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Abstracts—Automated source code generation is often present in
modern CASE and IDE tools. Unfortunately, the generated code of-
ten covers a basic application functionality/ structure only. This pa-
per shows principles and algorithms used in open-source cross-platform
CASE tool called CodeDesigner RAD developed at Tomas Bata Uni-
versity suitable for production-ready source code generation and reverse
engineering which allows users to generate complete C/C++ applica-
tions from a formal visual description or for creation of UML diagrams
from an existing source code.
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I. INTRODUCTION

OWADAYS, there exist many software development tools
N able to generate source code of basic application skele-
ton from its formal description. Unfortunately, in many cases
these tools lack an ability to generate complete, production-ready
source code or to import an existing source code as its formal
visual description. This paper shows principles and algorithms
used in cross-platform CASE tool called CodeDesigner RAD [3]
aimed for production-ready source code generation and reverse
engineering which allows users to generate complete applications
from their formal description based on UML diagrams or to make
complete round-trip software engineering.

Fig. 1 CodeDesigner RAD

CodeDesigner RAD application shown in Figure 1 has
been developed by using well known cross-platform program-
ming toolkit called wxWidgets [14] together with its add-ons
wxXmlSerializer [4] and wxShapeFramework [5] so it provides
very simple and intuitive way how to graphically describe an ap-
plication structure and logic on MS Windows and Linux plat-
forms. Moreover, it offers also reverse source code engineering
capabilities so user can simply import existing C/C++ or Python
source code into the tool.

$ Dulik, Roman Jasek

II. FORMAL APPLICATION DESCRIPTION

For our needs the UML diagrams will be used for describ-
ing both application structure and behavior in this article. The
reasons are that the UML is well know and widely documented
standardized formalism used in many existing applications and
CASE tools suitable for both managers and developers.

In general, there are three main types of UML diagrams [1]:

1. Structure diagrams
2. Behavior diagrams

3. Interaction diagrams

Structure diagrams represent the structure, so they are used
extensively in documenting the software architecture of software
systems.

Behavior diagrams emphasize what must happen in the system
being modeled. Since behavior diagrams illustrate the behavior
of a system, they are used extensively to describe the functional-
ity of software systems.

The last one subset, interaction diagrams, are a subset of be-
havior diagrams, emphasize the flow of control and data among
the things in the system being modeled.

A. Static application structure

One of the possible insights into an application internals is so
called static application structure view covered by UML struc-
ture diagrams. In general, the these diagrams show how the appli-
cation is divided into logical components or groupings. From the
code generation point of view the most important view is class
diagram. Several class diagrams can be grouped by package/-
component diagrams.

Animal

IAnimal # m_Species : char*

+ Animal(species : char*) : constructor
+ Animal() : destructor

+ MakeNoise() : void

+ GetSpecies() : const char*

.l i

Dog

+ IAnimal() : destructor
+ MakeNoise() : void

Cat

+ Cat() : constructor
+ Cat() : destructor
+ MakeNoise() : void

+ Dog() : constructor
+ Dog() : destructor
+ MakeNoise() : void

Fig. 2 Class diagram

Figure 2 shows class diagram illustrating properties and rela-
tions between four classes: a base class Animal which imple-
ments IAnimal abstract class and two derived classes Dog and
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Cat inheriting the base Animal class. As can be seen also class
members are visible in the figure; member variables are shown in
the middle class element field and member functions are shown in
the bottom field. Also the members’ accessibility is indicated by
the symbols *+’, ’-*, ’#’ placed before the member’s name where
’+” means public, ’-’ means private and '#’ means protected. All
the information is crucial for code generation purpose.

B.  Dynamic application logic

In contrast to the static application structure view the dynamic
application logic view covered by behavior UML diagrams fo-
cuses onto description of an application logic. Typically, state
charts are used for that purpose. There are several types of state
charts like a classic form of state machines described in [11],
UML state charts [1] or Harel state charts [10]. All of them
are suitable for the code generation purposes but we will focus
to state charts used in CodeDesigner RAD tool which are based
on Harel state charts with UML-based notation extension which
means that entry/exit actions from UML specification as well as
transition conditions, events and actions from Harel state charts
are supported.

Thanks to that approach an application logic can be described
in very intuitive way and CodeDesigner RAD tool can generate
optimal production-ready source code covering full application
logic and strucure; not only the application skeleton.'

Following Figure 3 shows how a simple "Hello World" code
can be described by UML state chart.

{ Hello p

entry / [sayHello()]
exit / [askFOrENTER()]

Initial

Wait for ENTER key

entry /[]
exit [ []

Fig. 3 State Chart

III. CODE GENERATION IN DETAIL

The source code generation process consists of four steps.
First of all a source diagram can be preprocessed so its topol-
ogy will change. This task should produce a new diagram more
suitable for further processing by the next code generator com-
ponents. Preprocessed diagram must be verified to find possible

Note that state charts can "live" with class diagrams in very pleasant con-
junction; state charts can be used for implementation of class member functions
as well as the classes described by class diagrams can be instantiated in a source
code generated from state charts. The both approaches are supported in Cod-
eDesigner RAD tool.

inconsistencies. If the verification fails the code generation pro-
cess is aborted. After that, a set of optimizations leading to var-
ious simplifications can be performed on the verified diagram.
The last step represents a final generation of a source code from
verified and optimized diagram. This task is performed by a func-
tional object called generator.

The generator reads the structure of modified diagram and
writes source code fragments accordingly to the used code gen-
eration algorithm to output source file(s). Code generation al-
gorithms can be filtered by output programming language since
some language don’t have to support all command statements
produced by the algorithm (e.g. switch command statement is
supported in C/C++ but not in Python).

Code generation algorithms use so called element processors
which provide symbolic code tokens for processed diagram el-
ements. These symbolic tokens are converted into textual code
fragments by language processors with syntax in accordance to
the used output programming language specification. The com-
plete structure of source code generator implemented in Cod-
eDesigner RAD is shown in Figure 4.

I Language processor

Generator

T~

‘ Output source codeT

-
Element processors

Fig. 4 Structure of code generator

A. Class Diagram Code Generator

The class diagram is the main building block of object ori-
ented modeling. It is used both for general conceptual modeling
of the systematics of the application, and for detailed modeling
translating the models into programming code. The classes in a
class diagram represent both the main objects and interactions in
the application and the objects to be programmed. In the class
diagram these classes are represented with boxes which contain
three parts [1]:

o the upper part of holds the name of the class
o the middle part contains the attributes of the class

e the bottom part gives the methods or operations the class
can take or undertake

In the design of a system, a number of classes are identified
and grouped together in a class diagram which helps to deter-
mine the static relations between those objects. With detailed
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modeling, the classes of the conceptual design are often split into
a number of subclasses. In order to further describe the behavior
of systems, these class diagrams can be complemented by state
charts as shown in chapter B..

In addition to the classic classes the class diagram can contain

also elements representing class templates and enumerations as
shown in Figure 5.

-Template
Class template

<< enumeration >>
Enumeration

Class

+ attribute : int + attribute : int

enuml
enum2

+ method() : void + method() : void

Fig. 5 Basic class diagram elements

The relations between class objects in the class diagram called
associations and aggregations are defined in [1]. The most
common are inheritance/interface association, uni-directional/bi-
directional association, aggregation/composition aggregation,
template binding and include association.

The following paragraphs show how class diagram elements
are processed by the class diagram generator implemented in
CodeDesigner RAD.

Class element Figure 6 shows basic class element with follow-
ing members defined: public attributel, protected attribute2,
public methodl, private method2, public constructor and public
destructor.

SimpleClass

+ attributel : int
# attribute2 : int

+ SimpleClass() : constructor
+ SimpleClass() : destructor
+ method() : void

- method2() : void

Fig. 6 Basic class element

The following listing shows mapping of the class diagram in
Figure 7 to C++ source code.

Listing 1 C++ class inheritance

class Interface {
public:
virtual void method ()

0;
}s
class BaseClass

public:
virtual void method () ;

public Interface {

}s

public BaseClass {

class InheritedClass
public:
virtual void method () ;
virtual ~InheritedClass ();

}s
void BaseClass :: method () {
}

void InheritedClass :: method () {

}

InheritedClass ::~InheritedClass () {
}

Class inclusion Figure 8 shows inclusion of classes defined via
include association. Note that enumeration elements can be in-
cluded into parent classes in the same way. This operation en-
sures that included elements will be accessible under namespace
defined by its parent element’s name only.

ParentClass ChildClass

<< includes >>

Fig. 8 Class inclusion

Class inheritance Figure 7 shows an interface (abstract class),
a base class implementing the interface and a class inheriting
the base class. Also virtual functions and destructor are illus-

trated. Listing 2 C++ class inclusion

class ParentClass {
public:
class ChildClass

)i

Interface InheritedClass

{

+ method() : void virtual
+ InheritedClass() : destructor virtual

+ method() : void abstract

}s

BaseClass

Class template binding Figure 9 shows class template binded
to specialized class. CodeDesigner RAD support class templates
code generation for C++ language only because Python language
doesn’t use class templates.
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Math
FloatMath

<< bind >>

+sum(a:T,b:T):T <float>

Fig. 9 Class template

Listing 3 C++ class template

template <typename T>
class Math {
public:
T sum( T a, Tb );
1

class FloatMath
}s

public Math<float> {

template <typename T>
T Math<T>::sum( T a, T b ) {
return a + b;

}

template class Math<float >;

Enumeration element Enumeration element shown in Figure
10 is generated in different ways for C/C++ and Python lan-
guages. C/C++ language processor uses special enum keyword
for the code generation but standard class is used instead for
Python source code generation since the Python language doesn’t
provide reserved keyword for the enumerations.

<< enumeration >>

Enum
item0 = 10
iteml
item2

Fig. 10 Enumeration

Listing 4 C/C++ enumeration

enum Enum {
item0 = 10,
iteml ,
item?2

}s

B. State Chart Code Generator

UML state chart is a significantly enhanced realization of the
mathematical concept of a finite automaton [11] in Computer Sci-
ence applications as expressed in the Unified Modeling Language
notation [1].

The concepts behind this are about organizing the way a de-
vice, computer program, or other (often technical) process works
such that an entity or each of its sub-entities are always in ex-
actly one of a number of possible states and where there are

well-defined conditional transitions between these states. UML
state machine, known also as UML state chart, is an object-based
variant of Harel state chart [10] adapted and extended by UML.
UML state machines overcome the main limitations of tradi-
tional finite-state machines while retaining their main benefits.
UML state charts introduce the new concepts of hierarchically
nested states and orthogonal regions, while extending the notion
of actions. UML state machines have the characteristics of both
Mealy machines and Moore machines [11] defined as (1). They
support actions that depend on both the state of the system and
the triggering event, as in Mealy machines (2), as well as entry
and exit actions, which are associated with states rather than tran-
sitions, as in Moore machines (3).
Both Mealy and Moore machines are a 6-tuple,

(57 SO,E,A,T, G) (l)

, consisting of the following:
e a finite set of states ()
e a start state (also called initial state) sy where sy € S
e a finite set called the input alphabet (%)
e a finite set called the output alphabet (A)

e a transition function (7" : S x ¥ — S) mapping pairs of a
state and an input symbol to the corresponding next state.

An output function of Mealy machine is defined as follows

(G:SxX—=A) 2)
It maps pairs of a state and an input symbol to the correspond-
ing output symbol. In contrast to the Mealy machine a Moore
machine’s output function

(G:S = A) 3)
maps each state to the output alphabet.

Graphical representation of Mealy and Moore state charts vi-
sualized by using UML state chart notation illustrates Figure 11.
Note that Mealy state chart requires fewer states than the Moore
state chart because all triggered actions are assigned directly to
the transitions while the Moore state chart needs two extra states
for writing the output by using their entry actions.

Begin Mealy

Begin Moore

<<ifg()/[1>>

<<ifA() / [dgA(] >> <<ig0/u>>
Moore state 2
entry / [doB()]

exit/[]

Moore state 1
entry / [doA()]
exit/[]

<< ifB() / [d6B()] >>

End Mealy End Moore

Fig. 11 Mealy vs Moore state charts
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From the code generation point of view the symbols of both
the input alphabet Y. and the output alphabet A can be mapped
to user-defined code snippets covering the platform-dependent or
implementation-specific functionality. User-defined conditional
statements or functions returning boolean/ numerical values can
be regarded as symbols of ¥ while the user-defined actions (i.e.
source code fragments or other methods) can be regarded as sym-
bols of A.
A projection of state chart describing an application logic into
a source code is involved by used code generation algorithm.
There exist number of the algorithms which differ in used com-
mand statements, coding style and extent of produced source
code. Some of them produce state tables hard to read by humans
but saving the disk space while the other ones write sequence
of conditional statements and composed commands which take
much more spaces but can be easily read or modified by the pro-
grammer.
CodeDesigner RAD supports three code generation algorithms
provided by state chart code generator:

e Loop-case algorithm
e Else-If algorithm

e Go-To algorithm

All of them are optimized for production of easily readable and
modifiable source code. For better understanding lets compare an
output of the algorithms processing state chart shown in Figure
3.

The Listing 5 reveals an output produced by Loop-case algo-
rithm. This algorithm is suitable for programming languages sup-
porting switch command statement like C/C++ and JAVA. Unfor-
tunately, it cannot be used in conjunction with Python language
due to lack of switch command statement.

Listing 5 Loop-case algorithm output

}
}
}
}

Loop-case algorithm produces highly structured source
code easily readable and maintainable by humans. Another ad-
vantage is that switch-case command sequence allows to op-
timize number of iterations of the main application loop im-
plementing the state chart behavior. It is possible by omit-
ting of break command statements used for separation of the
switch cases like shown in Listing 5 where the break com-
mand is missing between states ID_INITIAL, ID_HELLO and
ID_WAIT_FOR_ENTER_KEY.

Else-If algorithm’s output based on the same input diagram
is shown in Listing 6. The main difference is that is uses simple
if-else if-else command sequence instead of switch-case. This ap-
proach solves the problem of missing swifch command in some
programming languages but precludes better program flow opti-
mization like done in Loop-case algorithm because just one state
can be entered per one main loop iteration.

Listing 6 Else-If algorithm output

STATE_T Hello_World( )

{
STATE_T state =

ID_INITIAL;
for( :; ) {
switch( state ) {
case ID_INITIAL: {
sayHello () ;
state = ID_HELLO;
}
case ID_HELLO: {
askForENTER () ;
state = ID_WAIT_FOR_ENTER_KEY ;
}
case ID_WAIT_FOR_ENTER_KEY: ({
if( ! ( isEnter() ) ) {

readKey () ;
}
else {
state = ID_FINAL;
}
break ;

}
case ID_FINAL: {

return ID_FINAL;

STATE_T Hello_World( ) {
STATE_T state = ID_INITIAL;

for( ;; ) {
if ( state==ID_INITIAL ) {
sayHello () ;
state = ID_HELLO;
}
else if( state==ID_HELLO ) {
askForENTER () ;
state = ID_WAIT_FOR_ENTER_KEY ;
}
else if( state==ID_WAIT_FOR_ENTER_KEY ) {
if( ! ( isEnter() ) ) {
readKey () ;
}
else {

state = ID_FINAL;

}

}
else if( state==ID_FINAL ) {

return ID_FINAL;

Both the Loop-case and Else-If algorithms produce quite large
source code. This drawback solves the last mentioned algorithm
called Go-To whose output is shown in Listing 7. As can be seen
the Go-To algorithm produces the smallest extent of source code
and the program flow is the most natural. In some cases it is able
to generate source code similar to that one written manually by a
human programmer. Unfortunately, it uses "evil" gofo command
statement which causes the source code to be un-structured little
bit.

Listing 7 Go-To algorithm output
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STATE_T Hello_World( )
{
sayHello () ;

askForENTER () ;

ID_WAIT_FOR_ENTER_KEY_L:
if( ! ( isEnter() ) )
{
readKey () ;
goto ID_WAIT_FOR_ENTER_KEY_L;

}

return ID_FINAL;

CodeDesigner RAD allows each diagram to be processed by a
different code generation algorithm so it is completely up to the
user which one he will use for a specific diagram.

Simple State Charts Lets observe how simple state chart ele-
ments can be mapped to C/C++ source code by using different
code generation algorithms.

Consider one initial pseudo state as a source of two transitions
leading to two different final pseudo states as shown in Figure
12. One of the transitions is guarded by a conditional statement
encapsulated inside a function returning boolean value in accor-
dance to the evaluated logical expression. Both of the transitions
have action code assigned.

Initial 12

doB()] >=>
<< ifA() /

Final 12 Final 13

Fig. 12 Simple state chart

In this case the input alphabet as defined in (1) contains two
symbols ¥ = {if A, e} where € is empty string and the output al-
phabet contains symbols A = {doA, doB}. If the state machine
reads the symbol {if A} then it writes the output symbol {doA}
and it transits to the final state "Final 12". If the state machine
reads {e}, i.e. there is no conditional statement guarding the tran-
sition then the state machine writes symbol {doB} and transits
to the final state "Final 13". Output of the Loop-case algorithm
implementing the state chart show in Figure 12 if as follows:

Listing 8 Loop-case implementation of Figure 12

state = ID_FINAL_12;
}
else {

doB () ;

state = ID_FINAL_13;
}
break ;

1
case ID_FINAL_12: {
return ID_FINAL_12;
1
case ID_FINAL_13: {
return ID_FINAL_13;
1
}
}
}

STATE_T Simple_State_Chart( )

{
STATE_T state =

ID_INITIAL_12;
for( ;; ) {
switch( state ) {
case ID_INITIAL_12: {
if( ifA Q) ) {
doA () ;

Hierarchical State Charts Hierarchical state charts [10] allow
definition of complex application behavior in a simple way with
reduced number of used states than a standard state charts re-
quire. As mentioned above the UML state charts are based on
the hierarchical state charts so the notation is nearly the same.
There are two main additions to the standard state charts de-
fined in hierarchical ones and supported by CodeDesigner RAD:

e nested/composition states
e history pseudo states

At the first lets examine how nested states map into generated
source code. Consider hierarchical state chart as shown in Figure
13.

Composition state

Start 3

entry /[]
.\D exit /[]

<< [[]>>

<< 1yEvent/[]>>

Event occured 3 Exit 3

Fig. 13 Hierarchical state chart

Note the number / placed in front of the Event flag guarding a
transition leading to "Event occurred 3" final state. This notation
means that the transition trigger has the highest priority (a range
<1, 255> can be used where 1 is the highest priority and 255 is
the lowest - default - priority) so the conditional statement will
be tested preferentially as can be seen in Listing 9.

During the state chart preprocessing the initial state "In" is
merged with the parent state "Composition state” and two out-
comming transitions pointing to final states "Event occurred 3"
and "Exit 3" are re-connected to all remaining nested states so the
transition guarded by Event flag is re-connected to both "Nested"
and "Nested 2" states and the condition-less transition leading
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to "Exit 3" final state is re-connected to nested final state called
"Out".

The modifications performed on the parent "Composition
state" ensures that Event flag is tested in all standard nested states.
C/C++ source code generated from the diagram covering the dis-
cussed functionality is as follows:

Listing 9 Loop-case implementation of Figure 13

STATE_T State_Chart_2( )
{

STATE_T state = ID_START_3;
for( :; ) {
switch( state ) {

case ID_START_3: {
state = ID_COMPOSITION_STATE;

}
case ID_COMPOSITION_STATE: {

if ( ifAQ) ) {
doA () ;
state = ID_NESTED;
}
break ;

}
case ID_NESTED: {

if ( Event ) {

state = ID_EVENT_OCCURED_3;
}
else if( ifB() ) {
doB () ;
state = ID_NESTED_2;
}
break ;

}
case ID_NESTED_ 2: {

if ( Event ) {

state = ID_EVENT_OCCURED_3;
}
else {
state = ID_OUT;
}
break ;

}

case ID_OUT: {
state = ID_EXIT_3;

}

case ID_EXIT_3: {
return ID_EXIT_3;

}

case ID_EVENT OCCURED_3: {
return ID_EVENT OCCURED 3;

}
}

Composition state 2

Start 4

entry / [1
.\b exit /]

<<ifA() / [doA()] >>

History

<< 1l:Event/[]>>

Process event
£ entry /(]
exit / [doAction()]

Fig. 14 Hierarchical state chart with history

History state behaves like a composition state’s local memory
where information about currently processed state is kept. The
information is used later for restoration of run point at which the
composition state was leaved (in a case the Event has occurred)
after the state is entered again like shown in Figure 14. A source
code implementing the state chart in C/C++ by using Loop-case
algorithm can be following:

Listing 10 Loop-case implementation of Figure 14

The history pseudo state can be used in conjunction with
nested states as illustrated in Figure 14.

STATE_T State_Chart_3( )
{

STATE_T state = ID_START_4;
STATE_T history = ID_NESTED_3;
for( ;; ) {
switch( state ) {
case ID_START 4: {
if( ifAQ ) {
doA () ;
state = ID_COMPOSITION_STATE_2;
}
break ;

}
case ID_COMPOSITION_STATE_2: {

state = ID_HISTORY;
}
case ID_HISTORY :
/x call entry actions of possible
states x/
switch( history )
{
}

state =
break ;

target

history ;

case ID_NESTED_3: {
if ( Event ) {
history = ID_NESTED_3;

state = ID_PROCESS_EVENT;
}
else if( ifB() ) {
doB () ;
state = ID_NESTED_4;
}
break ;

}
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case ID_NESTED 4: {
if ( Event ) {

history = ID_NESTED_4;
state = ID_PROCESS_EVENT;
1
else {
state = ID_OUT_2;
1
break ;

}
case ID_OUT_2: {

history = ID_OUT_2;
state = ID_EXIT_4;
}
case ID_EXIT_4: {
return ID_EXIT_4;
}
case ID_PROCESS_EVENT: {
doAction () ;
state = ID_COMPOSITION_STATE_2;
break ;

IV. REVERSE SOURCE CODE ENGINEERING

In addition to discussed source code generation capabilities
modern CASE tools like Visual Paradigm [8], Enterprise Archi-
tect [2] or CodeDesigner RAD offers also source code reverse en-
gineering functionality. As stated in [6] the "Reverse engineering
is the process of analyzing a subject system to create representa-
tions of the system at a higher level of abstraction" or it can also
be seen as "going backwards through the development cycle" [9].

The substance of the reverse engineering process in CASE
tools is an analysis of existing source code and visualization of its
static structure and implemented application logic. This chapter
will focus to reverse engineering capabilities provided by Cod-
eDesigner RAD tool.

A.  Source Code Analysis

Static source code analysis can cover both source code struc-
ture and application logic. The code structure can be visualized
by using UML class diagrams and the application logic by using
UML/standard state charts as shown in Chapter II..

There exist plenty of software tools able to perform those anal-
ysis. For instance, Exuberant CTAGS [7] command line tool can
be used for generation an index (or tag) file of language objects
found in source files. A tag signifies a language object for which
an index entry is available (or, alternatively, the index entry cre-
ated for that object).Software tools able to analyze behavioral as-
pects of examined source code are for instance Ablegold Com-
puter’s Easystructure tool [13] and C Algorithm Viewer tool [12].
Both of them can visualize the program flow as a tree view or a
flowchart.

In the current version, the CodeDesigner RAD v 1.5.4 sup-
ports static source code structure analysis provided by externally
called CTAGS utility. In addition to CTAGS functionality the
CodeDesigner RAD enhances the code objects” import so also
source code implementing the functions bodies can be imported

into to CASE tools which is crucial for complete round-trip code
engineering implementation as discussed in Chapter B..

CodeDesigner RAD reverse code engineering plug-in provides
C/C++ and Python classes import with:

e support for multiple inheritance
e support for include associations

e support for uni-directional class associations based on de-
fined class members

e import of stand-alone and included enumerations
e import of stand-alone functions and variables

e import of complete function bodies

The reverse engineering process can be stared from the panel
shown in Figure 15:

Choose source files:

Add files

-/Projekty/CodeDesigner/trunk/src/Settings.cpp
:/Projekty/CodeDesigner/trunk/src/Settings.h
:/Projekty/CodeDesigner/trunk/src/projectbase/SettingsBase.cpp
-/Projekty/CodeDesigner/trunk/src/projectbase/SettingsBase.h

]

Identifiers:

Parse checked files |

Found symbols:

&€  {] & Members i [Bodies

- & symbols
— ¥ Classes
— B udAppSettings : udSettings
F CreateCateqgories() [}
F udAppSettings()
F ~udAppSettings()
B udDiagramsCategory : udSettingsCategory
B udEditorCategory : udSettingsCategory
B udFrameCategory : udSettingsCategory
B udGeneratorCategory : udSettingsCategory
B udHiddenCategory : udSettingsCategory
B udHiddenGUlICategory : udHiddenCategory v

+ o+ o+t

Fig. 15 CodeDesigner RAD Reverse Engineering panel

The upper part of the panel contains list box where analyzed
source files are listed. The selected files are processed by the
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CTAGS utility after clicking the Parse checked files button placed
under the list box. All found symbols like variables, functions,
classes and enumerations are displayed in the tree control placed
under the parse button. User must select which found symbols
should be imported into newly created class diagram and also
set whether class members and function bodies will be imported
as well. The new class diagram with selected symbols will be
created after clicking the button placed next the check boxes dis-
played above the symbol tree control.

The following source code listing and class diagram show an
ability to import classes where multiple inheritance is used. It
also illustrates how referenced classes are associated in the class
diagram.

Listing 11 Class sample 1

As can be seen in Figure 16 the class Butterfly inherits two
base classes Animal and Being. The Butterfly class also contains
a pointer to Data class as its member so the uni-directional asso-
ciation leading referenced Data class is created in the diagram.

The next sample shows how embedded classes are recognized
and how C/C++ enumeration is imported into a class diagram.

Listing 12 Class sample 2

class Data {
protected:

int i;

const char xstr;

1

class Being {

1

class Animal {

public:
Animal () {;}
Animal (const charx specie) {;}
~Animal () {;}

const charx GetSpecie() const {;}

protected:

const char xm_specie;
3
class Butterfly public Animal,
public:

Butterfly () {;}

public Being {

protected :
Data xm_pData;

}s

class OuterClass {
public:

class InnerClass {

public:

enum InnerEnum {

itemONE = 0,
itemTWO
1

1
1

Animal

# m_specie : const char *

+ Animal() : constructor
+ Animal(specie : const char*) : constructor

+ GetSpecie() : const char*

+ Animal() : destructor
# m_pData : Data *

Being

T‘F

Butterfly

Data

#i:int
# str: const char *

0.1

m_pData + Butterfly() : constructor

Fig. 16 Class sample 1

OutercClass InnerClass

<< includes >=

<< includes >>

<< enumeration >>

InnerEnum
itemONE =0
itemTWO

Fig. 17 Class sample 2

In the Figure 17 two classes OuterClass and InnerClass are
shown together with the include association connecting them.
There is also one enumeration element called InnerEnum defined
as a part of InnerClass so the same association element is used
with the enumeration as well.

B. Round-trip Code Engineering

Round-trip engineering refers to the ability of a CASE tool
to perform code generation from models, and model generation
from code (a.k.a., reverse engineering), while keeping both the
model and the code semantically consistent with each other. Is is
a functionality of software development tools that synchronizes
two or more related software artifacts such are source code, mod-
els, configuration files, and other documents. The need for round-
trip engineering arises when the same information is present in
multiple artifacts and therefore an inconsistency may occur if not
all artifacts are consistently updated to reflect a given change.
For example, some piece of information was added to/changed
in only one artifact and, as a result, it became missing in/ incon-
sistent with the other artifacts.

Round-trip engineering process consist of several repetitive
tasks as illustrated in Figure 18.
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Update model

Generate code

Update code

(Sync code with modeD

Fig. 18 Round-trip engineering

Now lets look how the round-trip engineering can be done by
using CodeDesigner RAD.

1. Suppose existing simple "Hello World" application written
in C++ programming language saved in "main.cpp" source
file as follows:

Listing 13 Round-trip step 1

#include <stdio.h>

int main(int argc, char xxargv)

{

return 0;

}

2. Create empty CodeDesigner project and save it in the same
location like the C++ source code. The CodeDesigner RAD
project settings should be as shown in Figure 19

E] Code generator
Output directory .
Base file name main
Code items file name
Generate code descriptions False
Synchronize before generation True

Code generator
State chart

Functions

| Defaults | | Zrudit | [QK

Fig. 19 CodeDesigner RAD project settings

3. Create a package with one class diagram called Presenter
classes. Create Presenter class with void sayHello() method
in the diagram. At this point do not define the function
body from within the CodeDesigner RAD. The class dia-
gram should look like shown in Figure 20.
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Project inspector (5]
o ' |

= & = | || agw

Presenter

+ sayHello{) : void

Project items | Code items

- & Projectitems
- W Package
— [ Presenter classes
— B Presenter
oF sayHello

Fig. 20 CodeDesigner RAD project settings

4. Set C++ language for the code generator and run the
code generation process. As a result 3 new source files
main.h, functions.h and functions.cpp are created and ex-
isting main.cpp file is modified. The main.h/cpp source
files contain Presenter class declaration/definition and func-
tions.h/cpp would contain other generic functions and vari-
ables potentially defined in the project. The content of the
main source files is shown bellow.

Listing 14 main.h

/+ [ 'Common headers’ begin (DON’T REMOVE
THIS LINE!)] x/

#include "functions.h"

/% [ ’Common headers’ end (DON’T REMOVE THIS
LINE!)] x/

/% [’ Presenter classes’
THIS LINE!)] x/
class Presenter

{

begin (DON’T REMOVE

public:
void sayHello( );

protected:
private:
1

/% [’ Presenter classes’ end (DON’T REMOVE

THIS LINE!)] =/

Listing 15 main.cpp

/% [ ’Common headers’ begin (DON’T REMOVE
THIS LINE!)] =/

#include "main.h"

/+ [ ’Common headers’ end (DON’T REMOVE THIS
LINE!)] =/

#include <stdio.h>

int main(int argc, char xxargv)

{

return 0O;

}

/¥ [’ Presenter classes’
THIS LINE!)] x/

begin (DON’T REMOVE
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’

/x public function members of ’'Presenter
class */
void Presenter ::

{

sayHello( )

/x [ Presenter::sayHello’ begin] x/
/x [’ Presenter::sayHello’ end] x/
}

/* [’ Presenter classes’
THIS LINE!)] x/

end (DON’T REMOVE

. Modify generated main.cpp file to add some required func-
tionality. Print "Hello World!" message from sayHello()
function which will be invoked from the Presenter class in-
stance created in the main() function as shown in Listing
16:

Listing 16 main.cpp

/x [’ Common headers’ begin (DON’T REMOVE
THIS LINE!)] x/
#include "main.h"
/% [ ’Common headers
LINE!)] x/
#include <stdio.h>

" end (DON’T REMOVE THIS

int main(int argc,

{

char xxargv)

Presenter p;
p.sayHello () ;

return O;

}

/% [’ Presenter classes’
THIS LINE!)] =/

/x public function members of ’'Presenter
class */

void Presenter :

{

begin (DON’T REMOVE

>

:sayHello( )

/x [ Presenter::sayHello’ begin] x/
printf ("Hello_World !\n");
/x [’ Presenter::sayHello’ end] x/

}

/% [’ Presenter classes’
THIS LINE!)] x/

end (DON’T REMOVE

ress ENTER to continue,..

Fig. 21 Sample application

7. Synchronize source files with CodeDesigner RAD project.
The content of modified functions managed by Cod-
eDesigner RAD can be synchronized via menu item Code
generation->Synchronize code or automatically just before
the next code generation step (this functionality is optional
and must be enabled in the project settings). A dialog win-
dow is displayed during the synchronization process; it al-
lows user to select which modified code should be imported
into CodeDesigner RAD project as shown in Figure 22.

Select code items which should be updated:

W Presenter:sayHello

In generated files: In CodeDesigner:
@ printf("Hello World'\n"); 1

| Znddie || OK |

Fig. 22 Synchronization dialog

At the moment, the CodeDesigner RAD project is fully syn-
chronized with the application source code and user can pro-
ceed with the round-trip engineering like described in step
3. Note that if new classes were added to the source code
then reverse engineering CodeDesigner RAD’s functional-
ity must be used for import of those classes into the Cod-
eDesigner RAD project.

V. CONCLUSION
As shown in the paper, fully functional, production-ready

source code can be generated and complete source code round-
trip engineering can be done by using nowadays modern CASE
tools like CodeDesigner RAD. Moreover, the generated code can

. Build and run the application. The output should look like
illustrated in Figure 21.
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be optimized by using several algorithms as discussed in the pa-
per. The illustrated application development approach has major
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advantages such it is self-documenting, the application models
can be re-used as generic design patterns and at least the appli-
cation skeleton can be generated by using different programming
languages.
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