
 

 

  
Abstract—Many microprocessor vendors have incorporated high 

performance operators in a single instruction multiple data (SIMD) 
fashion into their processors to meet the high performance demand of 
increasing multimedia workloads. This paper presents some recent 
works on hardware implementation of these operators for data-level 
parallelism (DLP) exploration. Two general architectural techniques 
for designing operators with SIMD support are first described 
including low precision based scheme and high precision based 
scheme. Then new designs for integer operators as well as 
floating-point operators are provided to accommodate best tradeoff 
between cost and performance. To verify the correctness and 
effectiveness of these methods, a multimedia coprocessor augmented 
with SIMD operators is designed. The implemented chip successfully 
demonstrates that the proposed operators get good tradeoff between 
cost and performance. 
 

Keywords—Operator, SIMD, high performance, data level 
parallelism 

I. INTRODUCTION 

Arithmetic unit design is a research area that has been of 
great importance in the development of processor [7]. They are 
key components in processors which consume most power and 
attribute most latency. As such, a great deal of research has 
been devoted to the study of the high efficiency arithmetic units 
[7, 19]. They have primarily focused on implementing the 
various basic arithmetic units at smaller areas, lower power, 
and higher speed. Indeed, novel circuit techniques, and 
innovation in algorithm and structure have resulted in rapid 
improvements in arithmetic unit performance. Examples are 
integer adders, multipliers and floating-point operators. As a 
standard operator, the basic arithmetic unit design has been 
already mature. 

To further boost the performances of arithmetic units, its 
design methodology turns to global optimization for program 
execution instead of single optimal arithmetic unit. Adding 
Application-specific instruction-set processors (ASIPs) or 
Single instruction multiple data (SIMD) units to a general 
purpose processor receives enormous attentions. The ASIP 
method identifies critical operations and implements them by 
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dedicated arithmetic units based on the performance 
characterization of the specific application [13]. While ASIPs 
are only suitable for a limited set of applications, SIMD unit 
can be beneficial for more general data-intensive applications 
such as multimedia computing [5, 22]. As multimedia 
applications contain a lot of inherent parallelism which can 
easily be exploited by using SIMD unit, these augmented 
function units can significantly accelerate the multimedia 
applications. To take advantage of this fact, several multimedia 
extensions were introduced into microprocessors architectures. 
Examples are Intel's MMX, SSE1, SSE2 and even SSE3, 
AMD's 3DNow, Sun's VIS, HP's MAX, MIPS's MDMX, and 
Motorola's AltiVec [22]. 

The main feature of these extensions is the exploration of 
the data level parallelism (DLP) available in multimedia 
applications by partitioning the processor's execution units into 
multiple lower precision segments called subwords, and 
performing operations on these subwords simultaneously in a 
single instruction multiple data (SIMD) fashion [22]. This is 
called subword parallelism (also referred to microSIMD 
parallelism or packed parallelism). For example, in MMX 
technology [3], the execution units can perform one 64-bit, two 
32-bit, four 16-bit or eight 8-bit additions simultaneously. 

The integer SIMD computation is very popular in the 
domains of multimedia processing, where data are either 8 or 
16 bits wide: this allows for the usage of subword precision in 
existing 32-bit(or wider) arithmetic functional units. This way, 
a 32-bit ALU can be used to perform a given arithmetic 
operation on two 16-bit operands or four 8-bit operands, 
boosting performance without instantiating additional 
arithmetic units. However, the floating-point operators with 
SIMD features appears relatively later such as SSE instructions 
(in Pentium III) and SSE2 and SSE3 instructions (in Pentium 
IV). This is due to that the area and power consumption of 
floating-point operators are relatively larger than integer unit. 
Another reason is that until a few years ago the applications 
usually did not require extensive floating-point data parallel 
computations. Nowadays things change a lot, forcing the 
develops to address the continued need for SIMD 
floating-point performance in mainstream scientific and 
engineering numerical applications, visual processing, 
recognition, data-mining/synthesis, gaming, physics, 
cryptography and other areas of applications. Recently, Intel 
even announced an enhanced set of vector instructions with 
availability planned for 2010, called AVX which has 256-bit 
SIMD computation [12]. It enhances existing 128-bit 
floating-point arithmetic instructions with 256-bit capabilities 
for floating-point processing. 
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To effectively implement multimedia extension 
instructions, the data format to be used in SIMD operations and 
corresponding hardware support must be provided. The SIMD 
operators not only need to complete the basic arithmetic 
operations, but also need to deal with the computations, data 
conversion and data unpacking of different precision subwords 
in parallel. This makes the SIMD operator a good capability in 
data handling, but the hardware to implementing them becomes 
more complicated, and its power and delay is much greater. 
Therefore, to design SIMD operators with low power, small 
area and delay is becoming a new design goal. 

To reduce processor area, it is often desirable to have 
SIMD operations share circuitry with non-SIMD operations. 
Thus, many optimized hardware structures supporting SIMD 
operations for fixed-point and floating-point units have been 
introduced and this paper attempts to survey these existing 
subword parallel algorithms in a system view. Then new 
methods for multiplier and floating-point Multiply-add fused 
(MAF) unit are proposed to achieve a better performance in 
power, cycle delay and silicon area. To test these methods, a 
multimedia co-processor with SIMD fixed-point and 
floating-point units integrating into the LEON-3 host processor 
is designed. 

The main contribution of this paper is proposing and 
evaluating methods and architectures for SIMD operator design. 
The remainder of this paper is organized as follows. In Section 
2, the general structure of proposed SIMD unit is present. After 
that, section 3 provides detailed description of the proposed 
SIMD units. Then Section 4 describes the evaluation results 
under the context of a multimedia coprocessor. Finally, Section 
5 gives the conclusion of the whole work.  

II. GENERALIZED SIMD TECHNIQUES 

All modern microprocessors have now added multimedia 
instructions to their base instruction set architectures (ISAs). 
These various ISA extensions are in fact similar with few 
differences mainly in the types of operands, latencies of the 
individual instructions, the width of the data path, and in the 
memory management capabilities. They all need support 
concurrent operations on the foundation of the original 
hardware. The simplest realization method is to increase 
various subword computing hardware resources, and then 
choose the right result according to various subword modes. 
But because it consumes hardware resources and the power, 
this method is considered very little in the actual design. To 
reduce processor area it is often desirable to have SIMD 
operations share circuitry with non-SIMD operations. 
Following text will discuss the general SIMD implementation 
methods, including integer and floating-point operators for 
DLP exploration. As the memory and special multimedia 
instructions are related to specific system architectures, they are 
not discussed in this paper. 

There are generally two schemes to implement SIMD 
arithmetic unit: low-precision based scheme and high-precision 
based scheme. The low-precision scheme uses several narrower 
units to support wider arithmetic operation while the 
high-precision scheme uses wider arithmetic unit to support 
multiple narrower parallel operations. The detailed 

implementation could be explained as follows. 

A. Low-precision based scheme 

The low-precision based scheme involves building wider 
SIMD elements out of several of the narrower SIMD elements 
and then combining the ultiple results together. This can be 
achieved by iteration or combination. The iteration method is to 
perform high precision operations by iteratively recalculating 
the data back through the same low precision unit over more 
than one cycle while the combination method is to perform high 
precision operations by consecutively “unrolling the loop” and 
then combining the results together [1]. For example, the adder 
implemented in the 2000-MOPS embedded RISC processor 
uses eight 8-bit adders to build a subword parallel adder [18]. 
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Fig. 1  Subword adder using low-precision based scheme 
Figure 1 shows the structures of SIMD adder using 

low-precision based scheme. In Figure 1(a), a m-bit adder is 
used to perform n-bit addition with n/m cycles using iteration 
method, where n>m and n can be divided by m. Each cycle m 
bits of source operands A and B are selected to the m-bit adder 
to perform addition operation and then computed m-bit result 
are stored into corresponding location of result operand R. To 
propagate the carry chain to higher part, the carry-out bit of 
adder should be stored in register and then send back to adder 
as carry-in bit in the next cycle. The iterative method is useful 
when SIMD arithmetic units are needed with a minimal amount 
of hardware. But this method also has its shortcomings that it 
requires pipeline stalls and it is at the cost of cycle times. Figure 
1(b) illustrates the combination method implementation of n-bit 
addition using n/m m-bit adders. The carry-out bit of lower part 
adder is sent to the higher part adder to complete the results 
combination. Though combined adder requires less delay than 
iterative adder, it needs more area than iterative adder, and 
more delay than a scalar adder with the same width. This is 
because the critical path of carry chain in scalar adder can be 
optimized for performance globally while combined adder is 
optimized locally and carry chain is propagated in each m-bit 
adder. 
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(a) m-bit multiplier supporting n-bit multiply using k2 iteration
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Fig. 2  Subword multiplier using low-precision based scheme 

Figure 2 shows the structure of SIMD multiplier using 
iteration and combination methods separately. Let n-bit 
A=ak-1ak-2...a1a0 and n-bit B=bk-1bk-2...b1b0, where ax has m bits 
and k=n/m. Then  

A=ak-1×2 (k-1)m+ak-2×2(k-2)m+...+a1×2m+a0 and B=bk-1×b 
(k-1)m+bk-2×2(k-2)m+...+b1×2m+b0.  

So A×B can be expressed as: 
A×B=ak-1bk-1×2(2k-2)m+...+ak-1b0×2k-1+ak-2bk-1×2(2k-3)m+...

+ak-2b0×2k-2 
…...+a0bk-1× 2 (k-1)m+…+a0b0 

From above equation, we can see that a n×n multiplier can 
be built out of k2 m×m multipliers by generating k2 2m products 
which can then be added to form the 2n product. Using iteration 
method, not all k2 m×m multipliers are necessarily required. As 
shown in Figure 2(a), a n-bit multiplier is built using only one 
m-bit multiplier with slight hardware modification. The partial 
product generator (PPG) does not need to change while the 
partial product reduction tree (PPRT) has two additional rows. 
To reduce the delay, each cycle the computed multiplication 
result is in carry-save representation. In the next cycle, the carry 
and sum vectors are fed back into the multiplier handled by the 
two additional rows. The final carry propagate adder (CPA) can 
also utilize iteration method to support 2n-bit addition. 

For combination method shown in Figure 2(b), k2 m×m 
multipliers are used to support n×n multiplication. As 
mentioned in combined adder, the combination method has no 
obvious advantages over iteration or scalar implementation. 
But we can combine the iteration and combination methods to 
enable various area versus latency trade-offs. 

B. High-precision based scheme 

The high-precision based scheme uses existing high 
precision scalar tructure which is segmented based on the size 
of the smallest SIMD elements, so this method is also called 
segmentation scheme. It is the main source for implementing 
SIMD operators which retains existing scalar hardware 
structures while supporting SIMD operations with little area 
and delay overheads. This is also the initial design goal of 
SIMD extension. The key design feature of this method is that 
the final result comes from the same hardware, as opposed to 
selecting results from different hardware based on the SIMD 
mode with a multiplexer. 
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Fig. 3 High-precision based scheme 

Figure 3(a) shows n-bit segmented adder capable of 
supporting k parallel m-bit addition operations. Each m-bit 
segment conditionally interacts or remains independent 
according to the SIMD precision mode. The hinge of this 
method is to applying certain mechanisms to manipulate the 
carry in signal's influence on higher position bits. In other 
words, when performing narrower SIMD addition, the carry in 
signals from lower element ill be ignored by higher ones to 
keep the addition operation within element boundary. The 
simplest way is to control the partition of SIMD element adders 
by inserting logic gates on the carry chain. But this carry 
truncation control mechanism will dramatically increase the 
gate delay since the inserted truncation logic is on the critical 
path. In contrast, carry elimination mechanism allows the carry 
signals to propagate to the higher bit position, and clear up the 
carries' effect by applying control logic on the higher bit 
position. Because these inserted logics are not all on the critical 
path, the increased gate delays of carry elimination mechanism 
is less than carry truncation one [10]. 

Carry elimination mechanism employs one bit carry select 
signal SC to perform element partition. In carry look-ahead 
adder (CLA), carry select adder (CSA) and parallel prefix 
adder (PPA), the pi and si computation equations for the least 
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significant position of element boundary are modified by 
combining the SC signal.  

Figure 3(b) shows the n-bit segmented multiplier capable of 
supporting k parallel m-bit multiplication operations. To 
prevent the carry interactions between SIMD element 
operations, simdization of PPG, PPRT and final CPA should be 
careful designed. The PPG is aligned that, for a given vector 
mode, the partial products associated with each SIMD element 
do not overlap with the partial products associated with the 
other SIMD elements. This allows the use of the same partial 
product reduction tree employed in a regular scalar multiplier. 
Usually, Booth encoding is used to generate the partial 
products. Though Booth encoding reduces the number of 
partial products that have to be added, it adds complexity to 
handle carries across SIMD element boundaries in PPRT and 
CPA [6]. Another simdization method described in [15] does 
not use Booth encoding which also does not require detection 
and suppression of carries across SIMD element boundaries. 

III. SIMD OPERATORS DESIGN 

In this section, we will discuss the our operator designs for 
multimedia ISA including adder, multiplier, permutation unit, 
and floating point unit (FPU). These operator forms the basis 
for implementing various multimedia ISAs. The 
area-performance trade-offs are made to get a piratical solution 
for hardware operator implementation. 

A. Adder FU 

Study on the design of subword parallel adders is of great 
significance in the research field of microprocessors with 
multimedia extension. Subword parallel adder provides a very 
low cost form of small scale SIMD parallelism in a 
word-oriented scalar adder. In section 3, we have discussed the 
general SIMD techniques for adder operator. Figure 4 shows 
the proposed structure of subword parallel adder based on carry 
elimination mechanism. The 32-bit adder in the figure could be 
any type adders such as CLA, CSA and PPA. The CLA 
structure is used in our implementation. Since the equation (1) 
is applied only in the least significant bit position in each 
subword and all other bit positions are still computed by 
conventional logic equation, the increased gate delays for 
supporting subword parallelism is small. 
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Fig. 4 Subword adder using carry elimination mechanism 

Some enhanced parallel multimedia processing 
instructions can also be derived from subword adder. For 
example, parallel average ((A+B)/2) is obtained by adding 
them, then dividing the sum by two. This is equivalent to a right 
shift of one bit, after the addition. Other instructions can be 

parallel maximum, parallel compare and parallel shift and add, 
or conditional instructions like (A=B),(A>B) etc. 

To better support multimedia application, many multimedia 
ISAs have saturation arithmetic instructions. Saturation is used 
to set a minimum and maximum value for operation. Additional 
hardware should be added which overflow flags are examined 
to determine the saturated subwords. 

B. Multiplier FU 

The subword multiplier also receives extensive research 
works such as multiplier architecture introduced in [15] and 
multiple-precision fixed-point vector multiply-accumulator 
proposed in [6]. We have classified them in previous section. It 
can be seen that the high precision based scheme is fast, but 
consumes much hardware resource and the low precision 
scheme can reduce the cost but can not satisfy the demand of 
multiple subword patterns. To design fast and area efficient 
subword multiplier, we can combine the two schemes, namely 
using low precision subword multipliers instead of usual 
multipliers to realize the higher precision multiplier. In this way, 
hardware cost can be reduced and multiple subword modes can 
be supported, which is a good trade-off between cost and 
performance. Figure 5 shows the structure of proposed 32-bit 
combined subword multiplier. It is consisted of two 16-bit 
subword multipliers also supporting 8-bit subword mode. 2-bit 
signal SM is introduce to select the subword modes. 

031

R

MUX MUX MUX MUX

SUBWORD 
MUL 16×16

( 1 )

R1 R2

MUX+Shifter＋CSA

ALU

Temp R

031031

063

063

16 16 16 16

A B

1516031 1516

SUBWORD 
MUL 16×16

( 1 )

2
SM

2
SM

2
SM

2
SM

 

Fig. 5 Subword multiplier using combined scheme 

The multiplication operands are input through register A 
and B. Both the signed and unsigned multiplications are 
supported. Multiplexers from M1 to M4 choose the 
corresponding high or low 16-bit operands to the two 16-bit 
subword multipliers under the control of the SM signal. 
Multiplexer M5 send the value temporarily store in the Temp 
register sends to the CSA for accumulation in the third cycle 
when the multiplier is in 32 subword mode. 

The 32-bit multiplication is realized as illustrated in 
Figure 6. We donate A and B are 32-bit signed numbers, A0, 
B0 and A1, B1 are separately the high and low 16 bits of 
operands A and B. In the first cycle, A1×B0 (signed×unsigned) 
and A0×B1 (unsigned×signed) are computed by the two 
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multiplier and stored in register R1 and R2; In the second cycle, 
A0×B0 (unsigned ×unsigned) and A1×B1 (signed×signed) are 
also computed and stored in register R1 and R2, at the same 
time, the results stored in R1 and R2 by the first cycle are 
accumulated to Register Temp through CPA (Carry 
Propagation Adder); In the third cycle, the values in register R1, 
R2 and Temp are accumulated by CSA and CPA so as to get the 
final 63-bit multiplication result. 

A0

015314763

A1
B0B1

A0×B0 (u×u)
A1×B0 (s×u)
A0×B1 (u×s)

A1×B1 (s×s)  

Fig. 6 32-bit signed multiplication 

The implementation of 32×16 can be similar to 32×32, but 
it only needs two cycles. The first cycle calculates A0×B0 and 
A1×B0 and stores in R1 and R2, and the second cycle get the 
final result through CPA. The implementations of 16-bit and 
8-bit subword multiplication are very easy because the results 
can be directly computed by the two 16-bit subword 
multipliers. 

Based on the subword multiplier designs, we can get the 
implementation structure of multiply-adder unit (MAC). The 
accumulator is fed into the Wallace tree and the carry chain is 
also prevented on the subword boundaries. 

C. Permutation FU 

When using subword parallel instructions, a lot of 
permutation instructions should be used to facilitate the SIMD 
operations. These permutation instructions reorder the 
subwords or short vectors from one or two source registers. A 
good design for permutation instructions is essential for 
exploiting the full subword parallelism and superword 
parallelism. 

control logic R3

Permutation network

R1 R2

Pattern 
generation

 

Fig. 7 Block diagram of permutation unit 

Figure 7 illustrates the block diagram of proposed 
permutation unit. It consist of three component: permutation 
network, pattern generation, and pattern control logic. The 
permutation network is a crossbar implementation which is the 
core component of permutation unit. The pattern generation is 
used to decode the operation codes and generated the inner 
control signals for various permutation patterns. The pattern 
control logic is used to drive the permutation network to fulfill 
the specific permutations. This hardware implementation can 

support various permutation instructions. It mainly used to 
realize instruction vperm(R1, R2, P) which can supply 
extremely flexible data permutation functionality. It performs 
permutation operation which selects an arbitrary set of bytes 
from two input registers, R1 and R2, as indicated by the 
permutation pattern P which is also stored in a register. To 
decrease the mask bit for permutation, there are also some other 
special data permutation instructions with certain pattern such 
as pack and mix instructions [3]. 

D. Floating-point unit 

In this paper, floating-point operators is implemented for 
IEEE floating-point format as specified in [4]. Compared with 
fixed-point arithmetic units, the sharing between different 
floating-point precision units are not so easy. Most recent 
processors implement the SIMD floating-point instructions by 
repeating floating-point units such as the vector FPU in a 
synergistic processor element of CELL processor [17] and 
SIMD FPU for BlueGene/L [16]. The work done in [14] 
extends a double-precision FPU to support single-precision 
interval addition/subtraction or multiplication. It proposes a 
method that how double-precision units can be split to compute 
two bounds of a single precision interval in parallel. [8] 
introduces a dual mode multiplier is presented, which uses a 
half-sized (i.e. 27×53) multiplication array to perform either a 
double-precision or two single-precision multiplication with 
that the double-precision operation needs two cycles. The 
multiplier proposed by [2] uses two double-precision 
multipliers plus additional hardware to perform one quadruple 
precision multiplication or two parallel double-precision 
multiplications. The multiple-precision iterative multiplier 
presented in [23] can perform two SP multiplies every cycle 
with a latency of two cycles, one DP multiply every two cycles 
with a latency of four cycles, or one EP multiply every three 
cycles with a latency of five cycles. It can also support also 
supports division, square-root, and transcendental functions. 
The multi-functional QP MAF unit presented in [24] supports a 
QP MAF, or two DP multiplication, or four SP multiplication, 
or a SP/DP dot-product operation. The superior performance of 
the this unit can be obtained in the execution of dot-product of 
vectors with two elements. 

To get a better performance of both single- and double- 
precision and to save cost by sharing hardware between 
different precision, this paper proposes a double-precision FPU 
based on MAF unit to support two single-precision operations. 
When analyzing the realization structure of FPU in detail, we 
can discover that the sharing logic to reduce area mostly comes 
from adder, multiplier, LOP (Leading-One Predictor) etc. And 
using the techniques in subword adder [10] and multiplier 
design [6], these units only need more area about 5%. As MAF 
includes all these units which results in reasonable small area 
increase, and much more FPUs are implemented using MAF 
unit [16, 17], It is a wise choice to implement a SIMD FPU 
based on SIMD MAF Unit. 

Using one double-precision unit to support two 
single-precision parallel operations, we need a modification for 
each module. The double-precision mantissa units are always 
two times wider than single-precision mantissa units, so it is 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

13



 

 

possible to share most of the hardware by careful design. Figure 
8 shows the hardware architecture of the proposed MAF unit. It 
is pipelined for a latency of three cycles, confirming to 
traditional three steps. For simplicity, the exponent 
computation block, the sign production block, and the 
exception handling block are not illustrated in the figure. 

The first cycle of the MAF is used to compute 
multiplication of A and B to produce an intermediate product 
A×B and the alignment of C. The mantissa multiplier is 
extended to support either one 53-bit multiplication or two 
24-bit multiplications using the techniques proposed by D. Tan 
et al. (2003). The alignment module completes mantissa 
shifting of operand C according to the exponent difference. 
Because using 161-bit shifter to do two parallel 75-bit shifting 
introduces much delay, the alignment module uses two shifters, 
where the high position single-precision shares with original 
double-precision shifter, and the low position single-precision 
shifter is added. 

During the second cycle, the aligned C is added to the 
carry-save representation of A×B and the shift amount for 
normalization by means of LOP is determined. The 106-bit 
addition need not to increase additional control logic because 
two single-precision numbers are separated by one bit which 
may hold the addition carry, thus two single-precision additions 
would not affect each other. 
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Fig. 8 Structure of SIMD MAF Unit 

In the third cycle, the normalization shifting and rounding 
are performed. Two normalization shifters are also needed for 
speed and the Round, Guard, Sticky bits are sent to the 
unification logic to produce round flag whether adding one or 
not. After rounding, post-normalization is needed to get the 
final mantissas result. 

IV. EVALUATION 

This section will give a detailed evaluation based on a 
piratical designed data parallel coprocessor for the proposed 
operator structures. First the system architecture of the 
coprocessor is described, and then its specific operators are 
introduced, finally the hardware cost and runtime performance 
for multimedia benchmarks are presented. 

A. System overview 

To test the hardware operator design for DLP exploration, 
we designed a multimedia co-processor based on the TTA 
(Transport Triggered Architecture) [21] integrating with the 
LEON-3 host processor. The block diagram of its architecture 
is shown in Figure 9(a). The co-processor is utilized for 
accelerating core processing of multimedia applications like 
data compression and graphics functions. 

LEON-3 CPU

AMBA Bus

Functional 
Unit Cluster

ICache

DCache

Co-processor

FU FU FU FU

FU FU RF RF

Transport
Network

socketBus

(a) System architecture

(b) Functional unit cluster
 

Fig. 9 System Overview 

TTA can be viewed as a superset of traditional VLIW 
architecture. The major difference between TTA and traditional 
operation triggered architecture is the way that the operation is 
executed. Instead of triggering data transports, TTA operations 
occur as a side effect of data transports. The TTA-based 
architecture makes the coprocessor can integrate abundant 
arithmetic functional units in a very simple way, and gives 
flexible and fine-grained exploration of subword parallelism 
for compiler. 

The structure of the functional unit cluster is organized as 
shown in Figure 9(b). There are an abundance of functional 
units (FU) and register files (RF) which are connected to the 
interconnection network by sockets. Every FU or RF has one or 
more operator registers, result registers but only one trigger 
register. Data being transferred to the trigger register will 
trigger the function unit to work. All operations, including 
load/store and branch/jump/link occur solely through moves. 
FUs operate concurrently and may incorporate pipelined 
execution. Thus, compared with the traditional VLIW 
architecture, TTA makes parallelism more fine-grained and 
flexible, which suits to the more efficient schedule in the 
instruction level as well as the data level. 
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In each cycle, the specified data transfer in the transport 
network can trigger the operations of these functional units. 
This allows for an extremely high utilization of the silicon area 
and suits for the different signal processing algorithms ranging 
from mobile communication systems to stream media 
applications. The computation is done by transferring values to 
the operand register and starting an operation implicitly via a 
move targeting the trigger register associated with the 
command. 

Tab. 1 Arithmetic unit configuration 

FU Numbers Description Latency

ALU 4 Subword arithmetic, logic 1 

MAC 4 Subword MAC 3/2 

CMP 1 Integer, FP compare 1 

FPU 1 2 way single, 1 way double 5 

Table 1 shows the arithmetic unit configuration of the 
coprocessor, in which the latency of MAC is three cycles in 
32-bit subword mode and two in other modes. To save the 
instruction encoding bits, The ALU and MAC operations are 
implemented in one functional unit as will be described in 
following subsection. The CMP Unit is a combined comparator 
which can perform double-/single-precision floating-point 
comparison or integer comparison and it does not support 
SIMD operations.  

B. Operator Implementation 

1)  Typical operator 

Every functional unit has its own unique internal structure, 
but their external interfaces are unified with one or more O-type 
registers, R-type registers and only one T-type register. If an 
operator supports two or more operations, then opcode should 
be specified. 

The FUs are implemented using a so called virtual time 
lock (VTL) pipeline technique that the intermediate data in the 
FUs continues to the next stage on each clock cycle. This means 
that if the results of last operation are not read in time, they will 
be modified by the new operation. So whether the results of an 
operation are available depends on whether the FU is triggered 
again. 

Figure 10 shows a typical Operator. Its pipeline has a 
latency of 3 clock cycles; this means that reading of the result 
register can be done 3 cycles after writing to the trigger register. 
The bus_select signal is used to select the right bus data and 
store it to the O-type or T-type register according to the load 
signal. Then the actual operation is executed by the FU. Three 
cycles later, the result of the operation is restored to the R-type 
register. When this result is needed, the control signal is used to 
send its value to the corresponding data bus and set other buses 
all zeros. 
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Fig. 10 System Overview 

2)  ALU Example 

Figure 11 shows the structure of the proposed ALU design. 
It consists of five main components: internal registers, control 
logic, the adder-related unit, the multiplier-related unit, and 
permutation unit. The internal registers include configuration 
register CONFIG, operation encoding register OPCODE, 
operand register X1, X2, X3, result register RESULT, and status 
register STATUS. The program can specify the computation 
mode and exception handling via setting CONFIG register. The 
input register, OPCODE, is used to specify different operations 
performed by ALU. The result register RESULT is used to store 
the computation result. The status register, STATUS, indicates 
the whether the addition/substraction operations have overflow 
exception. The control logic CTRL decodes the operations 
according to OPCODE and determines the ways to handle 
exceptions when happen. The adder-related unit is responsible 
for various subword arithmetic and logic executions as 
specified in previous sections. The multiplier-related unit is 
used to fulfil the subword multiplication and MAC operations. 
The permutation unit is to perform the subword permutation 
instructions such as pack/unpack instructions. 

CONFIG OPCODE X1 X2 X3

CTRL

RESULT STATUS

 INPUT BUS

PREPROCESS
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+ + + +
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× × × ×
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Fig. 11 Structure of porposed ALU 
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Fig. 12 Optimization techniques for ALU operator design 

To get an highly optimized ALU targeting at high 
performance, low power and small area, we use some simple 
but effective methods to optimize the ALU design. Figure 12 
shows the optimization schemes used in the proposed ALU 
design. The resource sharing method can decrease the hardware 
cost without performance overhead. Based on the principle of 
logical equivalence, it modifies the data processing mechanism 
to increase the utilization frequencies of complex circuits. 
Figure 12(a) illustrates that the AB datapath and A'B' datapath 
can sharing the adder under control signal select. 

To reduce the latency, the conventional serial structure of 
ALU can be changed to parallel structure as shown in Figure 
12(b). The serial structure would increase the execution delay 
for every instruction and its control description is relatively 
hard. In the proposed ALU, the parallel structure can not only 
improve the ALU speed, but also simplify the overall design. 

The third technique is to reduce the power consumption of 
ALU based on that unnecessary circuit activities consume 
much power. The proposed ALU consists of many 
sub-modules and each time only one sub-module is used, so 
power is wasted if other unnecessary sub-modules works. We 
could perform the data selection before entering those 
submodules to break down their datapaths. So the states of 
these sub-module remain unchanged. This leads to reduce 
unnecessary signal switches resulting in low power. Figure 
12(c) illustrates this data pre-selection technique. 

C. Results 

Utilizing subword implementation techniques described 
above, we realized all the proposed functional units and 

integrated them into the multimedia co-processor. They are 
modeled using structural level Verilog HDL codes. The 
correctness of various implementations is verified with 
extensive simulations. Then they are synthesized using 
Synopsys Design Compiler and standard cell library. It was 
fabricated in 0.18 µm 6-metal standard CMOS logic process. 
The chip occupies 4.8 mm2 and its die photograph is shown in 
Figure 13. Correct operation has been observed up to 300 MHz 
and under this frequency, the dynamic power consumption is 
only 560 mW. 

 

Fig. 13 Die Photograph 

Tab. 2 Experimental Results of Arithmetic Units 

 Param
eters 

ALU MAC CMP FPU Total 

Non-
SIMD

2.12 2.60 1.76 2.55 2.60 
delay 
(ns) 

SIMD 2.55 2.42 - 2.79 2.79 
Non-
SIMD

63212 14031
6 

21023 53066
9 

13658
04 

area 
(mm2)

SIMD 74464 11330
5 

- 61557
6 

13876
75 

Table 2 gives the hardware experiment results of 
Arithmetic units. For comparison, the traditional arithmetic 
units are also designed. As can be seen from the table, the total 
SIMD arithmetic units only have roughly 2% more area and 
worst case delay that is 7% longer than the traditional 
arithmetic units. This is due to the fact that the area of proposed 
subword multiplier is even smaller than traditional multiplier 
and the SIMD FPU does not cause much more delay. 

For this study, we use a set of common DSP and 
multimedia algorithms [20], including digital filters, fast 
Fourier transform (FFT), inverse discrete cosine transform 
(IDCT), and matrix arithmetic which is listed in Table 4. Matrix 
arithmetic is extremely important in 3D Graphics because they 
are used for several point transformations in the 3D world. FIR 
digital filters are used as general filtering in speech and audio 
processing, and linear predictive coding. Applications of IIR 
digital filters include audio equalization, speech compression, 
linear predictive coding and general filtering. FFT is used in 
many applications, including MPEG audio compression, radar 
processing, sonar processing, ADSL modems, and spectral 
analysis. DCT-based image coding is the basis for all the image 
and video compression standards, including JPEG image 
compression, MPEG video compression, and H.263. 
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Tab. 3 Benchmark Description 

Name Description 
fft 128-point radix-4 FFT, 16-bit 
mat_mul 4x4 matrix multiplication, 16-bit 

maxidx 
index of max values in the vector with 64 elements, 
16-bit 

idct 512x512 IDCT, 8-bit 

fir 
complex FIR filter, 40 coefficients, 16output 
samples, 16-bit 

iir IIR filter with 500 output samples, 16-bit 
Using the data parallel coprocessor, we test the proposed 

operators both with SIMD instructions and non-SIMD 
instructions versions separately. This can shows the 
performance effectiveness of using data parallel operators. 
Figure 14 presents the instruction count comparison of SIMD 
and non-SIMD versions. The instruction code size reduction 
ranges from 19.6% to 35.8%. This is very beneficial for our 
coprocessor as the code size is always a big problem for 
VLIW-like ISA. 
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Fig. 14 Instruction count comparison 

Figure 15 shows the performance comparison result 
obtained in this study. The speedup for SIMD instructions over 
scalar instructions range from 1.02 for IIR and 1.56 for 
MATMUL. IIR digital filter is the most difficult to vectorize 
because it involves the feedback path from the previously 
computed output samples. Hence, it has the least amount of 
data parallelism, resulting in the least speedup of 1.60. Matrix 
arithmetic, on the other hand, is straightforward to implement 
in AltiVec; therefore, we are able to obtain reasonable data 
parallelism, resulting in reasonable dynamic instruction count 
reduction and overall speedup. The experimental speedup for 
all the algorithms is less than its theoretical speedup. This 
confirms the negative effect of the overhead for data 
reorganization in packed data types. 
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Fig. 15 Performance comparison in terms of execution cycle 
count 

V. CONCLUSION 

This paper presents a systematic solution to design high 
performance hardware operators for DLP exploration. The 
SIMD techniques are classified into two categories: low 
precision based scheme and high precision based scheme. To 
accommodate the best trade-off between hardware cost and 
performance, combined techniques are used to design integer 
operators and floating-point operators. Integrating all these 
operators into a system, a multimedia co-processor was 
designed and tested in 0.18µm standard CMOS logic process. It 
shows that the SIMD arithmetic unit cluster can improve the 
multimedia application by 2%~56% in the cost of a little 
increase in cycle delay and silicon area. 
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