

Abstract— Recently, e-learning has become a very important

topic, and researches are focusing on improving it using both the

technology and the pedagogical domain theories. Design patterns in

e-learning are descriptions of good practice in e-learning. It focuses

on providing a solution to a learning problem in such a way that

designers can use this solution a million times over without ever

doing it the way twice. Experts from different disciplines are

supposed to use these patterns for different objectives related to their

community. These objectives may need to use several patterns

together and consequently form a pattern language, which can help in

solving a group of interrelated problems. In this paper we introduce a

new mechanism for building a learning design pattern language for

designers who are using IMS-LD as standard specification. All the

existing works consider the designer as a main actor and so they use

the bottom-up approach in building the language. We add experts as

another actor and so we use a top-down approach to build a pattern

language and a bottom-up approach to build patterns. Results show

that our approach gets more stable results.

Keywords—learning patterns, Pattern languages, E-learning,

XML, IMSLD, learning workflow

I. INTRODUCTION

LEARNING is a growing to be more common in

educational organizations. Learning design focuses on

activities done by participants instead of content. Towards

getting an efficient increase in the quality and variety of e-

learning, three central features should be considered [1]:

The first is the learning activity, where people always learn

better when they are actively involved in doing something.

These activities could be in the form of discussions,

simulations, problem-solving exercises, role-plays, quizzes or

meta-learning tasks such as mind-maps. The second is The

creating learning workflow, which is achieved by giving

thoughts to the sequential order and timing of the various

activities and the presentation of the resources needed to

support them. The thirds is the sharing and re-using learning

design. In other words, the learning design needs to be

described at a sufficient level of abstraction so that it can be

generalized beyond the single learning context for which it is

created.

Both theoretical and practical knowledge about e-learning is

monotonically increasing so that educational institutions can

gain from this knowledge in developing and running e-

learning courses.

Since e-learning is based on sharing contents and resources,

there are many international standards for sharing educational

design and integrating digital courses. In this paper we use the

IMS Learning Design (IMS-LD) specification, which is a

standardized computer language developed specifically for

describing educational processes and has many advantages

compared to other learning design specifications[2][3][4].

These advantages can be briefed as Completeness,

Pedagogical Flexibility, compatibility, reusability,

formalization and Reproducibility [5], [0]. IMS-LD helps

teachers and designers organize and orchestrate their learning

activities efficiently, which can then be reused by other

teachers and designers.

The concept behind the design patterns and the pattern

languages can help in extracting and solve repeated

instructional design problems in e-learning [6]. Design

patterns are a very effective way to capture proven solutions

for recurrent problems. It is mainly used to externalize the

implicit knowledge of an expert, using a highly structured

description format. The notion of a pattern language is

proposed in [6]. It is defined as a collection of related patterns

that captures the whole of the design process and can guide the

designer through step-by-step design guidelines. In this paper

we build a pattern language that merges both the designer and

expert knowledge to improve the language performance level.

This paper is organized as follows. In section 2, patterns are

described. In section 3 we present the definition of pattern

languages. In section 4 learning patterns are introduced. The

pattern language is proposed in section 4. Finally, the

conclusion recalls the main contribution and opens some

future perspectives.

II. IMS LEARNING DESIGN (IMS-LD) SPECIFICATION

In this paper we focus on We focus on the IMS Learning

Design (IMS-LD) specification, which is a standardized

computer language developed specifically for describing

educational processes.

A. Objectives of IMS-LD specification

In terms of objectives, the IMS-LD specification aims to

A novel Approach for Designing an E-Learning

Pattern Language

Maysoon Aldhekhail, Mohammed Alawairdhi, Alaa Eldeen Ahmed, and Azeddine Chikh

E

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

179

• Provide a containment framework of elements that can

describe any design of a teaching-learning process in a

formal way [4].

• Integrate the activities of both the learners and teachers.

• Integrate the resources and services used during learning.

• Support a wide variety of pedagogical approaches such as

problem-based learning, competence-based learning and

game-based learning.

• Supports mixed mode (i.e. blended learning) as well as pure

online learning.

• Enable authors to specify the complete learning design of a

course with all its details explicitly, instead of selecting a

restricted set of hardwired designs like in the LMS. This

means that the designer can specify the type, sequence and

way of learning activities, also the desired interaction

between different persons in different roles.

• Captures processes rather than content.

B. Requirements of IMS_LD specification

The IMS-LD specification is developed to meet some

specific requirements [5], [0]:

• Completeness: The specification must be able to fully

describe the teaching-learning process in a unit of learning,

including references to the digital and non-digital learning

objects and services needed during the process.

• Pedagogical Flexibility: It must be able to describe different

kinds of pedagogies without prescribing any specific

pedagogical approach.

• Personalization: It must be able to describe personalization

aspects within a learning design, so that the content and

activities within a unit of learning can be adapted based on

the preferences, pre-knowledge, educational needs and

situational circumstances of users. In addition, it must allow

the designer, when desired, to pass the control over the

adaptation process to the learner, a staff member and/or the

computer.

• Compatibility: It must enable learning designs to use and

effectively integrate other available standards and

specifications where possible.

• Reusability: It must make it possible to identify, isolate, and

exchange useful learning objects, and to re-use them in other

contexts.

• Formalization: It must describe a learning design in the

context of a unit of learning in a formal way, so that

automatic processing is possible.

• Reproducibility: It must enable a learning design to be

abstracted in such a way that repeated execution, in different

settings and with different persons.

C. Components of IMS-LD specification

IMS-LD consists of several components [5]:

• Conceptual Model: For the description of a teaching-

learning process and defines the basic concepts and relations

in IMS-LD, it is expressed as Unified Modeling Language

UML model.

• Information Model: To specify exactly how the entities in

conceptual model relate to each other, it is the core

document of the specification [5].

• Best Practice and Information Guide: Specifies some use

cases and best practices.

• Binding: Technology used to implement information model

is a series of XML schema.

III. PATTERN, PATTERN LANGUAGE AND LEARNING PATTERN

E-learning patterns are focused to produce mechanisms to

help in the design of learning materials and systems,

considering the same principles initially established for

architectural design patterns. There are three important three

main concepts that need to be understood in order to produce a

good design. These concepts are pattern, pattern language and

learning pattern:

A. Pattern

A pattern is an abstract solution to a problem in a certain

context. The primary goal of patterns is to create an inventory

of solutions to help in resolving problems that are common,

difficult and frequently encountered. The idea of pattern was

originally introduced by architect Christopher Alexander and

his colleagues at the end of the 70s as a way to describe

solutions to reoccurring problems encountered in architectural

design. The goal was to support both architects and general

public in designing quality towns, neighborhoods and homes

[7]. Now, design pattern is a new idea in the field of human

computer interaction and educational technology to support

designers in interaction and instructional design [8].

Using Pattern has many benefits such as allowing exchange

of expertise with others, giving a chance to novice users to

learn from experts, presenting strategies regarding common

recurring decisions, support reusability, provide more flexible

solutions than static templates and finally, save time for

designers. Many formats for design patterns are available. All

these formats share some common minimum characteristics

such as pattern name, problem description, context and the

solution itself. Some of these design patterns are: Alexandrian

pattern [5], E-LEN pattern model [9] and GOF Pattern model

[10], [11],[9]. To develop any of the previous patterns, there is

a development life cycle as shown in Fig. 1 [12]:

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

180

Figure1. The pattern development life cycle

As shown in the figure, the first step is to identify the idea

of the core pattern (pattern mining). There are two

classifications of methods for pattern mining [13]. The first is

called Inductive pattern mining, which is the most used

method. It is based on the derivation of general principles

from particular facts or examples related to the problem. The

second is called Deductive pattern mining that is heavily based

on thinking (mental) processes, observation and experts

experience [13].

Once we have defined a draft for the pattern, we need to

evaluate the pattern. This may be achieved by collecting

suggestions. Collecting suggestion may be done either by

following the work of Neil Harrison the work of members of

the E-LEN team [12]. In Neil Harrison method, the author

should describe several issues such as pattern ownership,

matching degree between the problem and the solution. The

other way is focused on validating several checklist items to

evaluate pattern [12]. Checklist items may include questions

such as "Does the pattern contain a recognizable problem,

which occurs over and over again in your professional

practice?" or "Is the name of the pattern meaningful? Can you

guess what the pattern might be about based only on the

pattern name?".

Once patterns are captured, related patterns are identified by

Checking whether the pattern contains more than one solution,

if so, it should be more than one pattern. Also, a check is

needed to find out if there is a lower level patterns that are

needed to complete or elaborate on an existing pattern.

B. Pattern Language

Patterns need language to describe it. Salingaros defined a

pattern language as: “A pattern is an encapsulation of forces; a

general solution to a problem. The language combines the

nodes [patterns] together into an organizational framework”

[5]. This definition highlights the underlying hierarchical

nature of a pattern language. It considers that they are the

connectivity rules between patterns that make a collection of

patterns into a language.

The first developed pattern language was “A pattern

Language: Towns, Buildings, Construction” was published in

1977 by the architect Christopher Alexander et al. He

introduced 253 patterns in the architectural domain presenting

patterns for everything from designing independent regions to

cities, to buildings and even to designing single rooms. By

connecting these patterns with common forces and other

relations, he transformed this collection of pattern to a pattern

language [5].

Pattern languages are needed to provide guidance on how to

successfully use combinations of patterns from a collection.

Also, they are needed to provide a way of understanding, and

possibly controlling, a complex system. Finally, they provide

the order in which problems should be solved.

C. Learning Pattern

Previous sections discussed the concept of pattern and

pattern language, and the different application domains of

them. In this paper, we will clarify and focus on the learning

design domain to build an e-learning pattern language.

Because people are the central focus of learning, learning

patterns have to deal with biological and social basics that

cannot be ignored. Several aspects of good learning that must

be considered when identifying and evaluating learning

pattern, such as Learning is active, Learning is individual,

Learning is cumulative, Learning is self-regulated, Learning is

goal-oriented, Learning is situated and Learning can be

learned[14]. There are different classifications of patterns in

instructional design process such as pedagogical, learning

experiences, activity, interaction and content [[14]].

IV. THE PROPOSED LANGUAGE PATTERN

All the existing works for building a pattern language is

based on the bottom-up approach (from patterns to pattern

language). This approach considers the designer as the main

actor. In our proposed approach, we look at the pattern

language as a joint point between the designers and experts. In

other words, pattern language is considered as a shared space

between designers and experts. In general some designers face

some difficulties or needs and experts will look up for

designers needs. Some other designers propagate their best

practices and recommendations and Experts can use them as a

reference to build new patterns. As a consequence, we

consider the pattern language as a space where needs are

expressed, best practices are proposed and patterns (as

solutions) are offered. For these reasons, we use a top-down

approach to build a pattern language and a bottom-up

approach to build patterns. We can consider a pattern as

composed of three main components:

The solution is the main component and considered the

most important. Metadata contains other information and

divided into two parts: Constraint that is mandatory and

Optional which contains extra useful information. The

proposed work aims to offer learning designers who use IMS-

LD specification, double support: both academic and practical.

The first one proposes ontology (LDO: learning Design

Ontology) which will provide theoretical knowledge about

concepts related to learning design. The second one proposes a

pattern language (LDPL: learning Design Pattern Language)

which will provide experiential knowledge about different

learning design aspects.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

181

LDO and LDPL systems will be structured at the higher

level according to IMS-LD structure. Indeed the elements

(Activity, Role, Environment and Method) will be the main

concepts which will structure the remainder knowledge.

LDPL support which is the part concerned by this research

follow these specifications:

1- Approach: Top-down and then Bottom-up. We defined

the architecture first then we added pattern knowledge as

components.

2- Representation :XML standard

3- Life cycle : Prototyping model

4- Development method : Object oriented method with

UML notation

5- XML Schema

6- Prototyping

 Now we describe the conceptual model of learning design

of the pattern language (LDPL) system attributes for each

class, the logical model of the pattern language, the idea of the

pattern language, then the xml schema.

A. Conceptual Model of Learning Design Pattern Language

(LDPL)

The following figure shows the conceptual model of

Learning Design Language (LDPL) of the proposed system.

The designer explains his problems or difficulties and the

expert figures what the designers are really facing and helps

them. The designer also can benefit from other designers by

considering the more common problems and takes advantages

of their comments. According to figure 2, the designer

searches for a solution for his problem and views similar

problems. If no solution is proposed, the problem is added to

the pattern language. The expert now will know the needs of

designers and try to figure solutions for their problem.

Moreover, other designers can recommend some comments

that may lighten the problems.

Figure 2. Conceptual model of learning design pattern language

As in the Fig. 2, Designer get into LDPL system to finding

proposed solution of their problems and viewing similar

problems. If the proposed solution for the problem was not

found, it will be added to the pattern language. The expert now

will know the needs of designers and try to figure out

solutions for the problem .Moreover, other designers can

recommend some comments that may lighten the problems.

Experts offer their experience to designers and see what

they need and what difficulties facing them. They propose

solutions to designer’s problems using a powerful strategy

(patterns) with formal structure .this will explain in more

details how solution will be used and problems that may face

when trying to apply these patterns. Experts can create a new

pattern for one or more problems, transfer existing solution

into formal pattern or link between existing patterns and

problems. They also advice some comments which help the

designer to solve their problems.

Designer can present the problems with any type:

pedagogical, technical, IMS_LD specifications or any other

problems.

As in Fig. 2, conceptual model contains many classes which

describe different parts of the pattern language. Each class has

a various attributes show their characteristics and functions.

To give the designer more reliability of proposed solutions in

pattern language, we provided detailed information about the

experts.

The pattern class includes two parts mandatory and

optional. The mandatory part may be represented by any of the

pattern models described in the previous section. To give the

pattern more flexibility, we defined an optional part contain

any other attributes the expert wants. patterns can be

classified into different kinds and we can use these

classification to categorize problems and consequently its

proposals in the pattern language. These categories have three

classes (pedagogical, technical and IMS_LD specification).

The Pedagogical class contains academic or education

problems and proposals. The Technical class means the

technical problems that may face the designer, e.g. problem in

using authoring tool of IMS_LD specification. IMS_LD

specification class which contains problems related to using

IMS_LD specification and their elements. To provide

flexibility to the pattern language “other” category is added.

The category will be used when the problem or proposal does

not belong to any of the main three categories.

Table1 shows different classes in LDPL system and their

attributes with some comments to explain ambiguous attribute.

 Class Attributes Comments

User

First Name

Last Name

E-mail address

Company or

University

Username

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

182

Password

Expert

Expert ID

Highest

qualification

held

Total

Experience

Functional Area

Current Industry

Key skills

C.V Attached as file

Designer Designer ID

Problem

Problem ID

Problem Title

Problem

Description

Problem Date

Problem Type Technical,

Pedagogical, IMS-

LD Specification or

other.

Teaching

Problem

Domain

Science,

Mathematics,

History…,etc

Proposal

Proposal

Description

Proposal Date

Proposal Type Technical,

Pedagogical, IMS-

LD Specification or

other.

Comment Comment

Author

Comment

Content

Expert

Comment

Expert

Comment ID

Designer

Comment

Designer

Comment ID

Pattern

Pattern ID Unique identifier

for the pattern

Name Name for the

pattern.

Problem Description of a

problem

Solution The solution itself

Context Explains when to

apply the pattern

Forces Describe the trade-

offs of applying the

solution.

Related Pattern All related patterns

put here.

Author(s) The authors of the

pattern.

References All references

Other elements Optional

Table 1: Attributes of LDPL classes

B. Logical Model (XML binding of LDPL)

The work in this paper is based on exchanging data between

designers and experts using the web so, the most suitable

choice to represent this work is XML. We employ an XML

schema to describe the structure of LDPL, the relations

between classes, elements, and attributes for each class. Here,

we present an example of XML schema that gives a complete

image of expert’s role in the pattern language.

The following code segment in table 2 shows the Expert

definition in XML schema. Expert is ‘subclass’ of user class

therefore, it inherences the attributes of user class (First Name,

Last Name, E-mail address, Company or University,

Username and Password). Expert’s curriculum vitae (C.V)

was defined as a type of any URI which means that expert can

specify his C.V as URI and has two roles in pattern language,

Advice_Comment which defines the relation between the

expert and his comment and Propose_Pattern which defines

the relation between expert and his proposed pattern.

<!-- ... Expert

... ->

<xs:complexType name="Expert">

<xs:complexContent>

<xs:extension base="User">

<xs:sequence>

 <xs:element name="Highest-Qulification-held"

type="xs:string"/>

 <xs:element name="Total-Experience" type="xs:string"/>

 <xs:element name="Functional-Area" type="xs:string"/>

 <xs:element name="Current-Industry" type="xs:string"/>

 <xs:element name="Key-Skill" type="xs:string"/>

 <xs:element name="C.V" type="xs:anyURI"/>

 <xs:element name="advice_Comment"

type="advice_relation" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="propose_Pattern"

type="propose_relation" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Expert_ID" type="xs:ID"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Table 2: Experts part of XML schema

Since pattern is the core of pattern language; the pattern part

of XML schema is represented as follows:

<!--

..Pattern.........................

.. -->

<xs:complexType name="Pattern">

<xs:complexContent>

<xs:extension base="Proposal">

 <xs:sequence>

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

183

 <xs:element name="Pattern-name" type="xs:string"/>
 <xs:element name="Pattern-Problem" type="xs:string"/>

 <xs:element name="Solution" type="xs:string"/>

 <xs:element name="Context" type="xs:string"/>

 <xs:element name="Forces" type="xs:string"/>

 <xs:element name="Related-Pattern" type="xs:string"/>

 <xs:element name="Author" type="xs:string"/>

 <xs:element name="References" type="xs:string"/>

 <xs:element name="SolveProblem"

type="solvedBy_relation" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="For_LD_element" type="for_relation"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Proposed_byExpert"

type="propose_relation"/>

 <xs:any minOccurs="0"/>

 </xs:sequence>

<xs:attribute name="Pattern_ID" type="xs:ID"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Table 3 Pattern part of XML schema

Refereeing to the Conceptual model, Pattern is a subclass of

proposal therefore; it’s defined as an extension. Pattern ID is

defined as a unique and the elements of the pattern are defined

as sequence elements. Pattern contains three types of relations,

“SolveProblem”, “For_LD_element” and

“Proposed_ByExpert”. “SolveProblem” defines the relation

between the pattern and the problem it is solving. Pattern can

solve one or more of designer's problems or it may not relate

to any existing designers problems. “For_LD_element”

describes the relation between the pattern and the LD element

if pattern solved a problem related to LD element.

“Proposed_ByExpert” defines the expert who adds the pattern

to LDPL system. Different elements could be added by expert,

when needed. Pattern may relate to one or many problems.

Problem is related to pattern through solved_by_Pattern

relation.

The xml schema of the problem can be defined as follows:

<!-- ..

Problems... -->

<xs:complexType name="Problem">

<xs:sequence>

 <xs:element name="Problem-Title" type="xs:string"/>

 <xs:element name="Problem-Description"

type="xs:string"/>

 <xs:element name="Proplem-Date" type="xs:date"/>

 <xs:element name="Problem-Type" type="Problem-

Category"/>

 <xs:element name="Teaching-Problem-Domain"

type="xs:string"/>

 <xs:element name="Course-Audience" type="xs:string"/>

 <xs:element name="has_Designer" type="has_relation"/>

 <xs:element name="facilitateBy_De_Comment"

type="facilitateBy_relation" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="In_LD_element" type="In_relation"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="solved_by_pattern"

type="solvedBy_relation" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="lighted_by_Ex_comment"

type="lighted_relation" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Problem_ID" type="xs:ID"/>

</xs:complexType>

Table 4: Problem’s definition in XML schema

C. XML Instance of XML Schema

To illustrate the pattern language (LDPL), we build an

XML file from XML schema. As an example of XML

Instance, we take the same explained parts in XML schema

(expert, pattern and problem). Table 5 shows these parts:

<Expert Expert_ID="ID_1">

 <First-Name>Dr. Azeddine </First-Name>

 <Last-Name>CHIKH</Last-Name>

 <Email-Address>az_chikh@KSU.EDU.SA</Email-

Address>

 <Company-OR-Uiversty>King Saud University

</Company-OR-Uiversty>

 <Password>CHIKH1965</Password>

 <Highest-Qulification-held>PHD in Computer

Science</Highest-Qulification-held>

 <Total-Experience>21years</Total-Experience>

 <Functional-Area>Researching,Teaching</Functional-

Area>

 <Current-Industry> Associate Professor, Information

Systems Department , College of computer engineering, King

Saud University</Current-Industry>

 <Key-Skill>writing</Key-Skill>

 <C.V>http://faculty.ksu.edu.sa/chikh/Pages/cvEnglish.aspx

</C.V>

 <advice_Comment advice_ID="ID_88"/>

 <propose_Pattern propose_ID="ID_20"/>

 <propose_Pattern propose_ID="ID_30"/>

</Expert>

<Pattern Pattern_ID="ID_111">

 <Proposal-Description>This pattern will solve the

problem for answering student’s questions</Proposal-

Description>

 <Proposal-Date>2004-05-12</Proposal-Date>

 <Proposal-type>

 <Pedagogical/>

 </Proposal-type>

 <Pattern-name>FAQ</Pattern-name>

 <Pattern-Problem>Students have problems and
questions that necessitate quick responses.</Pattern-
Problem>
 <Solution>

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

184

Create a document in the course that contains a list of

questions along with the answers.This include questions that

have been already asked by students, and if you have taught

the course before, you can include common questions from

previous students. It would also be beneficial to include any

questions that you anticipate students may have. To insure that

students utilize this document, encourage them to refer to it as

a resource tool for them to address many of their concerns.

 </Solution>

 <Context>

Any web-based course consisting of students whose location

may be different from that of the instructor’s or who are

novice web students.

 </Context>

 <Forces>

 Emails from students can quickly fill up an

instructor’s email account.

 Student’s work hours may be different from

instructor’s hours.

 Students want quick responses

 </Forces>

 <Related-Pattern>Feedback-Loop</Related-Pattern>

 <Author>Jon Smith</Author>

 <References>

 Khan, B. (Ed). (1997). Web-Based Instruction

 Shaw, R. (1996). The FAQ Manual of Style.

 </References>

 <solveProblem solvedBy_ID="ID_444"/>

 <Proposed_byExper propose_ID="ID_20"/>

<Problem Problem_ID="ID_11">

 <Problem-Title>Answering students questions</Problem-

Title>

 <Problem-Description>Students have problems and

questions that necessitate quick responses</Problem-

Description>

 <Proplem-Date>2003-12-23</Proplem-Date>

 <Problem-Type>

 <Pedagogical/>

 </Problem-Type>

 <Teaching-Problem-Domain>Any</Teaching-Problem-

Domain>

 <Course-Audience>Any</Course-Audience>

 <has_Designer has_ID="ID_100"/>

 <solved_by_pattern solvedBy_ID="ID_444"/>

 <lighted_by_Ex_comment Lighted_ID="ID_555"/>

 </Problem>

 Table 5: Example of XML instance

In this example, expert advised one comment and two

patterns. Assume the pattern is called (FAQ pattern). FAQ

pattern used to solve the problem of quick necessary responses

of student problems and difficulties. The solution proposed by

the pattern author is to create a document in the course that

contains a list of questions and answers. This includes

questions that have been already asked by students, and if

teacher have taught the course before, he could include

common questions from previous students. It would also be

beneficial to include any predicted questions from students.

This pattern is related to problem through the relation

SolveProblem and connects to the expert who adds it to the

pattern language through Proposed_byExpert relation.

V. LDPL TOOL KIT

In order to validate and test the proposed LDPL, we

implemented a tool kit with the following specification.

A. Problem:

How can the designer and the expert share learning

resources in order to build effective learning patterns instead

of being limited to reading separate resources in individual

ways.

B. Solution:

Provide a toolkit for both the designer and the expert to use,

which will facilitate them in studying and exploring the

existing similar problems and their solutions. Then they can

decide which solution that is closer to their own preferences.

This tool should offer them a set of functions for the user

(expert or designer).

1) Designer Part functionalities

 The designer can benefit from LDPL system in different
ways. He can use the system to search for solution of specific

problem she faced or to add a comment to problem.

Also she can view all problems in the system and their

proposed solutions if any. The toolkit has two main menu

items:
a) Problem: designer can add new problem or list existing problems.

b) Proposal: designer can view all proposals in the system.
The first one is related to the problem the need to be solved.

Through these items the designer is able to:

• View problem's information with its solutions (if any).

• Access these solutions (patterns, expert comments).

• View similar specific problem.

• Update the problem, if he is legal (only problem’s author is

legalized to update the problem) designer can edit and then

click Ok.

• Delete a problem, if he is legal, by clicking Delete button.

• View designer's comment for this problem.

• Add new comment to the problem (by entering comment's

title and description)

Also, Designers can enter the problem metadata (all

information except problem description) to the system. The

tool kit allow designer to explore any similar problems, their

patterns and their comments to help the user to enhance his

design. If there is no previous solutions proposed for the

problem, the designer will be allowed to add the problem

description so that other may be able to use it later.

2) Expert Part functionalities

Expert can benefit from the toolkit in different aspects. He

can use the LDPL system to see what the designer’s problems

are and what the learning design difficulties that designers

face. In addition he can present the proposals either as pattern

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

185

or comment in the system. Expert interface has three

functionalities:

a) Problem: where expert can view all problems in the system
either solved or not.

b) Proposal: where expert can add new proposal or view
existing ones; proposal can be pattern or expert comment.

c) Tool: where he can: View and edit expert’s account, Export
a pattern from the pattern language, and Import a pattern to

the pattern language.

Also experts are able to display pattern information, update

a pattern or even delete a pattern.

VI. CONCLUSION

In this paper presented a new approach for building pattern

language in e-learning. As far as we know, all existing work

present the pattern language as a collection of patterns

proposed by expert and related to each other in a specific way.

When designers search for solutions of their designing

problems it takes great effort. In other hand, experts present

solutions as patterns without knowing what the actual

problems designers face are. LDPL is considered as an

interaction environment, between designers who use IMS-LD

specification, and experts.

REFERENCE

[1] Sue Bennett, Shirley Agostinho, Lori Lockyer, Lisa Kosta,Jennifer
Jones,Rob Koper,Barry Harper ”Learning designs: Bridging the gap

between theory and practice”, Acsilite, pp.51-60, 2007.

[2] Colin Tattersall, Tim Sodhi, Daniel Burgos, Rob Koper “Using the IMS
Learning Design notation for the modelling and delivery of education”.

Handbook of Visual Languages for Instructional Design: Theories and

Practices, pp. 299-314, Oct 2006.
[3] Rob Koper, Yongwu Miao. “Using the IMS LD Standard to Describe

Learning Design”, 2006.

[4] Chew, L. K. “IMS Learning Design and eLearning” Second
International Conference on eLearning for Knowledge-Based Society.

Bangkok, Thailand, 2005

[5] Koper, R "Current Research in Learning Design” Educational
Technology & Society, pp. 13-22, 2006.

[6] Alexander, C., Ishikawa, S., & Silverstein, M “A pattern language:

towns, buildings, construction” New York: Oxford University Press,
1977.

[7] Paris Avgeriou,Andreas Papasalouros,Symeon Retalis,Manolis

Skordalakis “Towards a Pattern Language for Learning Management
Systems” Educational Technology & Society, pp.11-24, 2003.

[8] Sherri S Frizell, R. H “Aligning Theory and Web-based Instructional

Design Practice with Design Pattern”, Proceedings of E-Learn-World

Conference on E-Learning in Corporate, Government, Healthcare &

Higher Education , pp. 298–304, 2003.
[9] Tutorail Making e-learning design patterns. http://www2.tisip.no/E-

LEN/tutorial/index.html
[10] GoF's Design Patterns. http://channah.com/portfolio/talk/Paper/GoF-

patterns/GoFTemplate.htm

[11] A.Salingaros, N. “The Structure of Pattern Language. arq-Architectural
Research Quarterly” pp. 149-161, 2000.

[12] E.-L. p.team. “Design patterns and how to produce them”.E_LEN,2004.
[13] Baggetun, R., Rusman, E. & Poggi, C.

“Design Patterns For Collaborative Learning:

From PracticeTo Theory And Back” In L. Cantoni & C. McLoughlin

(Eds.), Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications pp. 2493-2498, 2004.

[14] Manuel Caeiro, Martín Llamas, Luis Anido. “E-learning Patterns : an
Approach to Facilitate the design of E-learning Materials”, CIIEE, pp.
294-303, 2007.

Maysoon Aldhekhail obtained her B.Sc. degree in computer applications

from King Saud University, Saudi Arabia in 2001. Then she received his
M.Sc. degree in information Systems from King Saud University, Saudi

Arabia in 2009. Her master dissertation was in e-learning patterns and

systems.
She works as lecturer in the college of Computer and Information Sciences,

Al - Imam Muhammad ibn Saud Islamic University. She is also the vice-chair

of the information systems department.
Her research interests include e-learning (patterns, environments), e-

commerce, and HCI (usability, adaptability).

Mohammed A. Alawairdhi obtained his B.Sc. degree in information Systems

from King Saud University, Saudi Arabia in 1996. Then he received his M.Sc.

degree in Computer Science from California State University, Chico, USA in
2000. He earned his Ph.D. degree in Computer Science in 2009 from De

Montfort University, Leicester, UK. His Ph.D. research was in software

engineering.
He works as an Assistant Professor in the college of Computer and

Information Sciences, Al - Imam Muhammad ibn Saud Islamic University. He

is also the vice-dean of Graduate Studies and Research and head of the college
research center.

His research interests include software evolution, ubiquitous computing

(sensor-based applications, sensor networks, smart environments, and RFID),
business process reengineering (modeling, simulation), and Human Computer

Interaction (culture and cyberspace).

Alaa Eldeen S. Ahmed obtained his B.Sc. degree in Communication

Engineering from Zagazig University, Egypt in 1993. Then he received his
M.Sc. degree in Computer Science in Cairo University, Cairo, in 1998. He

earned his Ph.D degree in computer Science in 2005 from University of

Connecticut, USA. His Ph.D was in fault tolerant Real time scheduling.
He works as Assistant Professor in the college of computer and information

sciences, Al – Imam Muhammad ibn Saud Islamic University.

His research interests include Distributed systems support for harvesting
unused resources in cloud computing environment, fault tolerant algorithm for

mobile agents, wireless sensor network performance evaluation and the

management of E-learning.

Azeddine Chikh obtained his B.Sc. degree in in Computer Science National

Institute of Computer Science, Algeria in 1988. He earned his MSc. In
Computer Science National Institute of Computer Science, Algeria in

collaboration with University of Claude Bernard at Lyon – France in 1994. He

earned his Ph.D degree in Computer Science from the National Institute of
computer science, Algeria in collaboration with University of Paul Sabatier,

Toulouse, France in 2004.

He works as an Associate Professor in Information Systems Department,
college of computer and information sciences, King Saud University. He

worked as an Associate Professor, Faculty of engineering, University of

Aboubakr Belkaid, Tlemcen, Algeria.
His research interests include Decision Sciences, e-learning, Information

System, Ontology, Pattern Recognition, Semantic Web Technologies,

Software Engineering.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

186

