

Abstract—Many microprocessor vendors have incorporated high

performance operators in a single instruction multiple data (SIMD)
fashion into their processors to meet the high performance demand of
increasing multimedia workloads. This paper presents some recent
works on hardware implementation of these operators for data-level
parallelism (DLP) exploration. Two general architectural techniques
for designing operators with SIMD support are first described
including low precision based scheme and high precision based
scheme. Then new designs for integer operators as well as
floating-point operators are provided to accommodate best tradeoff
between cost and performance. To verify the correctness and
effectiveness of these methods, a multimedia coprocessor augmented
with SIMD operators is designed. The implemented chip successfully
demonstrates that the proposed operators get good tradeoff between
cost and performance.

Keywords—Operator, SIMD, high performance, data level
parallelism

I. INTRODUCTION

Arithmetic unit design is a research area that has been of
great importance in the development of processor [7]. They are
key components in processors which consume most power and
attribute most latency. As such, a great deal of research has
been devoted to the study of the high efficiency arithmetic units
[7, 19]. They have primarily focused on implementing the
various basic arithmetic units at smaller areas, lower power,
and higher speed. Indeed, novel circuit techniques, and
innovation in algorithm and structure have resulted in rapid
improvements in arithmetic unit performance. Examples are
integer adders, multipliers and floating-point operators. As a
standard operator, the basic arithmetic unit design has been
already mature.

To further boost the performances of arithmetic units, its
design methodology turns to global optimization for program
execution instead of single optimal arithmetic unit. Adding
Application-specific instruction-set processors (ASIPs) or
Single instruction multiple data (SIMD) units to a general
purpose processor receives enormous attentions. The ASIP
method identifies critical operations and implements them by

Manuscript received October 31, 2011: This work was supported in part by
the National Natural Science Foundation of China under Grant No. 61103016,
No. 60803041, and No.60773024.

Libo Huang is with the School of Computer, National University of Defense
Technology, Changsha 410073, China (corresponding author phone:
86-731-84573640; e-mail: libohuang@nudt.edu.cn).

Zhiying Wang and Nong Xiao are with the School of Computer, National
University of Defense Technology, Changsha 410073, China (e-mail:
{zywang,nongxiao}@nudt.edu.cn).

dedicated arithmetic units based on the performance
characterization of the specific application [13]. While ASIPs
are only suitable for a limited set of applications, SIMD unit
can be beneficial for more general data-intensive applications
such as multimedia computing [5, 22]. As multimedia
applications contain a lot of inherent parallelism which can
easily be exploited by using SIMD unit, these augmented
function units can significantly accelerate the multimedia
applications. To take advantage of this fact, several multimedia
extensions were introduced into microprocessors architectures.
Examples are Intel's MMX, SSE1, SSE2 and even SSE3,
AMD's 3DNow, Sun's VIS, HP's MAX, MIPS's MDMX, and
Motorola's AltiVec [22].

The main feature of these extensions is the exploration of
the data level parallelism (DLP) available in multimedia
applications by partitioning the processor's execution units into
multiple lower precision segments called subwords, and
performing operations on these subwords simultaneously in a
single instruction multiple data (SIMD) fashion [22]. This is
called subword parallelism (also referred to microSIMD
parallelism or packed parallelism). For example, in MMX
technology [3], the execution units can perform one 64-bit, two
32-bit, four 16-bit or eight 8-bit additions simultaneously.

The integer SIMD computation is very popular in the
domains of multimedia processing, where data are either 8 or
16 bits wide: this allows for the usage of subword precision in
existing 32-bit(or wider) arithmetic functional units. This way,
a 32-bit ALU can be used to perform a given arithmetic
operation on two 16-bit operands or four 8-bit operands,
boosting performance without instantiating additional
arithmetic units. However, the floating-point operators with
SIMD features appears relatively later such as SSE instructions
(in Pentium III) and SSE2 and SSE3 instructions (in Pentium
IV). This is due to that the area and power consumption of
floating-point operators are relatively larger than integer unit.
Another reason is that until a few years ago the applications
usually did not require extensive floating-point data parallel
computations. Nowadays things change a lot, forcing the
develops to address the continued need for SIMD
floating-point performance in mainstream scientific and
engineering numerical applications, visual processing,
recognition, data-mining/synthesis, gaming, physics,
cryptography and other areas of applications. Recently, Intel
even announced an enhanced set of vector instructions with
availability planned for 2010, called AVX which has 256-bit
SIMD computation [12]. It enhances existing 128-bit
floating-point arithmetic instructions with 256-bit capabilities
for floating-point processing.

High Performance Hardware Operators for Data
Level Parallelism Exploration

Libo Huang, Zhiying Wang, Nong Xiao

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

9

To effectively implement multimedia extension
instructions, the data format to be used in SIMD operations and
corresponding hardware support must be provided. The SIMD
operators not only need to complete the basic arithmetic
operations, but also need to deal with the computations, data
conversion and data unpacking of different precision subwords
in parallel. This makes the SIMD operator a good capability in
data handling, but the hardware to implementing them becomes
more complicated, and its power and delay is much greater.
Therefore, to design SIMD operators with low power, small
area and delay is becoming a new design goal.

To reduce processor area, it is often desirable to have
SIMD operations share circuitry with non-SIMD operations.
Thus, many optimized hardware structures supporting SIMD
operations for fixed-point and floating-point units have been
introduced and this paper attempts to survey these existing
subword parallel algorithms in a system view. Then new
methods for multiplier and floating-point Multiply-add fused
(MAF) unit are proposed to achieve a better performance in
power, cycle delay and silicon area. To test these methods, a
multimedia co-processor with SIMD fixed-point and
floating-point units integrating into the LEON-3 host processor
is designed.

The main contribution of this paper is proposing and
evaluating methods and architectures for SIMD operator design.
The remainder of this paper is organized as follows. In Section
2, the general structure of proposed SIMD unit is present. After
that, section 3 provides detailed description of the proposed
SIMD units. Then Section 4 describes the evaluation results
under the context of a multimedia coprocessor. Finally, Section
5 gives the conclusion of the whole work.

II. GENERALIZED SIMD TECHNIQUES

All modern microprocessors have now added multimedia
instructions to their base instruction set architectures (ISAs).
These various ISA extensions are in fact similar with few
differences mainly in the types of operands, latencies of the
individual instructions, the width of the data path, and in the
memory management capabilities. They all need support
concurrent operations on the foundation of the original
hardware. The simplest realization method is to increase
various subword computing hardware resources, and then
choose the right result according to various subword modes.
But because it consumes hardware resources and the power,
this method is considered very little in the actual design. To
reduce processor area it is often desirable to have SIMD
operations share circuitry with non-SIMD operations.
Following text will discuss the general SIMD implementation
methods, including integer and floating-point operators for
DLP exploration. As the memory and special multimedia
instructions are related to specific system architectures, they are
not discussed in this paper.

There are generally two schemes to implement SIMD
arithmetic unit: low-precision based scheme and high-precision
based scheme. The low-precision scheme uses several narrower
units to support wider arithmetic operation while the
high-precision scheme uses wider arithmetic unit to support
multiple narrower parallel operations. The detailed

implementation could be explained as follows.

A. Low-precision based scheme

The low-precision based scheme involves building wider
SIMD elements out of several of the narrower SIMD elements
and then combining the ultiple results together. This can be
achieved by iteration or combination. The iteration method is to
perform high precision operations by iteratively recalculating
the data back through the same low precision unit over more
than one cycle while the combination method is to perform high
precision operations by consecutively “unrolling the loop” and
then combining the results together [1]. For example, the adder
implemented in the 2000-MOPS embedded RISC processor
uses eight 8-bit adders to build a subword parallel adder [18].

R1 R0

A[n:0] B[n:0]

R[n:0]

B1 B0A1 A0

CinCout MUX

C

MUX

...

...

MUX

...

m-bit adder

0m-1n-1

Cycle(1,…,k)

1'b0

m2m-1

Cycle(1,…,k)

Cycle(1,…,k)

m m

MUX MUX

...

MUXMUX

...

(a) m-bit adder supporting n-bit addition (iteration)

0m-1n-1 m2m-1
Ak-1 Ak-2 Bk-1 Bk-2

Rn/m-2Rk-1

A[n:0] B[n:0]B1 B0A1 A0
...

0m-1n-1 m2m-1
...

0m-1n-1 m2m-1
An/m-1 An/m-2 Bn/m-1 Bn/m-2

m-bit
Adder

m-bit
Adder

m-bit
Adder

m-bit
Adder

...

... ...

R1 R0 R[n:0]...Rk-2Rk-1

...

(b) k m-bit adders supporting n-bit addition (combination)

Fig. 1 Subword adder using low-precision based scheme
Figure 1 shows the structures of SIMD adder using

low-precision based scheme. In Figure 1(a), a m-bit adder is
used to perform n-bit addition with n/m cycles using iteration
method, where n>m and n can be divided by m. Each cycle m
bits of source operands A and B are selected to the m-bit adder
to perform addition operation and then computed m-bit result
are stored into corresponding location of result operand R. To
propagate the carry chain to higher part, the carry-out bit of
adder should be stored in register and then send back to adder
as carry-in bit in the next cycle. The iterative method is useful
when SIMD arithmetic units are needed with a minimal amount
of hardware. But this method also has its shortcomings that it
requires pipeline stalls and it is at the cost of cycle times. Figure
1(b) illustrates the combination method implementation of n-bit
addition using n/m m-bit adders. The carry-out bit of lower part
adder is sent to the higher part adder to complete the results
combination. Though combined adder requires less delay than
iterative adder, it needs more area than iterative adder, and
more delay than a scalar adder with the same width. This is
because the critical path of carry chain in scalar adder can be
optimized for performance globally while combined adder is
optimized locally and carry chain is propagated in each m-bit
adder.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

10

(a) m-bit multiplier supporting n-bit multiply using k2 iteration

MUX MUX

...
Cycle(1,…,k2) Cycle(1,…,k2)

m m

A[n:0] B[n:0]B1 B0A1 A0
...

0m-1n-1 m2m-1
...

0m-1n-1 m2m-1
Ak-1 Ak-2 Bk-1 Bk-2

Partial Product Generator

...

Partial Product Reduction Tree

sum carry

SUM CARRY

R1 R0
...Rk-1 Rk-2

MUX MUX

0

Final Carry Propagate Adder

0

...R2k-1 R2k-2 RkRk+1

02n-1

(b) k2 m-bit multiplier supporting n-bit multiply using combination

A[n:0] B[n:0]B1 B0A1 A0
...

0m-1n-1 m2m-1
...

0m-1n-1 m2m-1
An/m-1 An/m-2 Bn/m-1 Bn/m-2

PPG PPG
(A0×B1)

PPG
(A0×B0)

PPRT

PPG
(A1×B0)...

...

...

...

(Ak-1×Bk-1)
PPG

...
(Ak-1×Bk-2) ...

sum carry

FCPA

R1 R0
...Rk-1 Rk-2...R2k-1 R2k-2 RkRk+1

02n-1

R[2n-1:0]

R[2n-1:0]

...

...

B0B1
Bk-2
Bk-1

A0A1
Ak-2
Ak-1

Fig. 2 Subword multiplier using low-precision based scheme

Figure 2 shows the structure of SIMD multiplier using
iteration and combination methods separately. Let n-bit
A=ak-1ak-2...a1a0 and n-bit B=bk-1bk-2...b1b0, where ax has m bits
and k=n/m. Then

A=ak-1×2 (k-1)m+ak-2×2(k-2)m+...+a1×2m+a0 and B=bk-1×b
(k-1)m+bk-2×2(k-2)m+...+b1×2m+b0.

So A×B can be expressed as:
A×B=ak-1bk-1×2(2k-2)m+...+ak-1b0×2k-1+ak-2bk-1×2(2k-3)m+...

+ak-2b0×2k-2
…...+a0bk-1× 2 (k-1)m+…+a0b0

From above equation, we can see that a n×n multiplier can
be built out of k2 m×m multipliers by generating k2 2m products
which can then be added to form the 2n product. Using iteration
method, not all k2 m×m multipliers are necessarily required. As
shown in Figure 2(a), a n-bit multiplier is built using only one
m-bit multiplier with slight hardware modification. The partial
product generator (PPG) does not need to change while the
partial product reduction tree (PPRT) has two additional rows.
To reduce the delay, each cycle the computed multiplication
result is in carry-save representation. In the next cycle, the carry
and sum vectors are fed back into the multiplier handled by the
two additional rows. The final carry propagate adder (CPA) can
also utilize iteration method to support 2n-bit addition.

For combination method shown in Figure 2(b), k2 m×m
multipliers are used to support n×n multiplication. As
mentioned in combined adder, the combination method has no
obvious advantages over iteration or scalar implementation.
But we can combine the iteration and combination methods to
enable various area versus latency trade-offs.

B. High-precision based scheme

The high-precision based scheme uses existing high
precision scalar tructure which is segmented based on the size
of the smallest SIMD elements, so this method is also called
segmentation scheme. It is the main source for implementing
SIMD operators which retains existing scalar hardware
structures while supporting SIMD operations with little area
and delay overheads. This is also the initial design goal of
SIMD extension. The key design feature of this method is that
the final result comes from the same hardware, as opposed to
selecting results from different hardware based on the SIMD
mode with a multiplexer.

(a) n-bit adder supporting (n/m) m-bit addition in parallel

A[n:0] B[n:0]B1 B0A1 A0
...

0m-1n-1 m2m-1
...

0m-1n-1 m2m-1
An/m-1 An/m-2 Bn/m-1 Bn/m-2

m-bit
Adder

m-bit
Adder

m-bit
Adder& & m-bit

Adder&...
1'b0 1'b0 1'b0

... ...

R1 R0 R[n:0]...Rn/m-2Rn/m-1

...

(b) n-bit multiplier supporting (n/m) m-bit multiplication in parallel

...

A[n:0] A1 A0
...

0m-1n-1 m2m-1
An/m-1 An/m-2

B
1

B
0

...
B

n/m
-1 B

n/m
-2

0
m

-1
n-1

m
2m

-1

... have no
carry in

R1 R0
... R3 R2

...
R2n/m-1R2n/m-2

02n-1

R[2n-1:0]...
A0×B0A1×B1An/m-2×Bn/m-2

R2n/m-3R2n/m-4

An/m-1×Bn/m-1

Fig. 3 High-precision based scheme

Figure 3(a) shows n-bit segmented adder capable of
supporting k parallel m-bit addition operations. Each m-bit
segment conditionally interacts or remains independent
according to the SIMD precision mode. The hinge of this
method is to applying certain mechanisms to manipulate the
carry in signal's influence on higher position bits. In other
words, when performing narrower SIMD addition, the carry in
signals from lower element ill be ignored by higher ones to
keep the addition operation within element boundary. The
simplest way is to control the partition of SIMD element adders
by inserting logic gates on the carry chain. But this carry
truncation control mechanism will dramatically increase the
gate delay since the inserted truncation logic is on the critical
path. In contrast, carry elimination mechanism allows the carry
signals to propagate to the higher bit position, and clear up the
carries' effect by applying control logic on the higher bit
position. Because these inserted logics are not all on the critical
path, the increased gate delays of carry elimination mechanism
is less than carry truncation one [10].

Carry elimination mechanism employs one bit carry select
signal SC to perform element partition. In carry look-ahead
adder (CLA), carry select adder (CSA) and parallel prefix
adder (PPA), the pi and si computation equations for the least

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

11

significant position of element boundary are modified by
combining the SC signal.

Figure 3(b) shows the n-bit segmented multiplier capable of
supporting k parallel m-bit multiplication operations. To
prevent the carry interactions between SIMD element
operations, simdization of PPG, PPRT and final CPA should be
careful designed. The PPG is aligned that, for a given vector
mode, the partial products associated with each SIMD element
do not overlap with the partial products associated with the
other SIMD elements. This allows the use of the same partial
product reduction tree employed in a regular scalar multiplier.
Usually, Booth encoding is used to generate the partial
products. Though Booth encoding reduces the number of
partial products that have to be added, it adds complexity to
handle carries across SIMD element boundaries in PPRT and
CPA [6]. Another simdization method described in [15] does
not use Booth encoding which also does not require detection
and suppression of carries across SIMD element boundaries.

III. SIMD OPERATORS DESIGN

In this section, we will discuss the our operator designs for
multimedia ISA including adder, multiplier, permutation unit,
and floating point unit (FPU). These operator forms the basis
for implementing various multimedia ISAs. The
area-performance trade-offs are made to get a piratical solution
for hardware operator implementation.

A. Adder FU

Study on the design of subword parallel adders is of great
significance in the research field of microprocessors with
multimedia extension. Subword parallel adder provides a very
low cost form of small scale SIMD parallelism in a
word-oriented scalar adder. In section 3, we have discussed the
general SIMD techniques for adder operator. Figure 4 shows
the proposed structure of subword parallel adder based on carry
elimination mechanism. The 32-bit adder in the figure could be
any type adders such as CLA, CSA and PPA. The CLA
structure is used in our implementation. Since the equation (1)
is applied only in the least significant bit position in each
subword and all other bit positions are still computed by
conventional logic equation, the increased gate delays for
supporting subword parallelism is small.

SC2

a0

b0

a7

b7

……a15

b15

a23

b23

a31

b31

SC0

a8

b8

SC1

a16

b16

SC0

a24

b24

8-bit subword 0

………………

8-bit subword 18-bit subword 28-bit subword 3

16-bit subword 016-bit subword 1

32-bit

32-bit Adder

Fig. 4 Subword adder using carry elimination mechanism

Some enhanced parallel multimedia processing
instructions can also be derived from subword adder. For
example, parallel average ((A+B)/2) is obtained by adding
them, then dividing the sum by two. This is equivalent to a right
shift of one bit, after the addition. Other instructions can be

parallel maximum, parallel compare and parallel shift and add,
or conditional instructions like (A=B),(A>B) etc.

To better support multimedia application, many multimedia
ISAs have saturation arithmetic instructions. Saturation is used
to set a minimum and maximum value for operation. Additional
hardware should be added which overflow flags are examined
to determine the saturated subwords.

B. Multiplier FU

The subword multiplier also receives extensive research
works such as multiplier architecture introduced in [15] and
multiple-precision fixed-point vector multiply-accumulator
proposed in [6]. We have classified them in previous section. It
can be seen that the high precision based scheme is fast, but
consumes much hardware resource and the low precision
scheme can reduce the cost but can not satisfy the demand of
multiple subword patterns. To design fast and area efficient
subword multiplier, we can combine the two schemes, namely
using low precision subword multipliers instead of usual
multipliers to realize the higher precision multiplier. In this way,
hardware cost can be reduced and multiple subword modes can
be supported, which is a good trade-off between cost and
performance. Figure 5 shows the structure of proposed 32-bit
combined subword multiplier. It is consisted of two 16-bit
subword multipliers also supporting 8-bit subword mode. 2-bit
signal SM is introduce to select the subword modes.

031

R

MUX MUX MUX MUX

SUBWORD
MUL 16×16

(1)

R1 R2

MUX+Shifter＋CSA

ALU

Temp R

031031

063

063

16 16 16 16

A B

1516031 1516

SUBWORD
MUL 16×16

(1)

2
SM

2
SM

2
SM

2
SM

Fig. 5 Subword multiplier using combined scheme

The multiplication operands are input through register A
and B. Both the signed and unsigned multiplications are
supported. Multiplexers from M1 to M4 choose the
corresponding high or low 16-bit operands to the two 16-bit
subword multipliers under the control of the SM signal.
Multiplexer M5 send the value temporarily store in the Temp
register sends to the CSA for accumulation in the third cycle
when the multiplier is in 32 subword mode.

The 32-bit multiplication is realized as illustrated in
Figure 6. We donate A and B are 32-bit signed numbers, A0,
B0 and A1, B1 are separately the high and low 16 bits of
operands A and B. In the first cycle, A1×B0 (signed×unsigned)
and A0×B1 (unsigned×signed) are computed by the two

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

12

multiplier and stored in register R1 and R2; In the second cycle,
A0×B0 (unsigned ×unsigned) and A1×B1 (signed×signed) are
also computed and stored in register R1 and R2, at the same
time, the results stored in R1 and R2 by the first cycle are
accumulated to Register Temp through CPA (Carry
Propagation Adder); In the third cycle, the values in register R1,
R2 and Temp are accumulated by CSA and CPA so as to get the
final 63-bit multiplication result.

A0

015314763

A1
B0B1

A0×B0 (u×u)
A1×B0 (s×u)
A0×B1 (u×s)

A1×B1 (s×s)

Fig. 6 32-bit signed multiplication

The implementation of 32×16 can be similar to 32×32, but
it only needs two cycles. The first cycle calculates A0×B0 and
A1×B0 and stores in R1 and R2, and the second cycle get the
final result through CPA. The implementations of 16-bit and
8-bit subword multiplication are very easy because the results
can be directly computed by the two 16-bit subword
multipliers.

Based on the subword multiplier designs, we can get the
implementation structure of multiply-adder unit (MAC). The
accumulator is fed into the Wallace tree and the carry chain is
also prevented on the subword boundaries.

C. Permutation FU

When using subword parallel instructions, a lot of
permutation instructions should be used to facilitate the SIMD
operations. These permutation instructions reorder the
subwords or short vectors from one or two source registers. A
good design for permutation instructions is essential for
exploiting the full subword parallelism and superword
parallelism.

control logic R3

Permutation network

R1 R2

Pattern
generation

Fig. 7 Block diagram of permutation unit

Figure 7 illustrates the block diagram of proposed
permutation unit. It consist of three component: permutation
network, pattern generation, and pattern control logic. The
permutation network is a crossbar implementation which is the
core component of permutation unit. The pattern generation is
used to decode the operation codes and generated the inner
control signals for various permutation patterns. The pattern
control logic is used to drive the permutation network to fulfill
the specific permutations. This hardware implementation can

support various permutation instructions. It mainly used to
realize instruction vperm(R1, R2, P) which can supply
extremely flexible data permutation functionality. It performs
permutation operation which selects an arbitrary set of bytes
from two input registers, R1 and R2, as indicated by the
permutation pattern P which is also stored in a register. To
decrease the mask bit for permutation, there are also some other
special data permutation instructions with certain pattern such
as pack and mix instructions [3].

D. Floating-point unit

In this paper, floating-point operators is implemented for
IEEE floating-point format as specified in [4]. Compared with
fixed-point arithmetic units, the sharing between different
floating-point precision units are not so easy. Most recent
processors implement the SIMD floating-point instructions by
repeating floating-point units such as the vector FPU in a
synergistic processor element of CELL processor [17] and
SIMD FPU for BlueGene/L [16]. The work done in [14]
extends a double-precision FPU to support single-precision
interval addition/subtraction or multiplication. It proposes a
method that how double-precision units can be split to compute
two bounds of a single precision interval in parallel. [8]
introduces a dual mode multiplier is presented, which uses a
half-sized (i.e. 27×53) multiplication array to perform either a
double-precision or two single-precision multiplication with
that the double-precision operation needs two cycles. The
multiplier proposed by [2] uses two double-precision
multipliers plus additional hardware to perform one quadruple
precision multiplication or two parallel double-precision
multiplications. The multiple-precision iterative multiplier
presented in [23] can perform two SP multiplies every cycle
with a latency of two cycles, one DP multiply every two cycles
with a latency of four cycles, or one EP multiply every three
cycles with a latency of five cycles. It can also support also
supports division, square-root, and transcendental functions.
The multi-functional QP MAF unit presented in [24] supports a
QP MAF, or two DP multiplication, or four SP multiplication,
or a SP/DP dot-product operation. The superior performance of
the this unit can be obtained in the execution of dot-product of
vectors with two elements.

To get a better performance of both single- and double-
precision and to save cost by sharing hardware between
different precision, this paper proposes a double-precision FPU
based on MAF unit to support two single-precision operations.
When analyzing the realization structure of FPU in detail, we
can discover that the sharing logic to reduce area mostly comes
from adder, multiplier, LOP (Leading-One Predictor) etc. And
using the techniques in subword adder [10] and multiplier
design [6], these units only need more area about 5%. As MAF
includes all these units which results in reasonable small area
increase, and much more FPUs are implemented using MAF
unit [16, 17], It is a wise choice to implement a SIMD FPU
based on SIMD MAF Unit.

Using one double-precision unit to support two
single-precision parallel operations, we need a modification for
each module. The double-precision mantissa units are always
two times wider than single-precision mantissa units, so it is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

13

possible to share most of the hardware by careful design. Figure
8 shows the hardware architecture of the proposed MAF unit. It
is pipelined for a latency of three cycles, confirming to
traditional three steps. For simplicity, the exponent
computation block, the sign production block, and the
exception handling block are not illustrated in the figure.

The first cycle of the MAF is used to compute
multiplication of A and B to produce an intermediate product
A×B and the alignment of C. The mantissa multiplier is
extended to support either one 53-bit multiplication or two
24-bit multiplications using the techniques proposed by D. Tan
et al. (2003). The alignment module completes mantissa
shifting of operand C according to the exponent difference.
Because using 161-bit shifter to do two parallel 75-bit shifting
introduces much delay, the alignment module uses two shifters,
where the high position single-precision shares with original
double-precision shifter, and the low position single-precision
shifter is added.

During the second cycle, the aligned C is added to the
carry-save representation of A×B and the shift amount for
normalization by means of LOP is determined. The 106-bit
addition need not to increase additional control logic because
two single-precision numbers are separated by one bit which
may hold the addition carry, thus two single-precision additions
would not affect each other.

C 063 3132 A 063 3132 B 063 3132

Operand Selector

Negation

Alignment
shifter

Operand Selector

55-bit Aligned C 106-bit Carry 106-bit Sum

3-2 CSA

106-bit Adder
55-bit INC

Negation

Leading-One
Predition

14-bit Shift Amount 161-bit Significand

Normalization shifter / INC

Rounder

Post-normalization

53 bit Significand

Round bit
Guard bit
Sticky bit

supporting one 53×53
or two 24×24

sub

2

2

6

Carry bit

53-bit subword multiplier

2 Round flag

Sign bit
2

Fig. 8 Structure of SIMD MAF Unit

In the third cycle, the normalization shifting and rounding
are performed. Two normalization shifters are also needed for
speed and the Round, Guard, Sticky bits are sent to the
unification logic to produce round flag whether adding one or
not. After rounding, post-normalization is needed to get the
final mantissas result.

IV. EVALUATION

This section will give a detailed evaluation based on a
piratical designed data parallel coprocessor for the proposed
operator structures. First the system architecture of the
coprocessor is described, and then its specific operators are
introduced, finally the hardware cost and runtime performance
for multimedia benchmarks are presented.

A. System overview

To test the hardware operator design for DLP exploration,
we designed a multimedia co-processor based on the TTA
(Transport Triggered Architecture) [21] integrating with the
LEON-3 host processor. The block diagram of its architecture
is shown in Figure 9(a). The co-processor is utilized for
accelerating core processing of multimedia applications like
data compression and graphics functions.

LEON-3 CPU

AMBA Bus

Functional
Unit Cluster

ICache

DCache

Co-processor

FU FU FU FU

FU FU RF RF

Transport
Network

socketBus

(a) System architecture

(b) Functional unit cluster

Fig. 9 System Overview

TTA can be viewed as a superset of traditional VLIW
architecture. The major difference between TTA and traditional
operation triggered architecture is the way that the operation is
executed. Instead of triggering data transports, TTA operations
occur as a side effect of data transports. The TTA-based
architecture makes the coprocessor can integrate abundant
arithmetic functional units in a very simple way, and gives
flexible and fine-grained exploration of subword parallelism
for compiler.

The structure of the functional unit cluster is organized as
shown in Figure 9(b). There are an abundance of functional
units (FU) and register files (RF) which are connected to the
interconnection network by sockets. Every FU or RF has one or
more operator registers, result registers but only one trigger
register. Data being transferred to the trigger register will
trigger the function unit to work. All operations, including
load/store and branch/jump/link occur solely through moves.
FUs operate concurrently and may incorporate pipelined
execution. Thus, compared with the traditional VLIW
architecture, TTA makes parallelism more fine-grained and
flexible, which suits to the more efficient schedule in the
instruction level as well as the data level.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

14

In each cycle, the specified data transfer in the transport
network can trigger the operations of these functional units.
This allows for an extremely high utilization of the silicon area
and suits for the different signal processing algorithms ranging
from mobile communication systems to stream media
applications. The computation is done by transferring values to
the operand register and starting an operation implicitly via a
move targeting the trigger register associated with the
command.

Tab. 1 Arithmetic unit configuration

FU Numbers Description Latency

ALU 4 Subword arithmetic, logic 1

MAC 4 Subword MAC 3/2

CMP 1 Integer, FP compare 1

FPU 1 2 way single, 1 way double 5

Table 1 shows the arithmetic unit configuration of the
coprocessor, in which the latency of MAC is three cycles in
32-bit subword mode and two in other modes. To save the
instruction encoding bits, The ALU and MAC operations are
implemented in one functional unit as will be described in
following subsection. The CMP Unit is a combined comparator
which can perform double-/single-precision floating-point
comparison or integer comparison and it does not support
SIMD operations.

B. Operator Implementation

1) Typical operator

Every functional unit has its own unique internal structure,
but their external interfaces are unified with one or more O-type
registers, R-type registers and only one T-type register. If an
operator supports two or more operations, then opcode should
be specified.

The FUs are implemented using a so called virtual time
lock (VTL) pipeline technique that the intermediate data in the
FUs continues to the next stage on each clock cycle. This means
that if the results of last operation are not read in time, they will
be modified by the new operation. So whether the results of an
operation are available depends on whether the FU is triggered
again.

Figure 10 shows a typical Operator. Its pipeline has a
latency of 3 clock cycles; this means that reading of the result
register can be done 3 cycles after writing to the trigger register.
The bus_select signal is used to select the right bus data and
store it to the O-type or T-type register according to the load
signal. Then the actual operation is executed by the FU. Three
cycles later, the result of the operation is restored to the R-type
register. When this result is needed, the control signal is used to
send its value to the corresponding data bus and set other buses
all zeros.

in
te
rm

ed
ia
te

o1load

t1load

T

O

M
U
X

M
U
X

R

bus_select

bus_select

control

opcode

opcode_reg

Fig. 10 System Overview

2) ALU Example

Figure 11 shows the structure of the proposed ALU design.
It consists of five main components: internal registers, control
logic, the adder-related unit, the multiplier-related unit, and
permutation unit. The internal registers include configuration
register CONFIG, operation encoding register OPCODE,
operand register X1, X2, X3, result register RESULT, and status
register STATUS. The program can specify the computation
mode and exception handling via setting CONFIG register. The
input register, OPCODE, is used to specify different operations
performed by ALU. The result register RESULT is used to store
the computation result. The status register, STATUS, indicates
the whether the addition/substraction operations have overflow
exception. The control logic CTRL decodes the operations
according to OPCODE and determines the ways to handle
exceptions when happen. The adder-related unit is responsible
for various subword arithmetic and logic executions as
specified in previous sections. The multiplier-related unit is
used to fulfil the subword multiplication and MAC operations.
The permutation unit is to perform the subword permutation
instructions such as pack/unpack instructions.

CONFIG OPCODE X1 X2 X3

CTRL

RESULT STATUS

 INPUT BUS

PREPROCESS

SUBWORD ADDER

+ + + +

SUBWORD MUL

× × × ×

MUX

SUBWORD
REALIGNMENT
PACK/UNPACK LOGIC

UNIT
SHIFTER

SM SM SM

Fig. 11 Structure of porposed ALU

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

15

＋
A
B

＋
A’
B’

M
U

X

M
U

X
M

U
X

＋

A

B

Select
A’

B’

ADDER

LOGIC
UNIT

M
U

X

A

B

A

B

A

B

OP

SHIFTER

OP
ADDER

LOGIC
UNIT

M
U

X

A

B

SHIFTER

A B

Arithmetic

Barral
Shifter MUX

Arithmetic
Barrel
Shifter

A B

RES RES

RES RES

(a) Resource sharing: Reduce area

(c) Pre-selection : Reduce power

(b) Parallel structure: Reduce latency

Fig. 12 Optimization techniques for ALU operator design

To get an highly optimized ALU targeting at high
performance, low power and small area, we use some simple
but effective methods to optimize the ALU design. Figure 12
shows the optimization schemes used in the proposed ALU
design. The resource sharing method can decrease the hardware
cost without performance overhead. Based on the principle of
logical equivalence, it modifies the data processing mechanism
to increase the utilization frequencies of complex circuits.
Figure 12(a) illustrates that the AB datapath and A'B' datapath
can sharing the adder under control signal select.

To reduce the latency, the conventional serial structure of
ALU can be changed to parallel structure as shown in Figure
12(b). The serial structure would increase the execution delay
for every instruction and its control description is relatively
hard. In the proposed ALU, the parallel structure can not only
improve the ALU speed, but also simplify the overall design.

The third technique is to reduce the power consumption of
ALU based on that unnecessary circuit activities consume
much power. The proposed ALU consists of many
sub-modules and each time only one sub-module is used, so
power is wasted if other unnecessary sub-modules works. We
could perform the data selection before entering those
submodules to break down their datapaths. So the states of
these sub-module remain unchanged. This leads to reduce
unnecessary signal switches resulting in low power. Figure
12(c) illustrates this data pre-selection technique.

C. Results

Utilizing subword implementation techniques described
above, we realized all the proposed functional units and

integrated them into the multimedia co-processor. They are
modeled using structural level Verilog HDL codes. The
correctness of various implementations is verified with
extensive simulations. Then they are synthesized using
Synopsys Design Compiler and standard cell library. It was
fabricated in 0.18 µm 6-metal standard CMOS logic process.
The chip occupies 4.8 mm2 and its die photograph is shown in
Figure 13. Correct operation has been observed up to 300 MHz
and under this frequency, the dynamic power consumption is
only 560 mW.

Fig. 13 Die Photograph

Tab. 2 Experimental Results of Arithmetic Units

 Param
eters

ALU MAC CMP FPU Total

Non-
SIMD

2.12 2.60 1.76 2.55 2.60
delay
(ns)

SIMD 2.55 2.42 - 2.79 2.79
Non-
SIMD

63212 14031
6

21023 53066
9

13658
04

area
(mm2)

SIMD 74464 11330
5

- 61557
6

13876
75

Table 2 gives the hardware experiment results of
Arithmetic units. For comparison, the traditional arithmetic
units are also designed. As can be seen from the table, the total
SIMD arithmetic units only have roughly 2% more area and
worst case delay that is 7% longer than the traditional
arithmetic units. This is due to the fact that the area of proposed
subword multiplier is even smaller than traditional multiplier
and the SIMD FPU does not cause much more delay.

For this study, we use a set of common DSP and
multimedia algorithms [20], including digital filters, fast
Fourier transform (FFT), inverse discrete cosine transform
(IDCT), and matrix arithmetic which is listed in Table 4. Matrix
arithmetic is extremely important in 3D Graphics because they
are used for several point transformations in the 3D world. FIR
digital filters are used as general filtering in speech and audio
processing, and linear predictive coding. Applications of IIR
digital filters include audio equalization, speech compression,
linear predictive coding and general filtering. FFT is used in
many applications, including MPEG audio compression, radar
processing, sonar processing, ADSL modems, and spectral
analysis. DCT-based image coding is the basis for all the image
and video compression standards, including JPEG image
compression, MPEG video compression, and H.263.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

16

Tab. 3 Benchmark Description

Name Description
fft 128-point radix-4 FFT, 16-bit
mat_mul 4x4 matrix multiplication, 16-bit

maxidx
index of max values in the vector with 64 elements,
16-bit

idct 512x512 IDCT, 8-bit

fir
complex FIR filter, 40 coefficients, 16output
samples, 16-bit

iir IIR filter with 500 output samples, 16-bit
Using the data parallel coprocessor, we test the proposed

operators both with SIMD instructions and non-SIMD
instructions versions separately. This can shows the
performance effectiveness of using data parallel operators.
Figure 14 presents the instruction count comparison of SIMD
and non-SIMD versions. The instruction code size reduction
ranges from 19.6% to 35.8%. This is very beneficial for our
coprocessor as the code size is always a big problem for
VLIW-like ISA.

0

0.2

0.4

0.6

0.8

1

MATMUL MAXIDX FIR IDCT IIR FFTN
or

m
al

iz
ed

 in
st

ru
ct

io
n

co
un

t r
ed

uc
tio

n

Non-SIMD

SIMD

Fig. 14 Instruction count comparison

Figure 15 shows the performance comparison result
obtained in this study. The speedup for SIMD instructions over
scalar instructions range from 1.02 for IIR and 1.56 for
MATMUL. IIR digital filter is the most difficult to vectorize
because it involves the feedback path from the previously
computed output samples. Hence, it has the least amount of
data parallelism, resulting in the least speedup of 1.60. Matrix
arithmetic, on the other hand, is straightforward to implement
in AltiVec; therefore, we are able to obtain reasonable data
parallelism, resulting in reasonable dynamic instruction count
reduction and overall speedup. The experimental speedup for
all the algorithms is less than its theoretical speedup. This
confirms the negative effect of the overhead for data
reorganization in packed data types.

0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8

MATMUL MAXIDX FIR IDCT IIR FFT

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 s
pe

ed
up

Non-SIMD

SIMD

Fig. 15 Performance comparison in terms of execution cycle
count

V. CONCLUSION

This paper presents a systematic solution to design high
performance hardware operators for DLP exploration. The
SIMD techniques are classified into two categories: low
precision based scheme and high precision based scheme. To
accommodate the best trade-off between hardware cost and
performance, combined techniques are used to design integer
operators and floating-point operators. Integrating all these
operators into a system, a multimedia co-processor was
designed and tested in 0.18µm standard CMOS logic process. It
shows that the SIMD arithmetic unit cluster can improve the
multimedia application by 2%~56% in the cost of a little
increase in cycle delay and silicon area.

REFERENCES
[1] A. A. Farooqui and V. G. Oklobdzija, “General Data-Path Organization of

a MAC Unit for VLSI Implementation of DSP Processors”, Proc. IEEE
Int'l Symp. Circuits and Systems, pp. 260-263. 1998

[2] A. Akkas and M. J. Schulte, “A Quadruple Precision and Dual Double
Precision Floating-Point Multiplier”, Proceedings of the 2003 Euromicro
Symposium on Digital System Design, pp. 76-81. 2003

[3] Alex Peleg and UriWeiser, “MMX Technology Extension to Intel
Architecture”, IEEE Micro, 16(4):42-50. 1996

[4] ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic 1985.

[5] Corbal J., et al., “DLP+TLP processors for the next generation of media
workloads”, Proc. 7th Intl.Symp.on HPCA. 2001.

[6] D. Tan, A. Danysh, and M. Liebelt, “Multiple-Precision Fixed-Point
Vector Multiply-Accumulator using Shared Segmentation,” Comp. Arith.,
Proc. 16th IEEE Symp., pp. 12-19. 2003.

[7] Hwang K., “Computer Arithmetic: Principles, Architecture, and Design”,
Wiley, New York 1979.

[8] G. Even, S. Mueller, and P.-M. Seidel, “A Dual Mode IEEE multiplier”,
Proc of the 2nd IEEE Int. Conf. on Innovative Systems in Silicon, pp.
282-289. 1997.

[9] J. Bruguera, and T. Lang, “Leading-One Prediction with Concurrent
Position Correction”, IEEE Trans. Computers, vol. 48, no. 10, pp.
298-305. 1999.

[10] M. Senthilvelan and M. J.Schulte, “A Flexible Arithmetic and Logic Unit
for Multimedia Processing”, Advanced Signal Processing Algorithms,
Architectures, and Implementations XIII, 2003.

[11] N. Burgess, “PAPA - Packed Arithmetic on a Prefix Adder for
Multimedia Applications,” IEEE International Conference on
Application-Speci¯c Systems, Architectures, and Processors (ASAP'02),
pp. 197-207. 2002.

[12] N. Firasta, et al., “Intel AVX: New Frontiers In Performance
Improvements And Energy Efficiency”, in Intel White paper, 2008

[13] R. E. Gonzalez, “Xtensa: A configurable and extensible processor”, IEEE
Micro, 20(2) 2000.

[14] R. Kolla, et al., “The IAX Architecture : Interval Arithmetic Extension”,
Technical Report 225, Universitat Wurzburg 1999.

[15] S. Krithivasan and MJ Schulte, “Multiplier Architectures for Media
Processing,” Proc. 37th Asilomar Conf. Signals, Systems, and Computers,
pp. 2193-2197. 2003.

[16] S. Chatterjee, L. R. Bachega, “Design and exploitation of a
high-performance SIMD floating-point unit for Blue Gene/L”, IBM
Journal of Research and Development, 49(2/3):377-392. 2005.

[17] S. M. Mueller, C. Jacobi, H. Oh, et al., “The Vector Floating-Point Unit in
a Synergistic Processor Element of a CELL Processor”, Proceedings of
the 17th IEEE Symposium on Computer Arithmetic, 2005.

[18] Suzuki, K. et al., “A 2000-MOPS embedded RISC processor with a
Rambus DRAM controller”, IEEE J. Solid- State Circuits, Vol. 34, pp.
1010-1021. 1999.

[19] Swartzlander, E., “Computer Arithmetic”, IEEE Computer Society Press,
Los Alamitos, Calif, 1990.

[20] TMS320C64x DSP Library Programmer's Reference, Texas Instruments
Inc, 2002.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

17

[21] V.A.Zivkovic, Ronald J. W. T. Tangelder, Hans G. Kerkhof, “Design and
Test Space Exploration of Transport-Triggered Architectures”,
pp.146-152, 2000.

[22] V. Lappalainen, P. Liuha, et al., “Current Research E®orts in Media ISA
Development”, Technique Report, Nokia, 2000.

[23] D. Tan, C. E. Lemonds, M. J. Schulte, “Low-Power Multiple-Precision
Iterative Floating-Point Multiplier with SIMD Support,” IEEE
Transactions on Computers, vol. 58, no. 2, pp. 175-187, Feb. 2009

[24] M. Gok, M. M. ozbilen, “Multi-Functional Floating-Point MAF Designs
with Dot Product Support,” Microelectronics Journal, vol. 39, pp. 30-43,
January, 2008

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

18

