

Abstract— In this paper, we will use incremental algorithms in

order to save computational time when solving different network

flow problems. We will focus on two important network flow

problems: maximum flow problem and minimum cost flow problem.

Incremental algorithms are appropriated to be used when we have

a network in which we already have established an optimal flow (in

our case either a maximum flow or a minimum cost flow), but we

must modify the network by inserting a new arc or by deleting an

existent arc. An incremental algorithm starts with an optimal flow in

the initial network and determines an optimal flow in the modified

network.

First, we present incremental algorithms for the maximum flow

problem. These algorithms were developed by S. Kumar and P.

Gupta in 2003. They described algorithms for determining maximum

flows in a network obtained from a given network in which a

maximum flow is already known and in which a new arc is inserted

or an existent arc is deleted.

Finally, we describe our incremental algorithms for the minimum

cost flow problem. Let us consider a network in which we already

established a minimum cost flow. We describe and solve the problem

of establishing a minimum cost flow in this network after inserting a

new arc and after deleting an existent arc. We focus on these

problems because they arise in practice.

Keywords— Incremental computation, Maximum flow,

Minimum cost flow, Network algorithms, Network flow.

I. INTRODUCTION

ETWORK flow problems are a group of network

optimization problems with widespread and diverse

applications. The literature on network flow problems is

extensive. Over the past 60 years researchers have made

continuous improvements to algorithms for solving several

classes of problems. From the late 1940s through the 1950s,

researchers designed many of the fundamental algorithms for

network flow, including methods for maximum flow and

minimum cost flow problems. In the next decades, there are

many research contributions concerning improving the

computational complexity of network flow algorithms by using

enhanced data structures, techniques of scaling the problem

data etc.

 One of the reasons for which the maximum flow problem

Manuscript received August 2, 2011: Revised version received January 24,

2012.

L. A. Ciupală is with the Department of Computer Science, Transilvania

University of Braşov, Romania (corresponding author to provide phone:

0040-268414016; fax: 0040-268414016; e-mail: laura_ciupala@ yahoo.com).

and that minimum cost flow problem were studied so

intensively is the fact that they arise in a wide variety of

situations and in several forms.

We can save computational time by using incremental

algorithms when the network, in which we know an optimal

flow (in our case either a maximum flow or a minimum cost

flow), is modified by inserting a new arc or by deleting an

existent arc. After the network is modified, we need to find an

optimal flow. A first way to solve this problem is to apply a

maximum flow algorithm or a minimum cost algorithm starting

from scratch. But, this is not the fastest way to solve the

problem. The efficient way to solve this problem is to start

from the optimal flow in the original network and to use an

incremental algorithm which will gradually transform the

optimal flow in the original network in an optimal flow in the

modified network. Consequently, the incremental algorithms,

that we will describe, are used to update solutions of optimal

flow problems, after the network was modified by inserting a

new arc or by deleting an existent arc.

In the following two sections we will describe incremental

algorithms for maximum flows and for minimum cost flows

respectively.

II. MAXIMUM FLOWS

The maximum flow problem is one of the fundamental

problems in network flow theory and it was studied

extensively. The importance of the maximum flow problem is

due to the fact that it arises in a wide variety of situations and

in several forms. Sometimes the maximum flow problem

occurs as a subproblem in the solution of more difficult

network problems, such as the minimum cost flow problem or

the generalized flow problem. The maximum flow problem

also arises in a number of combinatorial applications that on

the surface might not appear to be maximum flow problems at

all. The problem also arises directly in problems as far

reaching as machine scheduling, the assignment of program

modules to computer processors, the rounding of census data

in order to retain the confidentiality of individual households,

tanker scheduling and several others.

The maximum flow problem was first formulated and

solved using the well known augmenting path algorithm by

Ford and Fulkerson in 1956. Since then, two types of

maximum flow algorithms have been developed: augmenting

path algorithms and preflow algorithms:

1) The augmenting path algorithms maintain mass

Incremental algorithms for optimal flows in

networks

Laura A. Ciupală

N

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

1

balance constraints at every node of the network other

than the source node and the sink node. These

algorithms incrementally augment flow along paths

from the source node to the sink node. By determining

the augmenting paths with respect to different

selection rules, different algorithms were developed.

For details see [1].

2) The preflow algorithms flood the network so that some

nodes have excesses. These algorithms incrementally

relieve flow from nodes with excesses by sending flow

from the node forward toward the sink node or

backward toward the source node. By imposing

different rules for selecting nodes with excesses,

different preflow algorithms were obtained. These

algorithms are more versatile and more efficient than

the augmenting path algorithms. For details see [1].

A. Notation and Definitions

Without any loss of generality, we can consider a network

with zero lower bounds, because any maximum flow problem

in a network with positive lower bounds can be transformed

in an equivalent maximum flow problem in a network with

zero lower bounds (for details see [1]).

Let G = (N, A, c, s, t) be a capacitated network with a

nonnegative capacity c(i, j) associated with each arc (i, j)∈A.

We distinguish two special nodes in the network G: a source

node s and a sink node t.

Let n=|N|, m = |A| and C = max {c(i, j) | (i, j) ∈ A}.

A flow is a function f : A →R+ satisfying the next

conditions:

f(s, N) - f(N, s) = v (1)

f(i, N) - f(N, i) = 0, i ≠ s,t (2)

f(t, N) - f(N, t) = -v (3)

0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A (4)

for some v ≥ 0

We refer to v as the value of the flow f.

The maximum flow problem is to determine a flow f for

which v is maximized.

For the maximum flow problem, a preflow is a function

f : A →R+ satisfying the next conditions:

f(i, N) - f(N, i) ≥ 0, i ≠ s,t (5)

0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A (6)

Let f be a preflow. We define the excess of a node i∈N in

the following manner:

e(i) = f(i, N) - f(N, i) (7)

Thus, for the maximum flow problem, for any preflow f,

we have:

e(i) ≥ 0, i∈N \{s, t}.

We say that a node i∈N \{s, t} is active if e(i) > 0 and

balanced if e(i) = 0.

A preflow f for which

e(i) = 0, i∈N \{s, t}

is a flow. Consequently, a flow is a particular case of preflow.

A pseudoflow is a function f : A →R+ satisfying the only

conditions (4).

 For any pseudoflow f, we define the imbalance of node i as

 e(i) = v(i) + f(N, i) - f(i, N), for all i∈N.

 If e(i) > 0 for some node i, we refer to e(i) as the excess of

node i; if e(i) < 0, we refer to -e(i) as the deficit of node i. If

e(i) = 0 for some node i, we refer to node i as the balanced.

Consequently, a preflow is a particular case of psedoflow.

For the maximum flow problem, the residual capacity

r(i, j) of any arc (i, j)∈A, with respect to a given psedoflow f,

is given by

r(i, j) = c(i, j) - f(i, j) + f(j, i).

By convention, if (i, j)∈A and (j, i)∉A, then we add the arc

(j, i) to the set of arcs A and we set c(j, i) = 0. The residual

capacity r(i, j) of the arc (i, j) represents the maximum

amount of additional flow that can be sent from the node i to

node j using both of the arcs (i, j) and (j, i).

The network G(f) = (N, A(f)) consisting only of those arcs

with strictly positive residual capacity is referred to as the

residual network (with respect to the given pseudoflow f).

A directed path from the source node s to the sink node t in

the residual network G(f) = (N, A(f)) is called an augmenting

path.

Let P be an augmenting path. Then

 r(P) = min{r(i, j) | (i, j) ∈P}

is the residual capacity of P.

 If in the residual network G(f) = (N, A(f)) there is an

augmenting path P then we can send r(P) units of flow along

the path P, obtaining in this way a flow whose value is with

r(P) units greater than the value of the initial flow f.

Theorem 1.([1]) A flow f in the network G = (N, A, c, s, t) is a

maximum flow if and only if the residual network G(f) =

(N, A(f)) contains no augmenting paths.

In the residual network G(f) = (N, A(f)) the distance

function d : N →N with respect to a given preflow f is a

function from the set of nodes to the nonnegative integers.

We say that a distance function is valid if it satisfies the

following validity conditions:

d(t) = 0

d(i) ≤ d(j) + 1, for every arc (i, j) ∈A(f).

We refer to d(i) as the distance label of node i.

Theorem 2.([1])(a) If the distance labels are valid, the

distance label d(i) is a lower bound on the length of the

shortest directed path from node i to sink node t in the

residual network.

 (b) If d(s) ≥ n, the residual network contains no directed

path from the source node s to the sink node t.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

2

B. Incremental algorithms for the maximum flow problem

In this subsection we describe incremental algorithms which

update the solution of a maximum flow problem after inserting

a new arc and after deleting an arc. These algorithms were

described by S. Kumar and P. Gupta in [19].

First, we will focus on the problem of determining a

maximum flow in a network after inserting a new arc.

Let G=(N, A, c, b, v) be a network in which we already

determined a maximum flow f. Let us insert a new arc (k, l)

with capacity c(k, l) into the network G, obtaining in this way

the network G’= (N, A’, c’, b’, v), where:

 A’ = A ∪ {(k, l)}

 c’(i, j)= c(i, j), ∀(i j)∈A’

The new network G’ can contain a maximum flow f’ with a

greater value than f – the maximum flow in G. This is possible

because when this new arc (k, l) is inserted in the network G

there may appear new augmenting paths through which

additional flow can be sent. We will refer to a node that is

contained in at least one of these new augmenting paths as an

affected node. The set of all affected nodes will be denoted by

AN.

The affected nodes are contained in the augmenting paths

from the source node s to the node k and in the augmenting

paths from the node l to the sink node t. Consequently, they

can be determined by applying a modified Backward Breadth

First Search algorithm from node k to node s and by applying a

modified Breadth First Search algorithm starting from node l

to node t.

The modified Backward Breadth First Search algorithm

from node k to node s will explore only those nodes y for

which the distance label d(y) ≥ n because, from Theorem 2,

only those nodes are the candidates to the set AN.

The modified Backward Breadth First Search (BBFS)

algorithm is the following:

BBFS(v, u) Algorithm;

Begin

W = {v};

AN = {v};

while W ≠∅ do

begin

 remove a node x from W;

 if x = v then break;

 for each (y, x) ∈A do

 if y ∉ AN and r(y, x) >0 and d(y) ≥ n then

 begin

 W = W ∪{y};

 AN = AN ∪ {y};

 end;

end

end.

The modified Breadth First Search algorithm from node l to

node t will explore only those nodes y for which the distance

label d(y) < n because, from Theorem 2, only those nodes are

the candidates to the set AN.

The modified Breadth First Search (BFS) algorithm is the

following:

BFS(v, u) Algorithm;

Begin

W = {v};

AN = {v};

while W ≠∅ do

begin

 remove a node x from W;

 if x = u then break;

 for each (x, y) ∈A do

 if y ∉ AN and r(x, y) >0 and d(y) < n then

 begin

 W = W ∪{y};

 AN = AN ∪ {y};

 end;

end

end.

The incremental algorithm for updating the solution of a

maximum flow in a network after inserting a new arc follows

the approach of the generic preflow algorithm ([1]) developed

by Goldberg and Tarjan.

Incremental Add Max Flow Algorithm;

Begin

let f be a maximum flow in the network G;

determine the new network G’ obtained from G by

inserting a new arc (k, l);

determine the residual network G’(f);

if d(k) ≥ n and d(l) < n then

begin

 call BBFS(k, s) to determine the set AN1 of the affected

nodes that lie on the augmenting paths from the source node s

to the node k;

 call BFS(l, t) to determine the set AN2 of the affected

nodes that lie on the augmenting paths from the node l to the

sink node t;

 AN = AN1 ∪ AN2;

 compute the exact distance labels for all the nodes i∈AN;

 for each arc (s, j)∈A’(f) do

 if j∈AN then

 f(s, j) = c’(s, j);

 d(s) = n;

while the network contains an active node do

begin

select an active node i;

push/relabel(i);

end

end

end.

procedure push/relabel(i);

begin

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

3

if the network contains an admissible arc (i, j) and j∈AN

then

push g = min(e(i), r(i, j)) units of flow from node i to

node j;

else d(i) = min{ d(j) | (i, j) ∈ A’(f) and j∈AN }+1

end;

A push of g units of flow from node i to node j means that:

 e(i) = e(i) -g

 e(j) = e(j) +g

 r(i, j) = r(i, j) – g

 r(j, i) = r(j, i) + g.

Theorem 3.([19]) The incremental add max flow algorithm

computes correctly a maximum flow in the network G’,

obtained from G by inserting a new arc (k, l).

Theorem 4.([19]) The incremental add max flow algorithm

runs in O(|AN|
2
m) time.

 Now we will study the problem of determining a maximum

flow in a network after deleting an arc.

 Let G=(N, A, c, b, v) be a network in which we already

determined a maximum flow f. Let (k, l) be an arbitrary arc of

G. The arc (k, l) will be removed from the network G,

obtaining in this way the network G’= (N, A’, c’, b’, v),

where:

 A’ = A \ {(k, l)}

 c’(i, j)= c(i, j), ∀(i j)∈A’

 Let f be a maximum flow in G and let f’ be a maximum

flow in the network G’ obtained from G through deletion of

the arc (k, l). The value of the flow f’ might by smaller than

the value of f.

 In the network G’ obtained by deleting the arc (k, l) from

G, it is possible that f is no longer a flow, but a pseudoflow.

More precisely, if in G the flow on the arc (k, l) was strictly

positive, then, in G’, f will no longer satisfy the mass balance

constraints (2) for both of the nodes k and l. This means that,

in G’, node k

will have a strictly positive excess. The

incremental algorithm will try to push this excess toward the

sink node t using alternate augmenting path in the modified

network G’. The incremental algorithm for determining a

maximum flow in a network after removing an arc is the

following:

Incremental Del Max Flow Algorithm;

Begin

let f be a maximum flow in the network G;

determine the residual network G’(f);

if f(k, l) > 0 then

begin

 call BFS(l, t) to determine the set AN1 of the affected

nodes that lie on the augmenting paths from the node l to the

sink node t;

 determine the inverse network G
-1

(f)= (N, A
-1

(f)) by

reversing the arcs in the residual network G(f);

 for each node j∈AN1 \{t} do

 d
-1

(j) = 0;

 d
-1

(t) = | AN1|;

 call push/relabel(l) in the inverse network G
-1

(f);

 determine the new network G’ obtained from G by

deleting the arc (k, l);

 determine the residual network G’(f);

 call BBFS(k, s) to determine the set AN2 of the affected

nodes that lie on the augmenting paths from the source node s

to the node k;

 for each node j∈AN2 do

 d(j) = 0;

 call push/relabel(l) in the residual network G’(f);

 call push/relabel(k) in the residual network G’(f);

end

end.

Theorem 5.([19]) The incremental del max flow algorithm

computes correctly a maximum flow in the network G’,

obtained from G by deleting the arc (k, l).

Theorem 6.([19]) The incremental del max flow algorithm

runs in O(|AN|
2
m) time.

III. MINIMUM COST FLOWS

The minimum cost flow problem, as well as one of its

special cases which is the maximum flow problem, is one of

the fundamental problems in network flow theory and it was

studied extensively. The importance of the minimum cost flow

problem is also due to the fact that it arises in almost all

industries, including agriculture, communications, defense,

education, energy, health care, medicine, manufacturing,

retailing and transportation. Indeed, minimum cost flow

problems are pervasive in practice.

A. Notation and Definitions

Let G = (N, A) be a directed graph, defined by a set N of n

nodes and a set A of m arcs. Each arc (i, j)∈A has a capacity

c(i, j) and a cost b(i, j). We associate with each node i∈N a

number v(i) which indicates its supply or demand depending

on whether v(i) > 0 or v(i) < 0. In the directed network

G = (N, A, c, b, v), the minimum cost flow problem is to

determine the flow f(i, j) on each arc (i, j)∈A which

minimize ∑
∈Aji

jifjib

),(

),(),((8)

subject to

 ∑∑
∈∈

∈∀=−

AijjAjij

Niivijfjif

),(|),(|

),(),(),((9)

Ajijicjif ∈∀≤≤),(),,(),(0 . (10)

A flow f satisfying the conditions (9) and (10) is referred to

as a feasible flow.

Let C denote the largest magnitude of any supply/demand or

finite arc capacity, that is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

4

C = max(max{v(i) | i∈N}, max{c(i, j) | (i, j)∈A,

c(i, j)<∞})

and let B denote the largest magnitude of any arc cost, that is

B = max{b(i, j) | (i, j)∈A}.

 The arc adjacency list or, shortly, the arc list of a node i is

the set of arcs emanating from that node, that is:

A(i) = {(i, j) | (i, j)∈A}.

The residual network G(f) = (N, A(f)) corresponding to a

flow f is defined as follows. We replace each arc (i, j)∈A by

two arcs (i, j) and (j, i). The arc (i, j) has the cost b(i, j) and the

residual capacity r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has the

cost b(j, i) = -b(i, j) and the residual capacity r(j, i) = f(i, j).

The residual network consists only of arcs with positive

residual capacity.

We shall assume that the minimum cost flow problem

satisfies the following assumptions:

Assumption 1. The network is directed.

This assumption can be made without any loss of generality.

In [1] it is shown that we can always fulfil this assumption by

transforming any undirected network into a directed network.

Assumption 2. All data (cost, supply/demand and capacity) are

integral.

This assumption is not really restrictive in practice because

computers work with rational numbers which we can convert

into integer numbers by multiplying by a suitably large

number.

Assumption 3. The network contains no directed negative cost

cycle of infinite capacity.

If the network contains any such cycles, there are flows with

arbitrarily small costs.

Assumption 4. All arc costs are nonnegative.

This assumption imposes no loss of generality since the arc

reversal transformation described in [1] converts a minimum

cost flow problem with negative arc costs to one with

nonnegative arc costs. This transformation can be done if the

network contains no directed negative cost cycle of infinite

capacity.

Assumption 5. The supplies/demands at the nodes satisfy the

condition 0)(=∑
∈Ni

iv and the minimum cost flow problem has

a feasible solution.

Assumption 6. The network contains an uncapacitated directed

path (i.e. each arc in the path has infinite capacity) between

every pair of nodes.

We impose this condition by adding artificial arcs (1, i) and

(i, 1) for each i∈N and assigning a large cost and infinite

capacity to each of these arcs. No such arc would appear in a

minimum cost solution unless the problem contains no feasible

solution without artificial arcs.

We associate a real number π(i) with each node i∈N. We

refer to π(i) as the potential of node i. These node potentials

are generalizations of the concept of distance labels that we

used in previous section.

For a given set of node potentials π, we define the reduced

cost of an arc (i, j) as

b
π
 (i, j) = b(i, j) – π(i) + π(j).

The reduced costs are applicable to the residual network as

well as to the original network.

Theorem 7. ([1]) (a) For any directed path P from node h to

node k we have

∑∑
∈∈

=

PjiPji

jibjib

),(),(

),(),(
π

– π(h) + π(k)

(b) For any directed cycle W we have

∑∑
∈∈

=

WjiWji

jibjib

),(),(

).,(),(
π

Theorem 8. (Negative Cycle Optimality Conditions) ([1]) A

feasible solution f is an optimal solution of the minimum cost

flow problem if and only if the residual network G(f) contains

no negative directed cycle.

Theorem 9. (Reduced Costs Optimality Conditions) ([1]) A

feasible solution f is an optimal solution of the minimum cost

flow problem if and only if some set of node potentials π

satisfy the following reduced cost optimality conditions:

b
π
(i, j) ≥ 0 for every arc (i, j) in the residual network

G(f).

Theorem 10.(Complementary Slackness Optimality

Conditions) ([1]) A feasible solution f is an optimal solution

of the minimum cost flow problem if and only if for some set

of node potentials π, the reduced cost and flow values satisfy

the following complementary slackness optimality conditions

for every arc (i, j)∈A:

 If b
π
(i, j) > 0, then f(i, j) = 0 (11)

 If 0 < f(i, j) < c(i, j), then b
π
(i, j) =0 (12)

 If b
π
(i, j) < 0, then f(i, j) = c(i, j) (13)

 The residual network corresponding to a pseudoflow is

defined in the same way that we define the residual network

for a flow.

 The optimality conditions can be extended for pseudoflows.

A pseudoflow f
*
 is optimal if there are some set of node

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

5

potentials π such that the following reduced cost optimality

conditions are satisfied:

b
π
(i, j) ≥ 0 for every arc (i, j) in the residual network

G(f
*
).

We refer to a flow or a pseudoflow f as ε-optimal for some

ε>0 if for some node potentials π, the pair (f, π) satisfies the

following ε-optimality conditions:

 If b
π
(i, j) > ε, then f(i, j) = 0 (14)

 If - ε ≤ b
π
(i, j) ≤ ε, then 0 ≤ f(i, j) ≤ c(i, j) (15)

 If b
π
(i, j) < -ε, then f(i, j) = c(i, j) (16)

These conditions are relaxations of the (exact)

complementary slackness optimality conditions (11) - (13)

and they reduce to complementary slackness optimality

conditions when ε = 0.

The algorithms for determining a minimum cost flow rely

upon the optimality conditions stated by Theorems 8, 9 and

10.

The basic algorithms for minimum cost flow can be divided

into two classes: those that maintain feasible solutions and

strive toward optimality and those that maintain infeasible

solutions that satisfy optimality conditions and strive toward

feasibility. Algorithms from the first class are: the cycle-

canceling algorithm and the out-of-kilter algorithm. The

cycle-canceling algorithm maintains a feasible flow at every

iteration, augments flow along negative cycle in the residual

network and terminates when there is no more negative cycle

in the residual network, which means (from Theorem 8) that

the flow is a minimum cost flow. The out-of-kilter algorithm

maintains a feasible flow at each iteration and augments flow

along shortest path in order to satisfy the optimality

conditions. Algorithms from the second class are: the

successive shortest path algorithm and primal-dual algorithm.

The successive shortest path algorithm maintains a

pseudoflow that satisfies the optimality conditions and

augments flow along shortest path from excess nodes to

deficit nodes in the residual network in order to convert the

pseudoflow into an optimal flow. The primal-dual algorithm

also maintains a pseudoflow that satisfies the optimality

conditions and solves maximum flow problems in order to

convert the pseudoflow into an optimal flow.

Starting from the basic algorithms for minimum cost flow,

several polynomial-time algorithms were developed. Most of

them were obtained by using the scaling technique. By capacity

scaling, by cost scaling or by capacity and cost scaling, the

following polynomial-time algorithms were developed:

capacity scaling algorithm, cost scaling algorithm, double

scaling algorithm, repeated capacity scaling algorithm and

enhanced capacity scaling algorithm.

Another approach for obtaining polynomial-time algorithms

is to select carefully the negative cycles in the cycle-canceling

algorithm.

B. Incremental algorithms for the minimum cost flow

problem

In this subsection we describe incremental algorithms which

update the solution of a minimum cost flow problem after

inserting a new arc and after deleting an arc.

First, we will study the problem of determining a minimum

cost flow in a network after inserting a new arc.

Let G=(N, A, c, b, v) be a network in which we already

determined a minimum cost flow f. Let us insert a new arc

(k, l) with capacity c(k, l) and cost b(k, l) into the network G,

obtaining in this way the network G’= (N, A’, c’, b’, v),

where:

 A’ = A ∪ {(k, l)}

 c’(i, j)= c(i, j), ∀(i j)∈A’

 b’(i, j)= b(i, j), ∀(i j)∈A’

 The new network G’ can contain a minimum cost flow f’

with a smaller cost than f – the minimum cost flow in G.

 In the network G’ obtained by inserting a new arc (k, l) in

G, it is possible that the optimality conditions are not fulfilled

with respect to f which was a minimum cost flow in G. It is

possible that the residual network G’(f) contains a negative

cycle, which means that the Negative cycle optimal

conditions from Theorem 8 are not satisfied. The incremental

algorithm for determining a minimum cost flow in a network

after inserting a new arc is based on these optimality

conditions:

Incremental Add Algorithm;

Begin

let f be a minimum cost flow in the network G;

determine the new network G’ obtained from G by

inserting a new arc (k, l);

while the residual network G’(f) contains a negative cycle

do begin

 determine a negative cycle C in G’(f);

compute r(C) = min{r(i, j) | (i, j) ∈C};

send r(C) units of flow along the cycle C;

update the residual network G’(f);

end

end.

Theorem 11. The incremental add algorithm computes

correctly a minimum cost flow in the network G’, obtained

from G by inserting a new arc(k, l).

Proof. The algorithm terminates when the residual network

G’(f) does not contain any negative cycles. By Theorem 8, it

follows that the flow f is a minimum cost flow.

Theorem 12. The incremental add algorithm runs in

O(nmc(k, l)) time.

Proof. Because f , the flow with which the algorithm starts, is

a minimum cost flow in the network G, it follows that the new

network G’ obtained from G by inserting a new arc (k, l)

could contain only negative cycles that contain the arc (k, l).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

6

At each iteration of the while loop, such a cycle C is

determined in O(nm) time. Sending r(C) units of flow along

the cycle C means reducing its residual capacity by r(C).

Accordingly to Assumption 2, all data are integer. It follows

that r(C) is also an integer number. Consequently, r(C) ≥ 1.

Thus, after at most c(k, l) iterations, the network will contain

no negative cycle. This implies that in O(nmc(k, l)) time the

algorithm determines a minimum cost flow.

 Now we will study the problem of determining a minimum

cost flow in a network after removing an arc.

 Let G=(N, A, c, b, v) be a network in which we already

determined a minimum cost flow f. Let (k, l) be an arbitrary

arc of G. The arc (k, l) will be removed from the network G,

obtaining in this way the network G’= (N, A’, c’, b’, v),

where:

 A’ = A \ {(k, l)}

 c’(i, j)= c(i, j), ∀(i j)∈A’

 b’(i, j)= b(i, j), ∀(i j)∈A’

 Let f be the minimum cost flow in G and let f’ be the

minimum cost flow in the network G’ obtained from G

through deletion of the arc (k, l). The cost of the flow f’ might

by greater than the cost of f.

 In the network G’ obtained by deleting the arc (k, l) from

G, it is possible that the optimality conditions are not fulfilled

with respect to f which was a minimum cost flow in G. More

precisely, if in G the flow on the arc (k, l) was strictly

positive, then in G’ f will no longer satisfy the mass balance

constraints (2) for both of the nodes k and l. This means that,

in G’, f

is not a flow, but a pseudoflow. We will transform this

pseudoflow into a minimum cost flow, by sending flow from

the node k to the node l in the network G’ using the following

algorithm.

Incremental Delete Algorithm;

Begin

let f be a minimum cost flow in the network G;

compute a set of optimal node potentials π with respect to

the minimum cost flow f;

e(k) = f(k, l);

e(l) = -f(k, l);

determine the new network G’ obtained from G by

deleting the arc (k, l);

determine the residual network G’(f);

while e(k) > 0 do begin

 determine shortest path distances d from k to all other

nodes in the residual network G’(f) with respect to the

reduced costs;

 let P be a shortest path from k to l;

 π = π – d;

 r(P) = min(e(k), min{r(i, j) | (i, j) ∈P});

 send r(P) units of flow along the path P;

 update the residual network G’(f) and the reduced costs;

end

end.

Theorem 13. The incremental delete algorithm computes

correctly a minimum cost flow in the network G’, obtained

from G by deleting the arc (k, l).

Proof. The algorithm terminates when e(k) = 0, which means

that k is a balanced node. Because all nodes excepting k and l

are balanced at the beginning of the algorithm and remain

balanced during the algorithm, it follows that at the end of the

algorithm also l is a balanced node. This implies that f is a

flow. By Theorem 9, it follows that the flow f is a minimum

cost flow.

Theorem 14. The incremental delete algorithm runs in

O(S(n, m)+f(k, l)S’(n, m)) time, where S(n, m) is the time

needed to solve a shortest path problem with possible

negative arc lengths and S’(n, m) is the time needed to solve

a shortest path problem with nonnegative arc lengths.

Proof. For determining a set of optimal potentials, a shortest

path algorithm is applied in the residual network G(f). This

network contains no negative cycle because f is a minimum

cost flow in the network G, which must satisfy the negative

cycle optimality conditions from Theorem 8. But it is not

mandatory that all lengths in the residual network G(f) to be

nonnegative. Thus, the time complexity for determining a set

of optimal potentials is S(n, m).

Because f is a flow, all the nodes in G are balanced. After

deleting the arc (k, l), if the flow on this arc was strictly

positive, we have an excess of f(k, l) units at node k and a

deficit of f(k, l) units at node l.

 At each iteration of the while loop, we solve a shortest

path problem from node k to all the other nodes in the

residual network G’(f) with respect to the reduced costs,

which are nonnegative. Sending r(P) units of flow along the

shortest path P from k to l means reducing the excess of k by

r(P). Accordingly to Assumption 2, all data are integer. It

follows that r(P) is also an integer number. Consequently,

r(P) ≥ 1. Thus, after at most f(k, l) iterations, the excess of the

node k will be reduced to 0, which implies that the deficits of

the node l will be also 0 and all the nodes will be balanced.

Equivalently, f will be a flow. Moreover, it will be a minimum

cost flow. Consequently, the while loop will take

O(f(k, l)S’(n, m)) time and the algorithm will run in

O(S(n, m)+f(k, l)S’(n, m)) time.

IV. CONCLUSION

In this paper, we focused on updating a given solution of an

optimal flow problem, which could be a maximum flow

problem or a minimum cost flow problem, after the network is

modified. We studied two possible modifications of the

network: the first one implies inserting a new arc and the

second one consists in deleting an existent arc. We described

incremental algorithms for updating the solution of a

maximum flow problem and of a minimum cost flow problem

after both modifications of the network. These incremental

algorithms save important computational time.

We only studied the problems of updating a solution of an

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

7

optimal flow problem (maximum flow problem and minimum

cost flow problem) after inserting or deleting an arc. But, the

problems of updating a solution after increasing or decreasing

the capacity of an arc can be reduced to one of these studied

problems.

REFERENCES

[1] R. Ahuja, T. Magnanti and J. Orlin, Network flows. Theory, algorithms

and applications, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.

[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and

Applications, Springer-Verlag, London, 2001.

[3] J. Barros, S.D. Servetto, "Network Information Flow with Correlated

Sources", IEEE Transactions on Information Theory, vol. 52(1), pp.

155-170, 2006.

[4] L. Ciupală, "The wave preflow algorithm for the minimum flow

problem", Proceedings of the 10th WSEAS International Conference on

Mathematical and Computational Methods in Science and Engineering,

2008, pp. 473-476.

[5] L. Ciupală, "A deficit scaling algorithm for the minimum flow problem",

Sadhana Vol.31, No. 3, pp.1169-1174, 2006.

[6] L. Ciupală, "A scaling out-of-kilter algorithm for minimum cost flow",

Control and Cybernetics Vol.34, No.4, pp. 1169-1174, 2005.

[7] L. Ciupală and E. Ciurea, "A highest-label preflow algorithm for the

minimum flow problem", Proceedings of the 11th WSEAS International

Conference on Computers, 2007, pp. 565-569.

[8] L. Ciupală and E. Ciurea, "About preflow algorithms for the minimum

flow problem", WSEAS Transactions on Computer Research vol. 3 nr.1,

pp. 35-41, January 2008.

[9] L. Ciupală and E. Ciurea, "Sequential and parallel deficit scaling

algorithms for the minimum flow in bipartite networks", WSEAS

Transactions on Computer Research vol. 7, pp. 1545-1554, October

2008.

[10] L. Ciupală and E. Ciurea, "An algorithm for the minimum flow

problem", The Sixth International Conference of Economic Informatics,

2003, pp. 167-170.

[11] L. Ciupală and E. Ciurea, "An approach of the minimum flow problem",

The Fifth International Symposium of Economic Informatics, 2001, pp.

786-790.

[12] E. Ciurea and L. Ciupală, "Sequential and parallel algorithms for

minimum flows", Journal of Applied Mathematics and Computing

Vol.15, No.1-2, pp. 53-78, 2004.

[13] E. Ciurea and L. Ciupală, "Algorithms for minimum flows", Computer

Science Journal of Moldova Vol.9, No.3(27), pp. 275-290, 2001.

[14] A. Deaconu. E. Ciurea and C. Marinescu, “A Study on the Feasibility of

the Inverse Maximum Flow Problems and Flow Modification Techniques

in the Case of Non-Feasibility”, WSEAS Transactions on Computers,

Issue 10, Volume 9, pp. 1098-1107, 2010.

[15] A. Deshpande, S. Patkar and H. Narayanan, "Submodular Theory Based

Approaches For Hypergraph Partitioning", WSEAS Transactions on

Circuit and Systems, Issue 6, Volume 4, pp. 647-655, 2005.

[16] V. Goldberg and R. E. Tarjan, "A New Approach to the Maximum Flow

Problem", Journal of ACM Vol.35, pp. 921-940, 1988.

[17] S. Fujishige, "A maximum flow algorithm using MA ordering",

Operation Research Letters 31, No. 3, pp. 176-178, 2003.

[18] S. Fujishige and S. Isotani, "New maximum flow algorithms by MA

orderings and scaling", Journal of the Operational Research Society of

Japan 46, No. 3, pp. 243-250, 2003.

[19] S. Kumar and P. Gupta, "An incremental algorithm for the maximum

flow problem", Journal of Mathematical Modelling and Algorithms 2,

No.1, pp. 1-16, 2003.

[20] S. Patkar, H. Sharma and H. Narayanan, "Efficient Network Flow based

Ratio-cut Netlist Hypergraph Partitioning", WSEAS Transactions on

Circuits and Systems vol. 3, no. 1, pp. 47-53, January 2004.

[21] A. Schrijver, "On the history of the transportation and maximum flow

problems", Mathematical Programming 91, No.3, pp. 437-445, 2002.

[22] R. E. Tarjan, Data Structures and Network Algorithms, SIAM,

Philadelphiaa, Pennsylvania, 1983.

[23] K.D. Wayne, "A polynomial Combinatorial Algorithm for Generalized

Minimum Cost Flow", Mathematics of Operations Research, pp. 445-

459, 2002.

[24] L. Zhou and J.Zheng, “A New Immune Clone Algorithm to solve the

constrained optimization problems“, WSEAS Transactions on

Computers, Issue 4, Volume 10, pp. 105-114, 2011.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

8

