
 

 

  

Abstract— In this paper, we will use incremental algorithms in 

order to save computational time when solving different network 

flow problems. We will focus on two important network flow 

problems: maximum flow problem and minimum cost flow problem.  

Incremental algorithms are appropriated to be used when we have 

a network in which we already have established an optimal flow (in 

our case either a maximum flow or a minimum cost flow), but we 

must modify the network by inserting a new arc or by deleting an 

existent arc. An incremental algorithm starts with an optimal flow in 

the initial network and determines an optimal flow in the modified 

network. 

First, we present incremental algorithms for the maximum flow 

problem. These algorithms were developed by S. Kumar and P. 

Gupta in 2003. They described algorithms for determining maximum 

flows in a network obtained from a given network in which a 

maximum flow is already known and in which a new arc is inserted 

or an existent arc is deleted.  

Finally, we describe our incremental algorithms for the minimum 

cost flow problem. Let us consider a network in which we already 

established a minimum cost flow. We describe and solve the problem 

of establishing a minimum cost flow in this network after inserting a 

new arc and after deleting an existent arc. We focus on these 

problems because they arise in practice.  
 

Keywords— Incremental computation, Maximum flow, 

Minimum cost flow, Network algorithms, Network flow.  

I. INTRODUCTION 

ETWORK flow problems are a group of network 

optimization problems with widespread and diverse 

applications. The literature on network flow problems is 

extensive. Over the past 60 years researchers have made 

continuous improvements to algorithms for solving several 

classes of problems. From the late 1940s through the 1950s, 

researchers designed many of the fundamental algorithms for 

network flow, including methods for maximum flow and 

minimum cost flow problems. In the next decades, there are 

many research contributions concerning improving the 

computational complexity of network flow algorithms by using 

enhanced data structures, techniques of scaling the problem 

data etc.  

 One of the reasons for which the maximum flow problem 
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and that minimum cost flow problem were studied so 

intensively is the fact that they arise in a wide variety of 

situations and in several forms. 

We can save computational time by using incremental 

algorithms when the network, in which we know an optimal 

flow (in our case either a maximum flow or a minimum cost 

flow), is modified by inserting a new arc or by deleting an 

existent arc. After the network is modified, we need to find an 

optimal flow. A first way to solve this problem is to apply a 

maximum flow algorithm or a minimum cost algorithm starting 

from scratch. But, this is not the fastest way to solve the 

problem. The efficient way to solve this problem is to start 

from the optimal flow in the original network and to use an 

incremental algorithm which will gradually transform the 

optimal flow in the original network in an optimal flow in the 

modified network. Consequently, the incremental algorithms, 

that we will describe, are used to update solutions of optimal 

flow problems, after the network was modified by inserting a 

new arc or by deleting an existent arc.  

In the following two sections we will describe incremental 

algorithms for maximum flows and for minimum cost flows 

respectively. 

II. MAXIMUM FLOWS 

The maximum flow problem is one of the fundamental 

problems in network flow theory and it was studied 

extensively. The importance of the maximum flow problem is 

due to the fact that it arises in a wide variety of situations and 

in several forms. Sometimes the maximum flow problem 

occurs as a subproblem in the solution of more difficult 

network problems, such as the minimum cost flow problem or 

the generalized flow problem. The maximum flow problem 

also arises in a number of combinatorial applications that on 

the surface might not appear to be maximum flow problems at 

all. The problem also arises directly in problems as far 

reaching as machine scheduling, the assignment of program 

modules to computer processors, the rounding of census data 

in order to retain the confidentiality of individual households, 

tanker scheduling and several others. 

The maximum flow problem was first formulated and 

solved using the well known augmenting path algorithm by 

Ford and Fulkerson in 1956. Since then, two types of 

maximum flow algorithms have been developed: augmenting 

path algorithms and preflow algorithms: 

1) The augmenting path algorithms maintain mass 
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balance constraints at every node of the network other 

than the source node and the sink node. These 

algorithms incrementally augment flow along paths 

from the source node to the sink node. By determining 

the augmenting paths with respect to different 

selection rules, different algorithms were developed. 

For details see [1]. 

2) The preflow algorithms flood the network so that some 

nodes have excesses. These algorithms incrementally 

relieve flow from nodes with excesses by sending flow 

from the node forward toward the sink node or 

backward toward the source node. By imposing 

different rules for selecting nodes with excesses, 

different preflow algorithms were obtained. These 

algorithms are more versatile and more efficient than 

the augmenting path algorithms. For details see [1]. 

A. Notation and Definitions 

Without any loss of generality, we can consider a network 

with zero lower bounds, because any maximum flow problem 

in a network with positive lower bounds can be transformed 

in an equivalent maximum flow problem in a network with 

zero lower bounds (for details see [1]). 

Let G = (N, A, c, s, t) be a capacitated network with a 

nonnegative capacity c(i, j) associated with each arc (i, j)∈A. 

We distinguish two special nodes in the network G: a source 

node s and a sink node t. 

Let n=|N|, m = |A| and C = max {c(i, j) | (i, j) ∈ A}. 

A flow is a function f : A →R+ satisfying the next 

conditions: 

 

f(s, N) - f(N, s) = v             (1) 

f(i, N) - f(N, i) = 0, i ≠ s,t           (2) 

f(t, N) - f(N, t) = -v                (3) 

0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A             (4) 

 

for some v ≥ 0 

We refer to v as the value of the flow f. 

The maximum flow problem is to determine a flow f for 

which v is maximized. 

For the maximum flow problem, a preflow is a function       

f : A →R+  satisfying the next conditions: 

 

f(i, N) - f(N, i) ≥ 0, i ≠ s,t             (5) 

0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A               (6) 

 

Let f be a preflow. We define the excess of a node i∈N in 

the following manner: 

 

e(i) = f(i, N) - f(N, i)              (7) 

 

Thus, for the maximum flow problem, for any preflow f, 

we have: 

e(i) ≥ 0, i∈N \{s, t}. 

We say that a node i∈N \{s, t} is active if e(i) > 0 and 

balanced if e(i) = 0. 

A preflow f for which  

e(i) = 0, i∈N \{s, t} 

is a flow. Consequently, a flow is a particular case of preflow. 

A pseudoflow is a function f : A →R+  satisfying the only 

conditions (4). 

 For any pseudoflow f, we define the imbalance of node i as 

 

 e(i) = v(i) + f(N, i) - f(i, N),  for all i∈N. 

 

 If e(i) > 0 for some node i, we refer to e(i) as the excess of 

node i; if e(i) < 0, we refer to -e(i) as the deficit of node i. If 

e(i) = 0 for some node i, we refer to node i as the balanced. 

Consequently, a preflow is a particular case of psedoflow. 

For the maximum flow problem, the residual capacity    

r(i, j) of any arc (i, j)∈A, with respect to a given psedoflow f,  

is given by  

r(i, j)  = c(i, j) - f(i, j) + f(j, i). 

By convention, if (i, j)∈A and (j, i)∉A, then we add the arc 

(j, i) to the set of arcs A and we set c(j, i) = 0. The residual 

capacity r(i, j) of the arc (i, j) represents the maximum 

amount of additional flow that can be sent from the node i to 

node j using both of the arcs (i, j) and (j, i). 

The network G(f)  = (N, A(f)) consisting only of those arcs 

with strictly positive residual capacity is referred to as the 

residual network (with respect to the given pseudoflow f). 

A directed path from the source node s to the sink node t in 

the residual network G(f)  = (N, A(f)) is called an augmenting 

path. 

Let P be an augmenting path. Then  

 r(P) = min{r(i, j) | (i, j) ∈P} 

is the residual capacity of P. 

 If in the residual network G(f) = (N, A(f)) there is an 

augmenting path P then we can send r(P) units of flow along 

the path P, obtaining in this way a flow whose value is with 

r(P) units greater than the value of the initial flow f. 

 

Theorem 1.([1]) A flow f in the network G = (N, A, c, s, t) is a 

maximum flow if and only if the residual network G(f)  =     

(N, A(f)) contains no augmenting paths.   

 

In the residual network G(f)  = (N, A(f)) the distance 

function   d : N →N  with respect to a given preflow f  is a 

function from the set of nodes to the nonnegative integers.  

We say that a distance function is valid if it satisfies the 

following validity conditions: 

d(t) = 0  

d(i) ≤ d(j) + 1, for every arc (i, j) ∈A(f).  

We refer to d(i) as the distance label of node i. 

 

Theorem 2.([1])(a) If the distance labels are valid, the 

distance label d(i) is a lower bound on the length of the 

shortest directed path from node i to sink node t in the 

residual network. 

       (b) If d(s) ≥ n, the residual network contains no directed 

path from the source node s to the sink node t. 
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B. Incremental algorithms for the maximum flow problem 

In this subsection we describe incremental algorithms which 

update the solution of a maximum flow problem after inserting 

a new arc and after deleting an arc. These algorithms were 

described by S. Kumar and P. Gupta in [19]. 

First, we will focus on the problem of determining a 

maximum flow in a network after inserting a new arc. 

Let G=(N, A, c, b, v) be a network in which we already 

determined a maximum flow f. Let us insert a new arc  (k, l) 

with capacity c(k, l) into the network G, obtaining in this way 

the network G’= (N, A’, c’, b’, v), where: 

  A’ = A ∪ {(k, l)}  

  c’(i, j)= c(i, j), ∀(i j)∈A’ 

  

The new network G’ can contain a maximum flow f’ with a 

greater value than f – the maximum flow in G. This is possible 

because when this new arc (k, l) is inserted in the network G 

there may appear new augmenting paths through which 

additional flow can be sent. We will refer to a node that is 

contained in at least one of these new augmenting paths as an 

affected node. The set of all affected nodes will be denoted by 

AN.  

The affected nodes are contained in the augmenting paths 

from the source node s to the node k and in the augmenting 

paths from the node l to the sink node t. Consequently, they 

can be determined by applying a modified Backward Breadth 

First Search algorithm from node k to node s and by applying a 

modified Breadth First Search algorithm starting from node l 

to node t. 

The modified Backward Breadth First Search algorithm 

from node k to node s will explore only those nodes y for 

which the distance label d(y) ≥ n because, from Theorem 2, 

only those nodes are the candidates to the set AN.  

The modified Backward Breadth First Search (BBFS) 

algorithm is the following: 

 

BBFS(v, u) Algorithm; 

Begin 

W = {v}; 

AN = {v}; 

while W ≠∅ do  

begin 

  remove a node x from W;  

  if x = v then break; 

  for each (y, x) ∈A do  

   if y ∉ AN and r(y, x) >0 and d(y) ≥ n then 

   begin 

    W = W ∪{y}; 

    AN = AN ∪ {y}; 

   end; 

end 

end. 

 

The modified Breadth First Search algorithm from node l to 

node t will explore only those nodes y for which the distance 

label d(y) < n because, from Theorem 2, only those nodes are 

the candidates to the set AN.  

The modified Breadth First Search (BFS) algorithm is the 

following: 

 

BFS(v, u) Algorithm; 

Begin 

W = {v}; 

AN = {v}; 

while W ≠∅ do  

begin 

  remove a node x from W;  

  if x = u then break; 

  for each (x, y) ∈A do  

   if y ∉ AN and r(x, y) >0 and d(y) < n then 

   begin 

    W = W ∪{y}; 

    AN = AN ∪ {y}; 

   end; 

end 

end. 

 

The incremental algorithm for updating the solution of a 

maximum flow  in a network after inserting a new arc follows 

the approach of the generic preflow algorithm ([1]) developed 

by Goldberg and Tarjan.  

 

 

Incremental Add Max Flow Algorithm; 

Begin 

let  f  be a maximum flow in the network G; 

determine the new network G’ obtained from G by 

inserting a new arc (k, l); 

determine the residual network G’(f); 

if d(k) ≥ n and d(l) < n then 

begin 

 call BBFS(k, s) to determine the set AN1 of  the affected 

nodes that lie on the augmenting paths from the source node s 

to the node k;  

 call BFS(l, t) to determine the set AN2 of  the affected 

nodes that lie on the augmenting paths from the node l to the 

sink node t; 

 AN = AN1 ∪ AN2; 

 compute the exact distance labels for all the nodes  i∈AN; 

 for each arc (s, j)∈A’(f) do 

  if j∈AN then 

     f(s, j) = c’(s, j); 

 d(s) = n; 

while  the network contains an active node do  

begin 

select an active node i; 

push/relabel(i); 

end 

end 

end. 

 

procedure push/relabel(i); 

begin 
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if the network contains an admissible arc (i, j) and j∈AN 

then 

push g = min(e(i), r(i, j)) units of  flow from node i to 

node j; 

else d(i) = min{ d(j) | (i, j) ∈ A’(f) and j∈AN }+1 

end; 

 

A push of  g units of  flow from node i to node j means that: 

 e(i) = e(i) -g 

 e(j) = e(j) +g 

 r(i, j) = r(i, j) – g 

 r(j, i) = r(j, i) + g. 

 

Theorem 3.([19]) The incremental add max flow algorithm 

computes correctly a maximum flow in the network G’, 

obtained from G by inserting a new arc (k, l). 

 

Theorem 4.([19]) The incremental add max flow algorithm 

runs in O(|AN|
2
m) time. 

 

 Now we will study the problem of determining a maximum 

flow in a network after deleting an arc. 

 Let G=(N, A, c, b, v) be a network in which we already 

determined a maximum flow f. Let (k, l) be an arbitrary arc of 

G. The arc (k, l) will be removed from the network G, 

obtaining in this way the network G’= (N, A’, c’, b’, v), 

where: 

 A’ = A \ {(k, l)}  

 c’(i, j)= c(i, j), ∀(i j)∈A’ 

   

     Let f be a maximum flow in G and let f’ be a maximum 

flow in the network G’ obtained from G through deletion of 

the arc (k, l). The value of the flow f’ might by smaller than 

the value of f. 

      In the network G’ obtained by deleting the arc (k, l) from 

G, it is possible that f is no longer a flow, but a pseudoflow.  

More precisely, if in G the flow on the arc (k, l) was strictly 

positive, then, in G’, f will no longer satisfy the mass balance 

constraints (2) for both of the nodes k and l. This means that, 

in G’, node k
 

will have a strictly positive excess. The 

incremental algorithm will try to push this excess toward the 

sink node t using alternate augmenting path in the modified 

network G’. The incremental algorithm for determining a 

maximum flow in a network after removing an arc is the 

following: 

 

Incremental Del Max Flow Algorithm; 

Begin 

let  f  be a maximum flow in the network G; 

determine the residual network G’(f); 

if f(k, l) > 0 then 

begin 

 call BFS(l, t) to determine the set AN1 of  the affected 

nodes that lie on the augmenting paths from the node l to the 

sink node t; 

 determine the inverse network G
-1

(f)= (N, A
-1

(f)) by 

reversing the arcs in the residual network G(f); 

 for each node  j∈AN1 \{t} do 

 d
-1

(j) = 0; 

 d
-1

(t) = | AN1|; 

  call push/relabel(l) in the inverse network G
-1

(f);  

 determine the new network G’ obtained from G by 

deleting the arc (k, l); 

 determine the residual network G’(f); 

 call BBFS(k, s) to determine the set AN2 of  the affected 

nodes that lie on the augmenting paths from the source node s 

to the node k; 

 for each node  j∈AN2 do 

  d(j) = 0;  

 call push/relabel(l) in the residual network G’(f); 

 call push/relabel(k) in the residual network G’(f); 

end 

end. 

 

 

Theorem 5.([19]) The incremental del max flow algorithm 

computes correctly a maximum flow in the network G’, 

obtained from G by deleting the arc (k, l). 

 

Theorem 6.([19]) The incremental del max flow algorithm 

runs in O(|AN|
2
m) time. 

III. MINIMUM COST FLOWS 

The minimum cost flow problem, as well as one of its 

special cases which is the maximum flow problem, is one of 

the fundamental problems in network flow theory and it was 

studied extensively. The importance of the minimum cost flow 

problem is also due to the fact that it arises in almost all 

industries, including agriculture, communications, defense, 

education, energy, health care, medicine, manufacturing, 

retailing and transportation. Indeed, minimum cost flow 

problems are pervasive in practice. 

A. Notation and Definitions 

Let G = (N, A) be a directed graph, defined by a set N of n 

nodes and a set A of m arcs. Each arc (i, j)∈A has a capacity 

c(i, j) and a cost b(i, j). We associate with each node i∈N a 

number v(i) which indicates its supply or demand depending 

on whether v(i) > 0 or v(i) < 0. In the directed network             

G = (N, A, c, b, v), the minimum cost flow problem is to 

determine the flow f(i, j) on each arc (i, j)∈A which 

 

minimize  ∑
∈Aji

jifjib

),(

),(),(         (8) 

 

subject to 

 

   ∑∑
∈∈

∈∀=−

AijjAjij

Niivijfjif

),(|),(|

),(),(),(     (9) 

Ajijicjif ∈∀≤≤ ),(),,(),(0 .      (10) 

 

A flow f satisfying the conditions (9) and (10) is referred to 

as a feasible flow. 

Let C denote the largest magnitude of any supply/demand or 

finite arc capacity, that is 
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C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,        

c(i, j)<∞}) 

 

and let B denote the largest magnitude of any arc cost, that is 

 

B = max{b(i, j) | (i, j)∈A}. 

 

 The arc adjacency list or, shortly, the arc list of a node i is 

the set of arcs emanating from that node, that is: 

 

A(i) = {(i, j) | (i, j)∈A}. 

 

The residual network G(f) = (N, A(f)) corresponding to a 

flow f is defined as follows. We replace each arc (i, j)∈A by 

two arcs (i, j) and (j, i). The arc (i, j) has the cost b(i, j) and the 

residual capacity r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the 

cost b(j, i) = -b(i, j) and the residual capacity r(j, i) = f(i, j). 

The residual network consists only of arcs with positive 

residual capacity. 

We shall assume that the minimum cost flow problem 

satisfies the following assumptions: 

 

Assumption 1. The network is directed. 

This assumption can be made without any loss of generality. 

In [1] it is shown that we can always fulfil this assumption by 

transforming any undirected network into a directed network. 

 

Assumption 2. All data (cost, supply/demand and capacity) are 

integral. 

This assumption is not really restrictive in practice because 

computers work with rational numbers which we can convert 

into integer numbers by multiplying by a suitably large 

number. 

 

Assumption 3. The network contains no directed negative cost 

cycle of infinite capacity. 

If the network contains any such cycles, there are flows with 

arbitrarily small costs. 

 

Assumption 4. All arc costs are nonnegative. 

This assumption imposes no loss of generality since the arc 

reversal transformation described in [1] converts a minimum 

cost flow problem with negative arc costs to one with 

nonnegative arc costs. This transformation can be done if the 

network contains no directed negative cost cycle of infinite 

capacity. 

 

Assumption 5. The supplies/demands at the nodes satisfy the 

condition 0)( =∑
∈Ni

iv and the minimum cost flow problem has 

a feasible solution. 

 

Assumption 6. The network contains an uncapacitated directed 

path (i.e. each arc in the path has infinite capacity) between 

every pair of nodes. 

We impose this condition by adding artificial arcs (1, i) and 

(i, 1) for each i∈N and assigning a large cost and infinite 

capacity to each of these arcs. No such arc would appear in a 

minimum cost solution unless the problem contains no feasible 

solution without artificial arcs. 

 

We associate a real number π(i) with each node i∈N. We 

refer to π(i) as the potential of node i. These node potentials 

are generalizations of the concept of distance labels that we 

used in previous section. 

For a given set of node potentials π, we define the reduced 

cost of an arc (i, j) as 

 

b
π
 (i, j) = b(i, j) – π(i) + π(j). 

 

The reduced costs are applicable to the residual network as 

well as to the original network. 

 

Theorem 7. ([1]) (a) For any directed path P from node h to 

node k we have 

 

∑∑
∈∈

=

PjiPji

jibjib

),(),(

),(),(
π

– π(h) + π(k) 

 

(b) For any directed cycle W we have 

 

∑∑
∈∈

=

WjiWji

jibjib

),(),(

).,(),(
π

 

 

Theorem 8. (Negative Cycle Optimality Conditions) ([1]) A 

feasible solution f is an optimal solution of the minimum cost 

flow problem if and only if the residual network G(f) contains 

no negative directed cycle. 

 

Theorem 9. (Reduced Costs Optimality Conditions) ([1]) A 

feasible solution f is an optimal solution of the minimum cost 

flow problem if and only if some set of node potentials π 

satisfy the following reduced cost optimality conditions: 

 

b
π
(i, j) ≥ 0  for every arc (i, j) in the residual network 

G(f). 

 

Theorem 10.(Complementary Slackness Optimality 

Conditions) ([1]) A feasible solution f is an optimal solution 

of the minimum cost flow problem if and only if for some set 

of node potentials π, the reduced cost and flow values satisfy 

the following complementary slackness optimality conditions 

for every arc (i, j)∈A: 

 

  If b
π
(i, j) > 0, then f(i, j) = 0         (11) 

  If 0 < f(i, j) < c(i, j), then b
π
(i, j) =0       (12) 

  If b
π
(i, j) < 0, then f(i, j) = c(i, j)        (13) 

 

 The residual network corresponding to a pseudoflow is 

defined in the same way that we define the residual network 

for a flow. 

 The optimality conditions can be extended for pseudoflows. 

A pseudoflow f
*
 is optimal if there are some set of node 
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potentials π such that the following reduced cost optimality 

conditions are satisfied: 

 

b
π
(i, j) ≥ 0  for every arc (i, j) in the residual network 

G(f
*
). 

 

We refer to a flow or a pseudoflow f as ε-optimal for some 

ε>0 if for some node potentials π, the pair (f, π) satisfies the 

following ε-optimality conditions: 

 

  If b
π
(i, j) > ε, then f(i, j) = 0          (14) 

  If - ε ≤ b
π
(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j)     (15) 

  If b
π
(i, j) < -ε, then f(i, j) = c(i, j)        (16) 

 

These conditions are relaxations of the (exact) 

complementary slackness optimality conditions (11) - (13) 

and they reduce to complementary slackness optimality 

conditions when ε = 0. 

The algorithms for determining a minimum cost flow rely 

upon the optimality conditions stated by Theorems 8, 9 and 

10.  

The basic algorithms for minimum cost flow can be divided 

into two classes: those that maintain feasible solutions and 

strive toward optimality and those that maintain infeasible 

solutions that satisfy optimality conditions and strive toward 

feasibility. Algorithms from the first class are: the cycle-

canceling algorithm and the out-of-kilter algorithm. The 

cycle-canceling algorithm maintains a feasible flow at every 

iteration, augments flow along negative cycle in the residual 

network and terminates when there is no more negative cycle 

in the residual network, which means (from Theorem 8) that 

the flow is a minimum cost flow. The out-of-kilter algorithm 

maintains a feasible flow at each iteration and augments flow 

along shortest path in order to satisfy the optimality 

conditions. Algorithms from the second class are: the 

successive shortest path algorithm and primal-dual algorithm. 

The successive shortest path algorithm maintains a 

pseudoflow that satisfies the optimality conditions and 

augments flow along shortest path from excess nodes to 

deficit nodes in the residual network in order to convert the 

pseudoflow into an optimal flow. The primal-dual algorithm 

also maintains a pseudoflow that satisfies the optimality 

conditions and solves maximum flow problems in order to 

convert the pseudoflow into an optimal flow.  

Starting from the basic algorithms for minimum cost flow, 

several polynomial-time algorithms were developed. Most of 

them were obtained by using the scaling technique. By capacity 

scaling, by cost scaling or by capacity and cost scaling, the 

following polynomial-time algorithms were developed: 

capacity scaling algorithm, cost scaling algorithm, double 

scaling algorithm, repeated capacity scaling algorithm and 

enhanced capacity scaling algorithm. 

Another approach for obtaining polynomial-time algorithms 

is to select carefully the negative cycles in the cycle-canceling 

algorithm. 

B. Incremental algorithms for the minimum cost flow 

problem 

In this subsection we describe incremental algorithms which 

update the solution of a minimum cost flow problem after 

inserting a new arc and after deleting an arc. 

First, we will study the problem of determining a minimum 

cost flow in a network after inserting a new arc. 

Let G=(N, A, c, b, v) be a network in which we already 

determined a minimum cost flow f. Let us insert a new arc   

(k, l) with capacity c(k, l) and cost b(k, l) into the network G, 

obtaining in this way the network G’= (N, A’, c’, b’, v), 

where: 

  A’ = A ∪ {(k, l)}  

  c’(i, j)= c(i, j), ∀(i j)∈A’ 

  b’(i, j)= b(i, j), ∀(i j)∈A’ 

  

 The new network G’ can contain a minimum cost flow f’ 

with a smaller cost than f – the minimum cost flow in G.  

 In the network G’ obtained by inserting a new arc (k, l) in 

G, it is possible that the optimality conditions are not fulfilled 

with respect to f which was a minimum cost flow in G. It is 

possible that the residual network G’(f) contains a negative 

cycle, which means that the Negative cycle optimal 

conditions from Theorem 8 are not satisfied. The incremental 

algorithm for determining a minimum cost flow in a network 

after inserting a new arc is based on these optimality 

conditions: 

 

Incremental Add Algorithm; 

Begin 

let  f  be a minimum cost flow in the network G; 

determine the new network G’ obtained from G by 

inserting a new arc (k, l); 

while the residual network G’(f) contains a negative cycle 

do begin 

 determine a negative cycle C in G’(f);  

compute r(C) = min{r(i, j) | (i, j) ∈C}; 

send r(C) units of flow along the cycle C; 

update the residual network G’(f); 

end 

end. 

 

Theorem 11. The incremental add algorithm computes 

correctly a minimum cost flow in the network G’, obtained 

from G by inserting a new arc(k, l). 

 

Proof. The algorithm terminates when the residual network 

G’(f) does not contain any negative cycles. By Theorem 8, it 

follows that the flow f is a minimum cost flow. 

 

Theorem 12. The incremental add algorithm runs in 

O(nmc(k, l)) time. 

 

Proof. Because f , the flow with which the algorithm starts, is 

a minimum cost flow in the network G, it follows that the new 

network G’ obtained from G by inserting a new arc (k, l) 

could contain only negative cycles that contain the arc (k, l). 
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At each iteration of the while loop, such a cycle C is 

determined in O(nm) time. Sending r(C) units of flow along 

the cycle C means reducing its residual capacity by r(C). 

Accordingly to Assumption 2, all data are integer. It follows 

that r(C) is also an integer number. Consequently, r(C) ≥ 1. 

Thus, after at most c(k, l) iterations, the network will contain 

no negative cycle. This implies that in O(nmc(k, l)) time  the 

algorithm determines a minimum cost flow. 

 

 Now we will study the problem of determining a minimum 

cost flow in a network after removing an arc. 

 Let G=(N, A, c, b, v) be a network in which we already 

determined a minimum cost flow f. Let (k, l) be an arbitrary 

arc of G. The arc (k, l) will be removed from the network G, 

obtaining in this way the network G’= (N, A’, c’, b’, v), 

where: 

 A’ = A \ {(k, l)}  

 c’(i, j)= c(i, j), ∀(i j)∈A’ 

 b’(i, j)= b(i, j), ∀(i j)∈A’ 

  

     Let f be the minimum cost flow in G and let f’ be the 

minimum cost flow in the network G’ obtained from G 

through deletion of the arc (k, l). The cost of the flow f’ might 

by greater than the cost of f. 

      In the network G’ obtained by deleting the arc (k, l) from 

G, it is possible that the optimality conditions are not fulfilled 

with respect to f which was a minimum cost flow in G. More 

precisely, if in G the flow on the arc (k, l) was strictly 

positive, then in G’ f will no longer satisfy the mass balance 

constraints (2) for both of the nodes k and l. This means that, 

in G’, f
 
is not a flow, but a pseudoflow. We will transform this 

pseudoflow into a minimum cost flow, by sending flow from 

the node k to the node l in the network G’ using the following 

algorithm. 

 

Incremental Delete Algorithm; 

Begin 

let  f  be a minimum cost flow in the network G; 

compute a set of optimal node potentials π with respect to 

the minimum cost flow f; 

e(k) = f(k, l); 

e(l) = -f(k, l); 

determine the new network G’ obtained from G by 

deleting the arc (k, l); 

determine the residual network G’(f); 

while e(k) > 0 do begin 

 determine shortest path distances d from k to all other 

nodes in the residual network G’(f) with respect to the 

reduced costs;  

 let P be a shortest path from k to l; 

 π = π – d; 

 r(P) = min(e(k), min{r(i, j) | (i, j) ∈P}); 

 send r(P) units of flow along the path P; 

 update the residual network G’(f) and the reduced costs; 

end 

end. 

 

Theorem 13. The incremental delete algorithm computes 

correctly a minimum cost flow in the network G’, obtained 

from G by deleting the arc (k, l). 

 

Proof. The algorithm terminates when e(k) = 0, which means 

that k is a balanced node. Because all nodes excepting k and l 

are balanced at the beginning of the algorithm and remain 

balanced during the algorithm, it follows that at the end of the 

algorithm also l is a balanced node. This implies that f is a 

flow. By Theorem 9, it follows that the flow f is a minimum 

cost flow. 

 

Theorem 14. The incremental delete algorithm runs in 

O(S(n, m)+f(k, l)S’(n, m)) time, where S(n, m) is the time 

needed to solve a shortest path problem with possible 

negative arc lengths and S’(n, m) is the time needed to solve 

a shortest path problem with nonnegative arc lengths. 

 

Proof. For determining a set of optimal potentials, a shortest 

path algorithm is applied in the residual network G(f).  This 

network contains no negative cycle because f is a minimum 

cost flow in the network G, which must satisfy the negative 

cycle optimality conditions from Theorem 8.  But it is not 

mandatory that all lengths in the residual network G(f) to be 

nonnegative. Thus, the time complexity for determining a set 

of optimal potentials is S(n, m). 

Because f is a flow, all the nodes in G are balanced. After 

deleting the arc (k, l), if the flow on this arc was strictly 

positive, we have an excess of f(k, l) units at node k and a 

deficit of f(k, l) units at node l.  

     At each iteration of the while loop, we solve a shortest 

path problem from node k to all the other nodes in the 

residual network G’(f) with respect to the reduced costs, 

which are nonnegative. Sending r(P) units of flow along the 

shortest path P from k to l means reducing the excess of k by 

r(P). Accordingly to Assumption 2, all data are integer. It 

follows that r(P) is also an integer number. Consequently, 

r(P) ≥ 1. Thus, after at most f(k, l) iterations, the excess of the 

node k will be reduced to 0, which implies that the deficits of 

the node l will be also 0 and all the nodes will be balanced. 

Equivalently, f will be a flow. Moreover, it will be a minimum 

cost flow. Consequently, the while loop will take            

O(f(k, l)S’(n, m)) time and the algorithm will run in        

O(S(n, m)+f(k, l)S’(n, m)) time. 

IV. CONCLUSION 

In this paper, we focused on updating a given solution of an 

optimal flow problem, which could be a maximum flow 

problem or a minimum cost flow problem, after the network is 

modified. We studied two possible modifications of the 

network: the first one implies inserting a new arc and the 

second one consists in deleting an existent arc. We described 

incremental algorithms for updating the solution of a 

maximum flow problem and of a minimum cost flow problem 

after both modifications of the network. These incremental 

algorithms save important computational time. 

We only studied the problems of updating a solution of an 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

7



 

 

optimal flow problem (maximum flow problem and minimum 

cost flow problem) after inserting or deleting an arc. But, the 

problems of updating a solution after increasing or decreasing 

the capacity of an arc can be reduced to one of these studied 

problems. 
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