become an important constituent of soft 

computing, a paradigm that adheres closer to human mind and 

real world than conventional hard computing techniques [7] 

[8]. During the last few decades, new theories have been put 

forward that generalize the original fuzzy set theory. 

In this paper we have focused the fuzzy rough set theory. 

Rough set theory [9] is another approach to deal with uncertain 

data. It is a mathematical approach to represent vague 

knowledge that provides a framework for construction of 

approximation of concepts in case of incomplete information. 

It uses equivalence relations to compute lower and upper 

approximations of sets that are based on the “indiscernibility” 

or “indistinguishability” of elements. Rough sets have found 

many applications in the area of classification, web mining, 

finance, banking, databases, expert systems and knowledge 

acquisition and decision analysis. After many years of rivalry 

between fuzzy and rough set theories, many researchers have 

started working towards a hybrid theory (e.g. [10], [11], [12], 

[13], and [14]). In doing so, the focus has moved from 

elements’ indiscernibility (objects are dissimilar or not) to 

their similarity (objects are similar or not), represented by a 

fuzzy relation [8]. As a result, the objects are categorized in 

soft boundaries based on their similarity to one another and the 

transition from “belongs to” to “not belongs to” becomes 

gradual rather than abrupt (as in case of classical sets.) 

We have also provided a case study regarding the 

application of fuzzy rough approach in dealing with temporal 

data.  

The rest of the paper is organized as follows: Section II 

introduces the model of development that we have proposed. 

Section III, IV and V provide review of the temporal 

databases, fuzzy set theory and rough set theory respectively. 

Section VI discusses fuzzy rough approach and section VII 

contains the case study. In section VIII we have provided some 

database queries for the fuzzy rough temporal model while the 

detailed records of the database tables have been listed in the 

appendix. 
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II. PROPOSED MODEL 

Our proposed conceptual model of fuzzy rough temporal 

database development is represented in Fig. 1. The model is an 

extension of our previous model presented in [10]. Before 

building an information system for the patient data, we should 

clarify the main objectives of the system in the requirement 

engineering phase. This will provide us a thorough 

understanding of the system and enable us to gather the 

relevant domain information. Once we have built the mini-

world (domain definition, requirements) we can move on to 

build the requirement workflow model that represents the flow 

of data in the system. A variety of models such as UML Use 

cases, Data flow diagrams, Event flows etc can be used for this 

purpose. The requirement engineering phase leads us to the 

development of logical database model. This step starts with 

building the domain ontology for patient data. An important 

concern here is the identification of imprecision and temporal 

aspects in the system. The gathered data can be temporal, non-

temporal as well as being rough, crisp or rough temporal. For 

instance, treatment given to a particular patient may vary with 

time therefore it is classified as temporal. Safety and care are 

vague concepts and must be treated using rough, fuzzy or a 

combined approach. A detailed classification of patient data is 

provided in [6] and [7]. This classification will help us to 

conceptualize the fuzzy rough temporal data model. Lastly, the 

conceptual model will be mapped to a physical database model 

that will consist of physical constraints, relationships, table 

definitions, indexes and other elements needed for physical 

data storage.  The information system can then be stored on 

database software that can handle the elements incorporated in 

the logical and the physical data model.     

 

III. TEMPORAL DATABASES 

A. Time Domain 

Jensen [2] defines a time domain as “An ordered pair (T ; ≤) 

is where T is a non-empty set of time instants and ’≤’ is total 

order on T”. A time domain is referred to as “discrete” if all 

elements other than the last has an instant successor, and all 

elements other than the first has an instant predecessor. 

B. Time Granularity 

Partitioning of the time-line into a finite set of smaller 

segments called granules. Each non-empty subset G(i) is called 

a granule of the granularity [3]. For e.g. date of hiring is stored 

in time granularity of days, interview timings are stored in 

hours and flight schedules in minutes.  

Bettini [15] defines granularity as  

“A mapping G from the integers (the index set) to subsets of 

the time domain such that If i<j and G(i) and G(j) are non-

empty, then each element of G(i) is less than all elements of 

G(j); If i <k<j and G(i) and G(j) are non-empty, then G(k) is 

non-empty.” 

Mixed granularities are important for modeling real-world 

temporal data; however, they create problems such as 

semantics of operations with operands at differing 

granularities, or conversion from one granularity to another, 

etc. 

C. Time points and time intervals 

Three common approaches of time representation are a 

single time point, an interval and a set of time intervals. In few 

models time is expressed using single time points called as 

events [15]. Most of the temporal models use time intervals to 

represent time. A detailed study of point and interval based 

temporal database models was published by Bohlen [16]. 

 
Fig. 1 Conceptual model for FRT-Database 
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D. Temporal Logic 

The term temporal logic is widely used to represent 

temporal information in a rational framework. Prior [17] is of 

the point of view that “temporal logic refer specifically to the 

modal-logic type of approach introduced as tense logic”. It is 

an extension of propositional logic that contains special 

operators that can manage time. Detailed review has been 

provided by the authors in [4] and [18]. 

IV. FUZZY SETS  

Fuzzy logic in contrast with the binary logic provides the 

possibility of intermediate values instead of rigid and crisp 

boundaries. For instance, in the health management system, the 

patient condition can be normal, stable, critical and severe or 

how close to these values. In binary logic there are no middle 

values either the patient is stable or unstable. Fuzzy logic deals 

with uncertain and imprecise information in a much flexible 

manner [19] [20] [35].  

A. Fuzzy sets and membership functions 

If X is a collection of objects denoted generically by x, then 

a fuzzy set A in X is defined as a set of ordered pairs:  

 

A = { (x, µA(x)) | x ∈ X }                 (1) 

 

where µA(x) is called a membership function (MF) for the 

fuzzy set A. This membership function maps each point in X 

onto the real interval [0.0, 1.0]. As the value of MF 

approaches 1.0 the membership grade increases and it 

decreases when MF approaches 0.0.  

 

Fuzzy sets [20] are a natural outgrowth and generalization 

of crisp sets. Fuzzy set theory offers a new angle to investigate 

the relationship among sets and its elements. This investigation 

is different from the traditional “Black and White” way. It 

goes beyond the “belongs to” and “not belongs to” way.    

 

A fuzzy set is completely characterized by its membership 

function. It provides a transition from region completely 

outside a fuzzy set to a region completely inside. Although 

fuzzy sets have greater expressive power than classical crisp 

sets, their effectiveness depends on the construction of 

appropriate membership functions. A membership function can 

be designed in variety of ways such as 

Triangular MFs: 

A triangular membership function is specified by three 

parameters {a, b, c} as  
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Trapezoidal MFs: 

A trapezoidal membership function is specified by four 

parameters {a, b, c, d} as  
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Gaussian MFs: 

A gaussian membership function is specified by two 

parameters { σ c, } as  
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The graphs are shown in Fig. 2 
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(a) Triangular MF (tri_mf(x, [2, 6, 8])  
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(b) Trapezoidal MF (trap_mf(x, [1, 2, 6, 9]) 
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(c) Gaussian MF (gauss_mf(x, [6, 3]) 

 

Fig. 2 Graphs of fuzzy membership functions 

B. Support  

The support of a fuzzy set A is the set of all points x in X 

such that µA(x) > 0: 

Support (A) = {µA(x) > 0}                (5) 

C. Core 

The core of a fuzzy set A is the set of all points x in X such 

that µA(x) = 1:  

Core (A) = {µA(x) = 1}                 (6) 
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D. Crossover points  

A crossover point of a fuzzy set A is a point x ∈ X at which 

µA(x) = 0.5:  

Crossover (A) = {x | µA(x) = 0.5}             (7) 

These basic concepts of MFs are shown in Fig. 3. 

  

 

 

Fig. 3 Core, Support, and Crossover points  
 

E.  α-cut, strong α-cut  

The α-cut or α-level set of a fuzzy set A is a crisp set 

defined by  

Aα = {x | µA(x) ≥ α }                  (8) 

Strong α-cut or strong α-level set are defined similarly:  

αA′  = {x | µA(x) > α }                   (9) 

F. Similarity diagram  

  A suitable representation of fuzzy similarity between two 

sets is possible using Sagittal diagram. Each of the sets X, Y is 

represented by a set of nodes in the diagram; nodes 

corresponding to one set are clearly distinguishable from 

nodes representing the other set (bipartite graph) [22] [23]. An 

example of the Sagittal diagram of a temporal binary fuzzy 

relation R (X,Y) together is shown in Fig. 4. In the diagram X 

and Y are two timestamps with three states Critical(C), 

Severe(S), Stable(T) {C, S, T} that represent the patient 

condition at any instant of time. 

 
Fig. 4 Sagittal diagram for Temporal Fuzzy relationship 

V. ROUGH SETS 

Rough set theory [9] [24] is an extension of the 

conventional set theory that supports approximations in 

decision making. It complements the Dempster-Shefar theory 

of evidence [25] and fuzzy set theory [20]. Rough set is a 

useful means for studying delivery patterns, rules and 

knowledge in data. It is used to estimate a vague concept by a 

pair of specific notions called lower and upper approximations 

[26].    

For instance, if our area of interest is set S that contains 

some elements. We want to define S in terms of its attributes. 

The membership of objects with respect to some subset of 

domain may not be definable. This fact leads us to the 

description of S in terms of lower and upper approximations. 

The lower approximation consists of those objects that 

certainly belong to subset of interest whereas the upper 

approximation may or may not belong to the subset. Any 

subset defined in terms of lower and upper approximations is 

known as a Rough set [26].  

A. Information and decision system:  

An information system is a data table that contains objects 

(in form of rows) and attributes (in form of columns). For 

example, in Patient Management Systems [6] [7] [10] [13] 

[35] patients are represented as objects whereas measurements 

such as blood pressure, blood sugar, pulse rate etc. serve as 

attributes.  

Formally, “I = (U, A) is an information system where U is 

non-empty set of finite objects (Universe of discourse) and A 

is a finite set of attributes such that aVUa →:  for 

every Aa∈ .”  

Decision systems are similar to information systems with the 

exception that they contain a decision attribute as well. They 

are stored in rectangular form as Table (C, D) where C 

represents condition attributes, while D represents decision 

attributes with C ∩ D = ∅ [28]. 

B. Formal Definition 

Feng [29] states that “Let U denote a finite and nonempty set 

called the universe and θ ⊆ U × U represent an equivalence 

relation on U. The pair apr = (U, θ) is called an approximation 

space. The equivalence relation θ partitions the set U into 

subsets that are all disjoint. Such a partition of the universe is 

denoted by U/θ”. 

If two elements in the universe U belong to same equivalence 

class, we say that both are identical.   

If we consider some arbitrary set X such that X ⊆ U, it will not 

be possible to express X accurately using the equivalence 

classes of θ. In this scenario, one a pair of lower and upper 

approximations can be used to characterize X. These 

approximations are stated as  

[ ] [ ]{ }U XxxX ⊆= θθθ :              (10) 

[ ] [ ]{ }U φθθθ ≠∩= XxxX :            (11) 
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where [ ] { }yxUyx θθ |∈=  is the equivalence class 

that contains x. The pair ( )θθ XX ,   is referred as the rough 

set with respect to X as shown in Fig. 5.  

“The lower approximation θX is the union of all the sets 

which are subsets of X, and the upper approximation θX  is 

the union of all the elementary sets which have a nonempty 

intersection with X. An element in the lower approximation 

necessarily belongs to X, while an element in the upper 

approximation possibly belongs to X.” [29] 
 

Fig. 5 Rough Set [9] 

C. Properties 

Some of the basic properties of rough sets as discussed in 

[24] are as follows: 

(i) ( ) ( )XBXXB ⊆⊆  

(ii) ( ) ( ) ( ) ( ) UUBUBBB ==== ,φφφ  

(iii) ( ) ( ) ( )YBXBYXB ∩=∩  

(iv) ( ) ( ) ( )YBXBYXB ∪=∪  

(v) YX ⊆ implies ( ) ( )YBXB ⊆ and 

( ) ( )YBXB ⊆  

(vi) ( ) ( ) ( )YBXBYXB ∪⊇∪  

(vii) ( ) ( ) ( )YBXBYXB ∩⊆∩  

(viii) ( ) ( )XBXB −=−  

(ix) ( ) ( )XBXB −−=−  

(x) ( )( ) ( )( ) ( )XBXBBXBB ==  

(xi) ( )( ) ( )( ) ( )XBXBBXBB ==  

D. Accuracy of approximation 

Rough sets can be characterized numerically by the 

accuracy of coefficient ( )XBα  [24] defined as 

 

( )
( )

( )XB

XB
XB =α                  (12) 

where X  represents the cardinality of set X. Accuracy of 

approximation remains in the close interval [0, 1] i.e. 

( ) 10 ≤≤ XBα . If ( )XBα  = 1, then X is crisp with respect 

to B and otherwise if ( )XBα < 1 then X is rough with 

respect to B.   

E. Rough membership function 

In classical set theory, either an element belongs to a set or 

doesn’t belong to a set. The corresponding membership 

function has a value of 1 or 0, respectively. In case of rough 

this concept is different. The rough membership function [30] 

quantifies the degree of overlap between set X and the 

equivalence class to which x belongs. It is defined as    

( ) [ ]1,0: →UxB

xµ  and ( )
[ ]

[ ]B

BB

x
x

Xx
x

∩
=µ      (13) 

F. Example 

The example in Table 1 is adapted from [10] for a health 

care information system: 

 

Patient 
Loss of 

Appetite 
Fatigue 

Muscle 

ache 
Hepatitis 

A No No Yes Yes 

B Yes Yes  No  No 

C Yes Yes Yes Yes 

D No No Yes No  

E No Yes No  Yes 

F Yes Yes No  No  

Table 1 Patients with attributes 

 

Condition Attributes: {Loss of appetite, Fatigue, Muscle ache}  

Decision Attribute: {Hepatitis}  

 

 Columns of this table are the symptoms observed in the set 

of patients represented as rows. The entries are the values of 

attributes corresponding to each patient.  For instance, patient 

D in the table is characterized by the following attribute value 

set (Loss of appetite, No), (Fatigue, No), (Muscle ache, Yes), 

(Hepatitis, Yes).  

 In the table, patient A, D and E are indiscernible as regards 

to attribute loss of appetite, patient B, E and F are similar as 

regards to attributes fatigue and muscle ache whereas patient B 

and F are indiscernible with respect to loss of appetite, fatigue 

and muscle ache. Hence, the attribute fatigue generates two 

elementary sets {A, D} and {B, C, E, F} whereas loss of 

appetite and fatigue form elementary sets as follows:  

R = {Loss of appetite, Fatigue} 

Indiscernibility(R) = {{A, D}, {B, C, F}, {E}}   

 

 Patient A suffers from hepatitis whereas patient D doesn’t 

suffer from the disease even though they have same attribute 

values for loss of appetite, fatigue and muscle ache. Therefore, 

hepatitis cannot be fully characterized by loss of appetite, 

fatigue and muscle ache. Moreover, it can be stated that A and 

D are boundary line cases with respect to the available 

Set X 
Equivalence class 

Upper Approximation Lower Approximation 
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information. The patients B and F can be classified with 

certainty as not suffering from hepatitis, whereas patients C 

and E as suffering from hepatitis. Patient A and D cannot be 

excluded as suffering from hepatitis in view of the displayed 

symptoms. If X1 represents patients suffering from hepatitis 

then 

X1 = {x | Hepatitis(x) = yes} = { A, C, E } 

1XR = { C, E } 

1XR  = { C, E, A,  D} 

 Thus, lower approximation of the patients suffering from 

hepatitis is {C, E}, the upper approximation is {A, C, E, D}, 

and patient A and patient D form the boundary. Similarly, sets 

for “Not suffering from hepatitis” can also be formed as 

X2 = {x | Hepatitis(x) = no} = { B, D, F} 

2XR  = { B, F } 

2XR  = { B, F, D, A } 

 
 

Fig. 6 PDM using rough sets 

Another important aspect of data analysis using rough sets is 

discovering the dependency between attributes. This helps in 

determining whether some data (attributes) can be removed 

from the table without affecting its basic properties i.e. 

whether a table contains some superfluous data.  This can be 

accomplished by finding out the degree of dependency using 

calculations provided by several authors [9] [24]. 

VI. FUZZY ROUGH APPROACH 

The application of fuzzy and rough sets has led the 

researchers to study various approaches to combine both 

theories [8] [12] [13] [14] [31]. Most of them have concluded 

that both the theories are not equivalent, in fact complementary 

and can be used in combination. The advantage of introducing 

fuzziness in rough sets is that it allows us to quantify the level 

of roughness in the boundary regions by using fuzzy 

membership values. Thus, the lower and upper approximation 

sets are no longer crisp but fuzzy.  Moreover, all elements 

present in the lower approximation or the positive region have 

a MF value of one whereas the elements beyond the upper 

approximation have a membership value of zero. The elements 

that lie in the upper approximation but are not in the lower 

approximation region, i.e., elements of the boundary region, 

are assigned a membership value of between zero and one. 

Rough set definitions of union and intersection were modified 

so that the fuzzy model would satisfy all the properties of 

rough sets [31]. 

A. Definition 

Let U be a universe, X is a rough set in U then a fuzzy rough 

set Y in U is a membership function µY(x) which associates a 

grade of membership from the interval [0, 1] with every 

element of U where all elements of the positive region have a 

membership value of one and elements of the boundary region 

have a membership value between zero and one [31].  

 

( ) 1=XRYµ                    (14) 

( ) 0=− XRUYµ                 (15) 

( ) 10 ≤−≤ XRXRYµ               (16) 

VII. CASE STUDY 

The example we present in this section is database that can 

be used in the critical care section of a health facility to 

monitor the vital signs (such as blood pressure, pulse rate, 

blood sugar etc.) of a patient under observation or treatment. 

The information system stores only the basic information of 

patient such as name and emergency contact. For the sake of 

simplicity, only a small section of the database has been 

presented here. The case study illustrates the need of 

incorporating uncertainty, together with temporal aspect, in 

relational databases.  

The critical care ward of a health facility maintains an 

information system that monitors that blood pressure of the 

patients all the time. The blood pressure measurement is 

converted to a description using a predefined mechanism in the 

information system. Based on this description, appropriate 

medication is provided to the patients by the healthcare 

personnel on duty. The medication provided varies with age of 

the patient; hence ‘Age of patient’ is also stored in the 

information system. One important consideration here is that 

the age of the patient is stored as description such as CHILD, 

ADULT, or ELDERLY, for example. This is because the exact 

age of the patient isn’t available instantly. To manage such a 

situation, health care personnel on duty are responsible for 

classifying the patient to a particular age group. However, a 

problem may arise if multiple observers are recording the 

patient data. For instance, YOUTH and TEEN may be used by 

two different observers for classification of same age group. 

Therefore, the age attribute is rough having indiscernible 

attribute values. 

The ER-diagram our database is shown in Fig. 7. The 

diagram used is generated using MS SQL Server 2000 

diagramming utility. There are five tables namely Patient, 

PatientBP, BPrange, BPgroup and Indiscernibility. Attributes 

that may contain indiscernible (similar) values are handled in 

the Indiscernibility table.   
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The table is not actually the part of the relation database 

design, but inherent in the fuzzy rough approach. The 

fuzziness of the relation is handled using the membership 

function attribute (MU). Moreover, if there is no fuzziness in 

any particular indiscernibility relation then value of MU will 

be 1. 

A brief description of the table follows whereas detailed 

records are listed in the appendix: 

A. Indiscernibility table  

The Indiscernibility table has attributes ID, IndClass, 

Description and membership value. All the attributes that are 

similar to one another are placed in an indiscernibility class 

and thus have the same value for the attribute IndClass. For 

example, Moderate BP or very high BP belongs to the 

indiscernibility class 6.  

B. BPgroup table  

The BPgroup table has attributes ID, description and 

membership value. This table is used to assign an ID to 

different levels of blood pressure.   

C. BPrange table  

The BPrange table has attributes ID, Systolic, Diastolic, 

Description, MU. This table quantifies the description of the 

blood pressure level set in BPgroup table in terms of possible 

values of Systolic and Diastolic pressure (in mm of Hg). The 

membership value is to cater ‘Description’ attribute. The 

different combination of systolic and diastolic blood pressure 

is an arbitrary generated range and the corresponding 

description has been provided by the authors based on 

information available in [33] [34] 

D. Patient table  

The Patient table has attributes ID, Name, Age, Emergency 

Contact, MU. The membership value is to manage the attribute 

‘Age’.  

E. PatientBP table  

The PatientBP table has attributes ID, PatientID, BPID, 

StartTime, EndTime, MU. This is the major table of the 

database that has indiscernibility, ambiguity as well temporal 

aspect at the same time. The table stores the BP level of a 

patient along with the table interval for which that level was 

valid. The medication administered to the patient is on the 

basis of the trend shown by table. 

For instance, Patient ID 1000 who is a middle aged elderly 

person, had moderate blood pressure (Systolic: 160, Diastolic: 

100) on 3-March-2012 between 14:30 to 16:30. Similarly, 

Patient ID 1001, a middle aged adult had a high normal blood 

pressure (Systolic: 130, Diastolic: 85) on 3-March-2012 

between 14:30 to 17:30. 

VIII. FUZZY ROUGH TEMPORAL QUERIES 

Another important advantage of integrating fuzzy rough 

approach to temporal databases is that it will allow us to write 

queries in a language that is much closer to natural language as 

opposed to the trivial query languages. A query language that 

caters for fuzzy, rough and temporal aspect, once developed, 

will allow for direct mapping of natural language statements to 

database queries, thus providing much accurate results. Some 

of the queries are presented below:  

 

(i) List age groups of the patients that have severe blood 

pressure today. 

(ii) List the patients whose blood pressure was normal 

yesterday. 

(iii) List the blood pressure of patient 1001 between 14:30 to 

16:30 on 3-March-2012. 

(iv) Retrieve the list of all elderly patients whose blood 

pressure remained severe during last two days. 
 

A query language that supports such constructs will produce 

SQL like result sets for all the queries listed above. Such 

language will be based on rough and fuzzy rough relation 

algebra as well as contain operators to handle the temporal 

aspect of the database. A detailed discussion and overview of 

such language and operators has been provided in [18] [31] 

[35]. 

 

 
Fig. 7 ER-diagram for FRT-Database 
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APPENDIX 

Table A: BPgroup 

 

ID Description MU 

1 Low 1 

2 low normal 1 

3 normal 1 

4 high normal 1 

5 Mild 1 

6 Moderate 1 

7 severe 1 

8 very severe 1 

9 very low 1 

 

Table B: BPrange 

 

ID Systolic Diastolic Description MU 

1 225 130 very severe 1 

2 215 125 very severe 0.9 

3 205 120 very severe 0.8 

4 195 115 very severe 0.7 

5 185 110 very severe 0.6 

6 175 105 severe 0.85 

7 165 100 severe 0.75 

8 160 100 moderate 0.95 

9 155 95 moderate 0.9 

10 150 95 moderate 0.85 

11 140 90 mild 0.7 

12 130 85 high normal 0.9 

13 125 80 high normal 0.85 

14 120 80 normal 0.95 

15 110 70 normal 0.85 

16 105 70 normal 0.8 

17 100 65 low normal 0.95 

18 90 60 low normal 0.85 

19 85 55 low 0.75 

20 75 50 low 0.85 

21 70 50 low 0.9 

22 65 45 very low 0.8 

23 55 40 very low 0.95 

 

Table C: Indiscernibility 

 

ID IndClass Description MU 

1 1 low 1 

2 1 below normal 1 

3 2 slightly below normal 1 

4 2 low normal 1 

5 3 far far too high 1 

6 3 very severe 1 

7 3 too too high 1 

8 4 slightly above normal 1 

9 4 high normal 1 

10 5 mild 1 

11 5 high 1 

12 6 moderate 1 

13 6 very high 1 

14 7 child 1 

15 7 pre teen 1 

16 7 young 1 

17 8 youth 1 

18 8 teen 1 

19 8 teenager 1 

20 9 adult 1 

21 9 grown up 1 

22 10 sr adult 1 

23 10 middle aged 1 

24 11 elderly 1 

25 11 old 1 

 

Table D: Patient 

 

ID Name Age 

Emergency 

Contact MU 

1000 Ahmed 

{middle aged, 

elderly} 0300-1234565 0.8 

1001 Ali 

{Adult, Middle 

age} 0333-9543212 0.6 

1002 Salman Adult 0346-2654855 1 

1003 Najam Elderly 0332-3054468 1 

1004 Ameen 

{Adult, Sr 

Adult} 0300-2386132 0.55 

 

Table E: PatientBP 

 

ID PatientID BPID StartTime EndTime MU 

500 1000 8 

03/03/12  

14:30 

03/03/12 

16:30 1 

501 1000 9 

03/03/12  

16:30 

03/03/12 

20:30 1 

502 1001 12 

03/03/12  

14:30 

03/03/12 

17:30 1 

503 1001 11 

03/03/12  

17:30 

03/03/12 

22:30 1 

504 1004 16 

03/03/12  

14:30 

03/03/12 

15:30 1 

505 1004 15 

03/03/12  

15:30 

03/03/12 

18:30 1 

506 1004 17 

03/03/12  

18:30 

03/03/12 

21:30 1 
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