
Easy Database Management in C++ Applications by Using
DatabaseExplorer Tool

Peter Janků, Michal Bližňák

Abstracts—One of the most important task in an application develop-
ment process is a database management and data manipulation. Nearly
every programming toolkit includes tools, constructs or components for
manipulation with database content and structure. DatabaseExplorer
is an open-source cross-platform software tool for C++ programming
language and wxWidgets toolkit which makes database structure man-
agement and data manipulation easy. It provides simple and intuitive
GUI interface for handling of multiple different database engines and
stored data. The application can be used as a stand-alone tool or as a
plugin for well known CodeLite IDE. This paper deals with the applica-
tion description and reveals its internal structure, used technologies and
provides simple use case scenario.

Keywords—Database, ERD, wxWidgets, C++, explorer, table, view,
SQL, script

I. INTRODUCTION

Ever since computers were invented, developers have been
trying to create devices and software for faster, easier and more
efficient data manipulation. First devices worked only with in-
puts and outputs and they didn’t take care about data storing.
But needs of data storing increased fast over the time. Together
with these tendencies increased needs of using data solid struc-
ture too. Nowadays, data archiving and manipulation is one of
the most important tasks in IT.

If we look at data storing process from an ordinary user’s point
of view and we can omit data storage technological aspects we
reveal that many things are getting easier. The current trends
bring up technologies, programming languages and visual for-
malisms which are very clear and intuitive to use and understand
such are various database engines, SQL language (and its di-
alects) [3] or ERD diagrams.[13]

There are lot of open source and commercial applications able
to manipulate data stored in databases, but they often lack of
some basic needed functionality like:

• platform independence – application should be able to run
on multiple different operating systems such are MS Win-
dows, MacOS and Linux,

• support for multiple database engines – application can
manipulate data and database structure under multiple dif-
ferent database engines1,

• ERD support – user can use ER diagrams for formal def-
inition of database structure and for forward and reverse
engineering.

1In this article "database engine" will be regarded as a complete system de-
termined for handling data. The system includes database server, storage engine
and data base management system (DBMS).[1]

DatabaseExplorer tool (shortly DBE) presented in this paper
was developed to fill the market gape, i.e. to offer all functional-
ity mentioned above in one easy to use application with friendly
user interface. Thanks to its concept and used technologies it
allows users to handle data stored in several different database
systems (MySQL, PostgreSQL and SQLite) and provides an in-
tuitive way how to work with the database structure by using
ERDs.

II. USED TECHNOLOGIES

As mentioned in the previous paragraphs, DatabaseExplorer
tool is written in the C++ language due to its performance ca-
pabilities and due to a fact that the application was intended
to be published also as a plug-in available for CodeLite IDE
[10] which is written in C++ as well. The cross-platform li-
brary wxWidgets [12] was used for implementation of the ap-
plication’s GUI and encapsulation of other needed platform-
dependent functionality like access to database engines, file sys-
tem, etc. Thanks to the library the application provides fully
native GUI interface for all supported platforms (demonstration
of native GUI is shown in Fig. 1) and it runs nearly as fast as
applications written by using native platform-dependent APIs.

Fig. 1 Demonstration of native GUI provided by wxWidgets
(GTK-based GUI on the left, WIN32API-based GUI on the
right)

A. 3rd-party Application Components
In addition to standard wxWidgets library components also

several 3rd-party add-ons have been used.
DatabaseLayer (shortly DBL) is first of those components.

It provides generic interface for manipulation with various
databases by sending an SQL scripts to the database engine and
receiving the results. So far SQLite3, PostgreSQL, MySQL,
Firebird, and ODBC database backends are supported [9]. DBL
library represents a bottom layer of DatabaseExplorer applica-
tion2.

2Full application structure is described in chapter III. of this article.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

54



The wxShapeFramework add-on (shortly wxSF) is a soft-
ware library/framework based on wxWidgets which allows easy
development of software applications manipulating with graphi-
cal objects (shapes) like various CASE tools, technological pro-
cesses modeling tools, etc [8]. The add-on is used in Database-
Explorer for creation and manipulation with ER diagrams.

The wxXmlSerializer add-on was (shortly wxXS) used as a
persistent data container for internal database structure snapshot.
The library offers a functionality needed for creation of persis-
tent hierarchical data containers which can be serialized/deseri-
alized to/from an XML structure.[7].

Also wxSF itself uses the persistent data container provided
by wxXS. As mentioned wxXS allows users to easily serialize
and deserialize hierarchically arranged class instances and their
data members to an XML structure. The XML content can be
stored to a disk file or to another output stream supported by
wxWidgets. This functionality is used for saving and loading
of diagrams as well as a base for the clipboard and undo/redo
operations provided by the wxSF [8]. Relation between wxSF
and wxXS libraries is explained in Fig. 2

Fig. 2 Logical structure of wxSF library

B. Supported Database Engines

So far two server-based databases and one file-based database
are supported by current version of DBE. Thanks to an abstract
database interface used in the application and DBL library also
another database engines can be easily added in a future.

The first supported server-based database is MySQL which
is well known database server mainly used for various web ap-
plications. Of course, thanks to published software connector
sources the MySQL server can be easily accessed also from
any desktop applications written in supported programming lan-
guage. MySQL from its begins was designed as a lightweight
database server which offers just basic features and is optimized
to transaction speed. Currently also set of enhanced database
functions including views, stored procedures, triggers, etc are
provided by the database engine.[4]

An interesting aspect of the MySQL database server is it’s
internal structure. The server software is divide into a three ba-
sic layers. The top layer includes a "connection pool" which
can manage a database connections, the middle layer encapsu-
lates parser, optimizer and other components needed for server
functionality and the bottom layer provides pluggable storage

engines. These engines allow users to select compromise be-
tween engine speed, data size and available database features.[5]

The second supported server-based database is PostgreSQL.
It is widespread, open-source, cross-platform power-full
database server which can be installed on various operating sys-
tems. PostgreSQL have few interesting features. The first one is
that the server implements SQL language strictly corresponding
with ANSI-SQL:2008 standard. Of course, it should be a stan-
dard approach for all database servers’ developers, but if you
look at the others, you can see a lot of small modifications (di-
alects) of standardized SQL language.

PosgreSQL provides all "standard" features like triggers,
views, stored procedures, indexing, transactions, etc. Beside this
functionality we can use also for example GiST indexing system,
internal stored procedures which can be written in multiple lan-
guages (Java, Perl, Python, Ruby, ...) and special attribute types
of stored data (geometry points, graphical object, IP addresses,
ISBN/ISSN numbers and others) [6].

Finally, SQLite is the last database engine currently supported
by DBE. It is cross-platform, small and powerfull file-based
database. The main advantage of the engine is its very small
memory and system footprint which makes it and ideal solu-
tion for build-in database library. SQLite can mediate benefits
of transaction databases to simple applications without needs of
any network connection. SQLite doesn’t contain any server side
part. Every data are directly written to/read from a file stored in a
file system; complete database with all tables, views and triggers
is stored in one database file.

III. DATABASEEXPLORER ARCHITECTURE

DBE application’s internal structure is divided into three co-
operating software layers. The architecture is shown in Fig. 3.

Fig. 3 DatabaseExplorer architecture

The bottom layer is presented by DBL component. DBL
provides unified interface and encapsulates multiple software
database connectors which can be used for connection to rele-
vant databases. This layer is used for establishing the database
connection, sending SQL command to it and for receiving re-
quested results.

The middle layer of the architecture implements two inter-
faces - IDbAdapter and IDbType. IDbType is an abstract class

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

55



which defines basic functions for manipulation with database
types. This class and its implementations are used for database
type unification. The second abstract class IDbAdapter provides
all functions needed for database structure manipulation. Via
its implementations the application can unify manipulation with
database structure on multiple different database servers.

The top layer of DBE application contains all other classes
encapsulation the rest of the application functionality. They use
the abstract interfaces provided by the middle layer, so they don’t
care about connected database types. There are also GUI-related
classes, classes for source code generation, and set of classes
which can create internal database structure snapshot.

A. Accessing Different Database Engines
Every supported database system has its own database cata-

logue which stores an information about database structure. In
fact it means that there are few different methods for reading this
structure an there is no universal interface defined in software
connector sources for accessing the database in a standardized
way. This is problem for an application which wants to bring
up universal GUI for changing database structure on multiple
different database servers. Due to this reasons DBE uses only
SQL commands for reading and writing database structure and
data. These commands are specific for every database server
and thus their has to be modified in accordance to the target
database engine. This task is done by DBE which converts inter-
nally used universal data types and database objects into target-
specific ones.

B. DatabaseExplorer Distribution Types
As mentioned above the DBE is implemented in two different

ways. It can be obtained as a standard stand-alone application
which can be installed and used separately [11]. It is also imple-
mented as a plug-in for CodeLite IDE [10]. Both implementa-
tions share the most of the application’s source code and func-
tionality and differ only in minor GUI implementation aspects.
Note that all screenshots dealing with DBE’s GUI presented in
this paper are taken from the CodeLite’s DBE plugin.

IV. BASIC APPLICATION USAGE

As shown in Fig. 4, the DBE GUI consists of two basic parts;
a notebook which manages tabs containing every opened SQL
editor (Fig. 5)/ERD editor (Fig. 6) and DBE main panel in-
cluding tree control allowing user to access all opened databases
and their objects (such are database tables and views) and ac-
tive ERD’s thumbnail. In this context an "editor" means a panel
with GUI controls (SQL command editor and database table
grid) allowing users to work with table’s/view’s data. This cor-
responds with windows’ structure and layout used in CodeLite
IDE. Thanks to this concept DBE can be easily integrated with
CodeLite IDE as mentioned in chapter III.B..

Upper part of DBE main panel contains toolbar with buttons
used for opening/closing of database connections, refreshing the
database tree and for creation of empty ERD. Tree control placed
under the toolbar shows tree structure representing real database
structure of connected database. User can navigate through the
structure and open suitable editor for selected database object.
Editor can be opened by left mouse button double-click onto rel-
evant tree item or by using the item’s context menu. The context

Fig. 4 CodeLite IDE window with DatabaseExplorer plugin

menu can be also used for import/export functions and for cre-
ation of new database as well. Note than the tree structure shows
data in off-line mode by using internal database snapshot so a
user have to perform Refresh for sync this structure every-time
the content of source database changes.

In the bottom part of main panel is shown thumbnail of cur-
rently selected ER diagram. If no diagram is select then the
thumbnail is empty.

As mentioned above there are two editor types in DBE. The
first one represents an SQL command panel shown in Fig. 5.
It consists of a multi-line text area where an SQL query can be
written to and of a database table grid showing result of pre-
viously performed SQL query. These queries can be simple
send to the database via button placed on the bottom-left side
of the query editor and user can view their results immediately.
SQL queries created in this editor can be easily saved into text
file with standard extension "*.sql". SQL files can be also im-
ported into the editor as well. Buttons providing this functions
are places on the bottom-right side of the SQL editor 3. More-
over, there is a menu with SQL query examples placed in the top
of the editor which allows users to add an example script into the
text area which can help him to follow the correct SQL syntax.

Fig. 5 SQL command editor

The second editor type shown in Fig. 6 is used for manipula-
tion with ERDs. ER diagrams in DBE can be used for database

3"*.sql" file format stores SQL queries as a plain text so it does not matter in
which editor the files were created

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

56



structure definition or modification as well as for graphical rep-
resentation of existing database structure. Thanks to used graph-
ical backend (wxSF) the ERD displayed in the canvas placed in
the editor can be interactively created or modified. The editor
contains also toolbar located in the top of the editor panel offer-
ing lot of design tools such are shortcuts for printing functions,
undo/redo, clipboard operations and auto-layouting features pro-
vided by wxSF library. Also three types of database objects can
be put onto the canvas - database table, database view and con-
nection lines representing foreign keys.

ERD Table [2] object represents one database table defined in
modified database structure. It associates all table columns (at-
tributes) with data types and other important parameters and all
table constraints including primary and foreign keys. Database
table properties (i.e. properties of data columns and primary/-
foreign keys) can be set or modified via dialog which can be
opened by left mouse button double-click onto the table object
or via table object’s context menu.

Fig. 6 ERD editor

ERD View [2] object represents one real data view defined
in database structure. Database view is clearly defined by name
and SQL SELECT [3] statement. These parameters can be set via
simple dialog which can be opened by left mouse button double-
click onto the view object or via view object’s context menu.

Foreign key connection line [2] placed between two tables
represents one real constraint defined in one of the connected
tables. The connection line can be created by mouse dragging
when appropriate tool is selected in the editor’s toolbar. In this
case, a special dialog for constraint parameters definition is dis-
played. The second way how define the constraint is via database
table properties dialog as mentioned above. This is also the only
way how an existing foreign key connection line can be edited.

ERD editor provides also other useful functionality includ-
ing possibility to save ERD into XML file, generation of SQL
scripts, etc. The features can be access via editor’s toolbar or via
ERD’s context menu.

In addition to possibility of manual ERD definition the
diagrams can be generated also automatically from existing
database structure. This function is available from database’s
context menu displayed in main DBE panel.

User can also add existing ERD objects to displayed ERD di-

agram by simple dragging the database objects from database
structure tree into the opened editor canvas. Thanks to this fea-
tures user don’t have to redefine all tables again and again if
he wants to modify existing tables or databases. Note that im-
ported database object don’t have to match the target database
type (i.e. source database adapter type differs from the target
one - for example if the user wants to drag database table object
from MySQL database to SQLite database, etc.). Thus, during
the import of any database object all contained data types are
converted to proper data types supported by target database au-
tomatically. Moreover, data type implicit conversion can occur
also when the data are written into database.4.

Fig. 7 Basic steps of ERD commit wizard

If ERD diagram is not empty the described database struc-
ture can be written into selected database server. This process
is provide by simple wizard shown in Fig. 7. The wizard dia-
log navigates user through few steps including selection of tar-
get database, backup of its current database structure and data,
write of new structure into the database server and restoration of
backed-up data.

V. GENERATION OF DATABASE ACCESS CLASSES

Another very useful feature provided by DBE which can make
programmers’ life much more easier is generation of source code
implementing classes suitable for database tables access. This
feature allows users to generate necessary source code for access
to selected databases. If the function is invoked the header and
source C++ files are generated for every database table and view
contained in the database. The generated classes are following:

The first class name corresponds to the database object name
(for example if the table’s name is Orders then the class name is
Orders as well). This class encapsulates data members related to

4For example a database view can be redefined by the target database engine
to correspond with returned column count. Another case: a data type "serial" is
transform into data type "integer" with special object "sequence" in PostgreSQL.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

57



all table (or view) columns and the class instance represents one
table row (database record).

The second class has name is composed of the table name
and suffix "Col" (for example OrdersCol). This class represents
collection of table rows and encapsulates data array containing
instances of previously mentioned data record class - one class
instance for each table row. Except the data array the generated
class contains also member functions suitable for loading of data
from database server into the class or for filling of a data grid
GUI control.

The third class is generated for database table only (not for
views). The name of the class is composed of the source table
name (like in two previous cases) and suffix "Utils" (for example
OrdersUtils). The class encapsulates additional functions suit-
able for addition, modification and deletion of table rows.

All generated classes use DatabaseLayer component for ac-
cessing the underlying database engines. If DBE is used as
CodeLite IDE plug-in then also target project and virtual folder
can be selected so after the code generating the application adds
all generated classes into selected virtual folder of the target
project. All mentioned classes are generated over textual tem-
plate files so the generated content can be easily personalized if
needed.

The common use case scenario can be as follows. User
should:

1. define database structure by using ERD,

2. write/export database structure directly into the database
server,

3. generate database access classes

4. and use the classes in his project like illustrated in a code
listing bellow:

A. Example

Fig. 8 Example ERD diagram

The following listings illustrate generated source code and
SQL script based of ERD shown in Fig. 8.

SQL script for creation of database structure is as follows:

Listing 1 SQL script generated by DBE from ERD shown in Fig.
8:

−− SQL s c r i p t c r e a t e d by D a t a b a s e E x p l o r e r

DROP TABLE IF EXISTS ’ Cus tomers ’ ;

CREATE TABLE ’ Cus tomers ’ (
‘ cus tomerID ‘ INTEGER NOT NULL,
‘Name ‘ TEXT NOT NULL,
‘ Address ‘ TEXT NOT NULL,
‘ Phone ‘ TEXT NOT NULL,

PRIMARY KEY ( ’ cus tomer ID ’ ) ) ;
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DROP TABLE IF EXISTS ’ Or de r s ’ ;
CREATE TABLE ’ Or de r s ’ (

‘ o rder ID ‘ INTEGER NOT NULL,
‘ cus tomerID ‘ INTEGER NOT NULL,
‘ t e x t ‘ TEXT,
‘ p r i c e ‘ REAL NOT NULL,

PRIMARY KEY ( ’ o r d e r I D ’ ) ,
FOREIGN KEY( ’ cus tomer ID ’ )

REFERENCES Customers ( ’ cus tomer ID ’ ) ) ;
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DROP VIEW IF EXISTS ‘ OrdersVW ‘ ;
CREATE VIEW ‘ OrdersVW ‘ AS

SELECT ∗ FROM ’ ’ . ’ Or de r s ’ LIMIT 0 , 100 ;
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 2 Header file generated by DBE from ERD shown in Fig.
8 for Orders table:

# i f n d e f ORDERS_H
# d e f i n e ORDERS_H

# i n c l u d e <wx / wx . h>
# i n c l u d e " D a t a b a s e L a y e r . h "

/∗ ! \ b r i e f C l a s s f o r O rd e r s t a b l e ∗ /
c l a s s Orde r sBase {
p u b l i c :

/∗ ! \ b r i e f C o n s t r u c t o r f o r l o a d i n g from DB ∗ /
Orde r sBase ( D a t a b a s e R e s u l t S e t ∗ p R e s u l t ) ;
v i r t u a l ~ Orde r sBase ( ) ;

c o n s t i n t G e t o r d e r I D ( ) c o n s t {
re turn m_orderID ;
}

c o n s t i n t Getcus tomer ID ( ) c o n s t {
re turn m_customerID ;
}

c o n s t w x S t r i n g& G e t t e x t ( ) c o n s t {
re turn m_tex t ;
}

c o n s t double G e t p r i c e ( ) c o n s t {
re turn m_pr ice ;
}

/∗ ! \ b r i e f Re tu rn O rd e r s from db on t h e
o r d e r I D base ∗ /

s t a t i c Order sBase ∗ GetByorder ID ( i n t order ID ,
D a t a b a s e L a y e r ∗ pDbLayer ) ;

p r o t e c t e d :
i n t m_orderID ;
i n t m_customerID ;
w x S t r i n g m_tex t ;
double m_pr ice ;

} ;

# i n c l u d e <wx / g r i d . h>
# i n c l u d e <wx / l i s t . h>

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

58



WX_DECLARE_LIST( OrdersBase , O r d e r s B a s e L i s t ) ;

/∗ ! \ b r i e f C o l l e c t i o n from O r d e r s C o l l e c t i o n B a s e
t a b l e ∗ /

c l a s s O r d e r s C o l l e c t i o n B a s e {
p u b l i c :

/∗ ! \ b r i e f c o n d i t i o n s c o n n e t i o n t y p e ∗ /
enum CondConType
{

wAND = 1 ,
wOR = 2

} ;

/∗ ! \ b r i e f C o n s t r u c t o r f o r l o a d i n g from db ∗ /
O r d e r s C o l l e c t i o n B a s e ( D a t a b a s e R e s u l t S e t ∗

p R e s u l t ) ;
v i r t u a l ~ O r d e r s C o l l e c t i o n B a s e ( ) ;
/∗ ! \ b r i e f F i l l wxGrid from c o l l e c t i o n . ∗ /
void F i l l ( wxGrid∗ pGrid ) ;
/∗ ! \ b r i e f Get i t em l i s t ∗ /
c o n s t O r d e r s B a s e L i s t& G e t C o l l e c t i o n ( ) c o n s t {

re turn m _ l i s t ; }
/∗ ! \ b r i e f Get a l l d a t a from d a t a b a s e ∗ /
s t a t i c O r d e r s C o l l e c t i o n B a s e ∗ Get (

D a t a b a s e L a y e r ∗ pDbLayer ) ;
/∗ ! \ b r i e f Get d a t a from d a t a b a s e wi th WHERE

s t a t e m e n t ∗ /
s t a t i c O r d e r s C o l l e c t i o n B a s e ∗ Get (

D a t a b a s e L a y e r ∗ pDbLayer , w x A r r a y S t r i n g&
c o n d i t i o n s , CondConType conType = wAND ) ;

p r o t e c t e d :
O r d e r s B a s e L i s t m _ l i s t ;

} ;

/∗ ! \ b r i e f U t i l s f o r O rd e r s t a b l e ∗ /
c l a s s O r d e r s U t i l s B a s e {
p u b l i c :

/∗ ! \ b r i e f Add new i t em i n t o O rd e r s t a b l e ∗ /
s t a t i c i n t Add ( D a t a b a s e L a y e r ∗ pDbLayer

, i n t o r d e r I D
, i n t cus tomer ID
, c o n s t w x S t r i n g& t e x t
, double p r i c e
) ;

/∗ ! \ b r i e f E d i t i t em i n O rd e r s t a b l e ∗ /
s t a t i c i n t E d i t ( D a t a b a s e L a y e r ∗ pDbLayer

, i n t o r d e r I D
, i n t cus tomer ID
, c o n s t w x S t r i n g& t e x t
, double p r i c e
) ;

/∗ ! \ b r i e f D e l e t e i t em from O rd e r s t a b l e ∗ /
s t a t i c i n t D e l e t e ( D a t a b a s e L a y e r ∗ pDbLayer

, i n t o r d e r I D
) ;

} ;

# e n d i f / / ORDERS_H

VI. STEP-BY-STEP USER GUIDE

All described steps assume that DatabaseExplorer plug-in for
CodeLite IDE is used but it is applicable also for the stand-alone
version. In this tutorial we are going to create simple database
containing tables for storing customer’s orders, ordered items
and the customer addresses. After the database definition we will
create simple application written in C++ and wxWidgets which
will use our new database via automatically generated classes.

A. Definition of Database Structure via ERD Diagram
The first step of creating of the new database application is

a database structure definition. Every database usually contains
tables, views, their relations and data restrictions - constraints.
The easiest way how to define a database structure is by using
ERDs. ERD is a simple graphical diagram with shapes which
can easily describe all database parts and their relations. Thanks
to the ERDs a user can simply imagine database structure with
all its dependencies.

Firstly, let’s create a new ERD containing data tables and
views. The fist table placed into the diagram is table called "Or-
ders". The table containing list of all customer’s orders will con-
sist of several columns:

• ID int auto increment not null – unique identification of the
order

• addressID int not null – ID of customer’s address

• orderDate datetime not null – order’s date and time

After that we can create some constraints. At the moment we
will create just one constraint with name "PK_Orders". This
constraint is a primary key type and it is connected with "ID"
column.

The second table in the ERD is table called "OrderItems" and
contains items of our orders. Columns defined in this table are:

• ID int auto increment not null – unique identification of
order item

• orderID int not null – ID of parent order

• itemText text – order item name

• pcs int not null – count of items

• pricePerPcs float int not null – price per an item

In this table we should create two constraints. Like in the
previous case, the first constraint is a primary key and it is de-
fined on "ID" column with "PK_OrderItems" name. The sec-
ond constraint is foreign key type constraint consisting of a local
column, reference table and reference column. In this case the
local column will be "orderID", the reference table will be "Or-
ders" and the reference column will be "ID". The foreign key
is represented by a connection line between tables "Orders <–>
OrderItems" and uses the primary key defined in the "Orders"
table. This connection is 1:N type which means that one row
in table "Orders" can be connected with multiple rows in table
"OrderItems".

The third table will have name "AddressBook". This table will
be used for customer address and other information archivation.
Columns of table "AddressBook" can be:

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

59



• ID int auto increment not null – unique identification of
customer

• name text – customer’s name

• address text – customer’s address

• phone text – customer’s phone number

• email text – customer’s email address

It’s a good idea to create a primary key for this table as well.
If we have all the tables created we have to go back to the

"Orders" table properties and we have to add a foreign key. This
constraint should consist of local column "addressID", reference
table "AddressBook" and reference column "ID". This will cre-
ate connection between "Orders" and "AddressBook" tables.

At this point we have full database table structure created.
Thanks to the foreign keys also their relationships is obvious.
This means that we cannot have order items without parent or-
der and we cannot have orders without valid addresses.

Creation of views for reading record rows from a database is
a good practice due several reasons. If you are using views for
reading a data and stored procedures for data modifications then
a potential attacker wouldn’t know database structure. The next
reason can be if you are using views, you can store more complex
queries in database (with large join and group statements) and
after that you can use simple ("just only SELECT") queries in
application.

So now we should create some views. The first view will be
used to retrieve data from "AddressBook". It will have name
"AddressBookVW" and it will contain query "SELECT * FROM
AddressBook". The second view will be used to retrieve data
from table "Orders" and will be called "OrdersVW. It will con-
tain query "SELECT O.*,A.* FROM Orders O LEFT JOIN
AddressBook A ON A.ID = O.addressID" for example. The
third view which we will create will have name "OrderItem".
This view is just only simple view with simple query "SELECT
* FROM OrderItems".

If we perform all the steps described above then we get ERD
with complete database structure definition for our new database
project. The database structure should be similar to one shown
on in Fig. 9.

Fig. 9 Tutorial database structure described by ERD

B. Creation of Database Structure Based on ERD

If we create ERD diagram describing new database struc-
ture, we usually want to write this structure into real database

on database server. This could be done by using DatabaseEx-
plorer tool in few steps. At the first we have to create new empty
database. The task can be done relevant menu item from con-
text menu shown after right mouse button click onto an opened
database connection in the main application panel. The next step
is to commit database structure from opened ERD to the new
database. This could be done via commit button placed on the
toolbar displayed at the top of the ERD editor panel. This but-
ton will show commit wizard that helps the user with writing the
database structure into selected database. If everything pass well
we can see the new database with all new tables and views. In
this case the structure should look like one shown in Fig. 10.

Fig. 10 New database structure

If we want to make some changes in an existing database
structure we have a few possibilities. The easiest way is to mod-
ify ERD and then perform a new database structure commit. But
this could cause a problem. In some cases we haven’t ERD de-
fined (if we lost it or if we want to modify an old database).

In this situation we can let DatabaseExplorer to create a new
one automatically. This action can be performed by double-
clicking onto the database name in the database tree structure, or

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

60



by selection or relevant menu item in the context menu (shown
by right-mouse-button click onto the database name). After that,
DatabaseExplorer will create a new ERD and paste all existing
objects into it.

Note that one should check the newly created objects because
not all of them could be created in a form we expected. More
exactly, views could differ from ones previously stored in the
database; if we write a view to a real database, the view is eval-
uated and all non-specific symbols (like *) are replaced by the
specific columns names. This would be a problem if we are
modifying the table structure which the view points to.

C. Generation of Database Access Classes

Until now all the steps were related to the correct database
structure definition and creation. Now we will pass to a creation
of an application front-end by using CodeLite IDE. DatabaseEx-
plorer integrates with it well and it can produce C++ class proto-
types for access the database we can use in our source code. The
further work will continue in several steps: at the first we will
create access classes prototypes and after that we will use those
classes in our wxWidgets application.

Access class creation is a simple task. In fact we just have
to select relevant item in context menu (shown by right-mouse-
button click onto the database name). After that a new dialog
will be shown. In this dialog we can select prefix, suffix and a
target path of generated files. Target path is a destination where
DatabaseExplorer will create new files. Name of files and name
of classes will be compose from prefix + table name (or view
name) + postfix. It means that if we have table named "Orders",
prefix set to "base" and let the postfix be empty then the target
files name will be "baseOrders.h", "baseOrders.cpp" and classes
names will start with "baseOrders". After clicking the Generate
button the DBE will generate one file for each view and table in
the database structure. Each file will contain few classes. The
class with name of database table/view will represent one row
from the source table/view. There will be also another class with
postfix "Col" in generated file too. This class will represent col-
lection of rows described above. We can imagine it like off-line
footprint of source database table or view content. If the file is
generate for table, there should be also class with postfix "Utils".
This class defines static functions for table content manipulation.

Operations done during the code generation are logged in the
generator dialog as shown in Fig.11.

Later, generated source code can be easily imported into any
C++ application project. In a case we want to modify the gen-
erated classes then we should derive new classes from generated
ones. In the future, if we will need to modify database structure
and to re-generate the classes then our changes made in derived
classes won’t be lost.

For the testing purposes we will create a simple GUI appli-
cation containing one main frame window with data grid placed
inside it. We can start with simple wxWidgets GUI project tem-
plate available in CodeLite IDE. After application skeleton is
created we have to setup the project to use DatabaseLayer add-
on library which is used by both DatabaseExplorer and generated
access classes. This tasks is quite common and related to the ba-
sic C++ programming approaches so it won’t be covered by this
paper. Instead, let’s focus to database operation tasks.

After successful project setup and the application initializa-

Fig. 11 Class generator

tion a database connection must be opened by using relevant
DatabaseLayer classes (DatabaseLayer provides a special class
for each supported database engine, e.g. MysqlDatabaseLayer
for MySQL engine, SqliteDatabaseLayer for SQLite engine,
etc.). This should be done in main frame constructor or some-
where else, but it have to be done before we want to load a data
from database or change it. Pointer to this database connection
object must be passed to generated classes for further process-
ing. At the first, let’s insert some data via generated utils classes.
As shown in Listing 1, there are static methods named Add, Edit
and Delete. This methods can be usually used for direct data
modification without need of any SQL query.

Listing 3 Data row addition

D a t a b a s e L a y e r ∗ pDbLayer = new
MysqlDa tabaseLayer ( wxT( " serverName " ) ,wxT( "
databaseName " ) ,wxT( " u s e r " ) ,wxT( " password " ) )
;

b a s e A d d r e s s B o o k U t i l s : : Add ( pDbLayer , 1 , wxT( "
Michal B l i z n a k " ) , wxT( " Othe r s t r e e t " ) , wxT (
" 223 4232 2 " ) , wxT ( " t e s t @ m a i l . com" ) ) ;

Also other data rows can be added to the database in the sim-
ilar way. Now let’s fill the data grid placed in the application
frame with the data. The first step must be retrieving of all data
rows collection by using static function Get declared in gener-
ated class baseAddressBookCollection. After that the member
function Fill declared in the same class can be called for the pur-
pose. Thanks to the Fill function the data grid will be filled with
the data from the collection. Also, table columns headers are
created too.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

61



Listing 4 Filling the data grid with the data

D a t a b a s e L a y e r ∗ pDbLayer = new
MysqlDa tabaseLayer ( wxT( " serverName " ) ,wxT( "
databaseName " ) ,wxT( " u s e r " ) ,wxT( " password " ) )
;

b a s e A d d r e s s B o o k C o l l e c t i o n ∗ pOdr =
b a s e A d d r e s s B o o k C o l l e c t i o n : : Get ( pDbLayer ) ;

pOdr−> F i l l ( m_grid1 ) ;

Fig. 12 Sample application containing filled data grid

VII. CONCLUSION

As shown in the paper the DatabaseExplorer tool is sufficient
for the most database-related work and can be used not only for
direct database management but as a powerful development tool
as well. It is able to visualize or modify existing databases, to
create new databases and to generate common production-ready
source code for common basic database operations. Thanks to
the used distribution license the tool can be used freely for both
commercial or open-source/freeware applications development.

VIII. ACKNOWLEDGEMENT

The project was supported by the Ministry of Education,
Youth and Sports of the Czech Republic under the Research
Plan No. MSM 7088352102 and by the European Re-
gional Development Fund under the project CEBIA-Tech No.
CZ.1.05/2.1.00/03.0089.

REFERENCES

[1] DBMS (Database management system) definition.
http://www.techterms.com/definition/dbms, 2011.

[2] ERD tutorial. http://folkworm.ceri.memphis.edu/ew/
SCHEMA_DOC/comparison/erd.htm, 2011.

[3] ISO - ISO standards - JTC 1/SC 32 - data management and
interchange. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_tc_browse.htm?commid=45342&published=on, July
2011.

[4] MySQL :: MySQL 5.6 reference manual :: 13.12
overview of MySQL storage engine architecture.
http://dev.mysql.com/doc/refman/5.6/en/pluggable-storage-
overview.html, 2011.

[5] MySQL :: MySQL 5.6 reference man-
ual :: 1.3.3 the main features of MySQL.
http://dev.mysql.com/doc/refman/5.6/en/features.html, 2011.

[6] PostgreSQL: documentation: Manuals: PostgreSQL 8.1: GiST in-
dexes. http://www.postgresql.org/docs/8.1/static/gist.html, 2011.

[7] Michal Bližňák, Tomáš Dulík, and Vladimír Vašek. A persistent
Cross-Platform class objects container for c++ and wxWidgets.
WSEAS TRANSACTIONS on COMPUTERS Volume 8, 2009, 8(1),
January 2009.

[8] Michal Bližňák, Tomáš Dulík, and Vladimír Vašek. wxShape-
Framework: an easy way for diagrams manipulation in c++ ap-
plications. WSEAS TRANSACTIONS on COMPUTERS Volume 9,
2010, 9(1), January 2010.

[9] Joseph Blough. DatabaseLayer homepage.
http://wxcode.sourceforge.net/components/databaselayer/, 2011.

[10] Eran Ifrah and David Gilbert. CodeLite IDE Main/Home page.
http://www.codelite.org/, 2011.

[11] Peter Janků. DatabaseExplorer homepage.
http://sourceforge.net/projects/wxdbexplorer/, 2011.

[12] Robert Roebling, Vadim Zeitlin, Stefan Csomor, Julian Smart,
Vaclav Slavik, and Robin Dunn. wxWidgets homepage.
http://www.wxwidgets.org/, 2011.

[13] Gerd Wagner. The Agent-Object-Relationship metamodel: to-
wards a unified view of state and behavior. Information Systems,
28(5):475–504, 2003.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 1, Volume 6, 2012

62




