
 

 

  

Abstract—Lempel-Ziv methods were original introduced to 

compress one-dimensional data (text, object codes, etc.) but recently 

they have been successfully used in image compression. 

Constantinescu and Storer in [6] introduced a single-pass vector 

quantization algorithm that, with no training or previous knowledge 

of the digital data was able to achieve better compression results with 

respect to the JPEG standard and had also important computational 

advantages. 

We review some of our recent work on LZ-based, single pass, 

adaptive algorithms for the compression of digital images, taking into 

account the theoretical optimality of these approach, and we 

experimentally analyze the behavior of this algorithm with respect to 

the local dictionary size and with respect to the compression of bi-

level images. 

 

Keywords—Image compression, textual substitution methods. 

vector quantization.  

I. INTRODUCTION     

n textual substitution compression methods a dictionary D of 

strings is continuously updated  to adaptively compress an 

input stream by replacing the substrings of the input sequence 

that have a correspondence in the local dictionary D by the 

corresponding index into D (these indices are referred as 

pointers).  

The D can be a static or adaptive dictionary. Static 

dictionaries can be used when the behavior of the input source 

is well known in advance, otherwise an constantly changing, 

adaptive dictionary is used to give a good compromise 

between compression efficiency and computational 

complexity. 

These algorithms are often called dictionary based methods, 

or dictionary methods, or Lempel-Ziv methods after the 

seminal work of Lempel and Ziv.  

In practice the textual substitution compression methods are 

all inspired by one of the two compression approaches 

presented by Lempel and Ziv. These methods are often called 

LZ77 and LZ78 or LZ1 and LZ2 respectively in the order in 

which they have been published. There are many possible 

variants of LZ1 and LZ2 and they generally differ in the way 

the pointers in the dictionary are represented and in the 

limitations on the use of these pointers. 

Lempel and Ziv proved that these proposed schemes were 

practical as well as asymptotically optimal for a general source 

model.  

The LZ2 algorithm (also known as LZ78) is presented in 
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Ziv and Lempel in [1]. 

By limiting what could enter the dictionary, LZ2 assures 

that there is at most one instance for each possible pattern in 

the dictionary.  

Initially the dictionary is empty. The coding pass consists of 

searching the dictionary for the longest entry that is a prefix of 

a string starting at the current coding position.  

The index of the match is transmitted to the decoder using 

log2 N   bits, where N is the current size of the dictionary. 

A new pattern is introduced into the dictionary by 

concatenating the current match with the next character that 

has to be encoded.  

The dictionary of LZ2 continues to grow throughout the 

coding process. 

In practical applications, to limit space complexity, some 

kind of deletion heuristic must be implemented.  

This algorithm is the basis of many widely used 

compression systems. 

Two-dimensional applications of textual substitution 

methods are described in Lempel and Ziv [2], Sheinwald, 

Lempel and Ziv [3], and Sheinwald [4].  

All these approaches are based on a linearization strategy 

that is applied to the input data, after which the resulting 

mono-dimensional stream is encoded by using one-

dimensional LZ type methods.  

Storer [5] first suggested the possibility of using dynamic 

dictionary methods in combination with Vector Quantization 

to compress images.  

Constantinescu and Storer in [6] pioneered this approach.  

II. THE SINGLE-PASS ADAPTIVE VECTOR QUANTIZATION 

ALGORITHM 

In the Adaptive Vector Quantization image compression 

algorithm, as in the general one-dimensional lossless adaptive 

dictionary method, a local dictionary D (that in this case shall 

contain parts of the image) is used to store a constantly 

changing set of items.  

The image is compressed by replacing parts of the input 

image that also occur in D by the corresponding index (we 

refer to it as pointer) into D. 

This is a generalization to two-dimensional data of the 

textual substitution methods that Lempel and Ziv introduced 

for one-dimensional data.  

The compression and decompression algorithms work in 

lockstep to maintain identical copies of D (which is constantly 

changing).  

The compressor uses a match heuristic to find a match 
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between the input stream and the dictionary (the strategy used 

to identify the correct matching is generally a greedy strategy 

that finds the larger match between a dictionary entry and the 

portion of the image that has to be encoded) then removes this 

match from the not yet encoded part of the image and transmits 

the index of the corresponding dictionary entry. 

Finally the encoder updates the dictionary via an update 

heuristic that depends on the current contents of the dictionary 

and on the match that was just found.  

If there is not enough room left in the dictionary, a deletion 

heuristic is used to delete an existing entry. 

We define as Growing Border the set of locations in the 

input image that have not been coded yet and that are closest 

to the already–coded locations.  

A Growing Point is any not yet encoded point where a 

match may take place (see Fig. 1).  

In the rest of this work we assume that growing points come 

only from the growing border and that they are located in 

corners, as shown in Figure 1.  

The data structure that stores the growing points is called 

Growing Points Pool. 

A Growing Heuristic is a set or rules used to identify the 

next growing point to be processed.  

There are many different ways to implement the growing 

heuristic.  

The growing heuristics (GH) are used to select a growing 

point in the growing points pool for the next matching.  

This can be done by considering the order in which the 

growing points are added to the growing points pool or by 

limiting somehow the possible x and/or y coordinates of the 

next growing point. 

As example of possible growing heuristics we can cite the 

GH Wave, that selects the GP s with coordinates xs and ys for 

which xs + ys <= x + y, for any other growing point with 

coordinates x and y in the growing point pool.  

In this case the growing point pool will be initialized with 

the upper left corner pixel of the image and the covering of the 

image will result in a wave that is perpendicular to the image’s 

diagonal (see Figure 1).  

Another example of growing heuristic is the GH circular 

that selects from the growing points pool the growing point 

that has minimum distance from a specific image point 

(generally the center point of the image), as shown in Figure 2. 

At each step the Adaptive Vector Quantization algorithm 

(AVQ from now on) selects a growing point gp of the input 

image.  

The encoder uses a match heuristic to decide which block b 

of a local dictionary D is the best match for the sub-block 

anchored in gp of the same shape as b.  

 

 
Fig. 1: Wave Growing Heuristic 

 

 

 

 

 
Fig 2: Circular Growing Heuristic 

 

The match heuristic chooses the largest block for which the 

distortion from the original block (namely the mean squared 

error) is less or equal to a threshold T.  

The threshold T could be fixed for the whole image, or 

dynamically adjusted to the image content: higher for smooth 

areas, lower for zones with large variance (as in the presence 

of sharp edges). 

The Lossy Generic Encoding and Decoding Algorithms for 

on-line adaptive vector quantization can be summarized as 

follows. 
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Lossy Generic Encoding Algorithm: 

 

1. Initialize the local dictionary D to have one entry for 

each possible pixel value (e.g., each possible byte value in an 

8-bit per pixel gray scale image) and the growing points pool 

with the initial set of growing points (e.g., a single point in the 

upper left corner for the wave method). 

 

2. Repeat  

A. Use a Growing Method to choose the next growing point 

gp.  

B. Use a Match Method to find a block b in D that matches 

with acceptable fidelity the sub-block anchored in the growing 

point gp, and transmit the index of b. 

C. Use an Update Method to add one or more new entries to 

D; if D is full, first use a Deletion Method to make space.  

D. Update the growing points pool according to a  Growing 

Points Update Method. 

until the growing points pool is empty 

 

 

Lossy Generic Decoding Algorithm: 

 

1. Initialize D by performing Step 1 of the Encoder's 

Algorithm. 

 

2. Repeat  

A. Perform Step 2A of the Encoder's algorithm to determine 

a growing point gp.  

B. Receive the index of the block b to be placed at gp and 

output b. 

C. Perform Step 2C of the Encoder's Algorithm modify D.  

D. Perform Step 2D of the Encoder's Algorithm to modify 

the growing points pool. 

until the growing points pool is empty 

 

The operation of the generic algorithms is guided by the 

following heuristics: 

The growing heuristic that selects one growing point from 

the available Growing Points Pool. 

The match heuristic that decides what block b from the 

dictionary D best matches the portion of the image of the same 

shape as b defined by the currently selected growing point. 

The growing points update heuristic that is responsible for 

generating new growing points after each match is made. 

The dictionary update heuristic that adapts the contents of 

the dictionary D to the part of the image that is currently 

compressed/decompressed. 

The deletion heuristic that maintains the dictionary D so it 

can have a predefined constant size. 

Figure 3 illustrates the concepts of growing point, dynamic 

dictionary and current match. 

The compression performance of AVQ typically equals or 

exceeds the compression obtained by the JPEG standard on 

different classes of images and often out-performs traditional 

trained–vector quantizers.  

The class of images on which JPEG still prevails is the one 

on which it was tuned (“magazine photographs”). 

III. THE THEORETICAL PERFORMANCE OF LOSSLESS LZ-

BASED IMAGE COMPRESSION 

The complexity and asymptotic optimality of the one 

dimensional Lempel-Ziv methods have been widely studied in 

the literature, and this theoretical analysis are probably one of 

the reasons of the huge popularity of these methods. 

It is possible to prove with similar arguments also the 

asymptotic optimality of the AVQ algorithm. 

As shown in [7], the two-dimensional image compression 

problem could be reduced to a lossless compression in one 

dimension problem if we consider the the 2-dimensional UC 

update method (2D-UC), i.e. a dictionary update heuristic that 

adds to the dictionary the current match augmented by one 

pixel chosen among the immediate neighbors on its right or 

lower side.  

This pixel is sent uncompressed to the decompressor 

together with the pointer.  

Pixels are added to the right side first, from top to bottom, 

and to the bottom next, from left to right.  

In this way the algorithm will tend to grow (almost) square 

matches. 

If we use AVQ with the 2D-UC method to lossless encode 

an image INxM , where N and M are the width and height of the 

image, and there is no overlap between matches and if we take 

the sequence of matches and traverse it in a zig-zag order the 

result is a distinct parsing of a sequence that is a one-

dimensional scan of the content of INxM .  

If this sequence is drawn from an ergodic source, the 

optimality of the compression achieved on this string follows 

from : 

 

Theorem (12.10.1 from Cover and Thomas [8]) :  

Let X
i{ }

−∞

∞
 be a stationary ergodic process with entropy 

rate 
 
H X( ) , and let c(n) be the number of phrases in  a 

distinct parsing of a sample of length n . Then 

  
lim sup

n→∞

c(n)lg c(n)

n
≤ H X( )

 
with probability 1. 

 

In other words if a string is parsed into distinct phrases (by 

any method) and the i
th

 phrase is charged a cost of log2 i  , 

then the total cost is optimal in the information theoretic sense. 

In [7] it is also shown how this complexity results also hold 

when we consider the possibility of a parsing that has a 

bounded overlap degree. 

IV. DICTIONARY SIZE AND COMPRESSION PERFORMANCES 

We have tested the lossy compression performance of our 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 6, 2012

189



 

 

AVQ implementation with respect to the local dictionary 

dimensions. 

The compression/decompression process is depicted in 

Figure 4, which shows how the process works on the standard 

Lena image.  

Figure 4-a is a partially decompressed version of Lena (the 

white part has not been compressed/decompressed yet) where 

each rectangle has been colored with a random solid color to 

illustrate the covering pattern.  

Figure 4-b is the actual partially decompressed Lena image. 

It can be seen that larger rectangles are “grown” from smaller 

ones as the image is compressed and that to compress 

“background” of the image large matches are used whereas 

smaller matches of varying size are used to reproduce the 

details of Lena’s face. 

Of course the size of the local dictionary has to be finite 

otherwise we could not code the pointers effectively.  

If the dictionary is too small then the algorithms looses parts 

of its adaptive behavior and this impacts the compression 

performance. 

On the other hand if the dictionary is too large, the cost of 

encoding each pointer grows too much and again this can 

affect the compression performances. 

We have tested our implementation with different dictionary 

sizes on the standard test data set including the classical Lena, 

Zelda, Balloon, Peppers, Gold, Barb, Barb2, Girl, Boats and 

Hotel images.  

We have experimented with different dictionary sizes, 

ranging from 2
11

 to 2
14

 elements (and more).  

The first experimental result is that for our data set a 

dictionary with more than 2
14

 elements does not work well: the 

cost of encoding the pointers becomes too large. 

The best performance is obtained with a dictionary of 2
14

, 

i.e. 16384, elements. 

Figure 5 shows our test data set.  

The ten images, from left to right, top to bottom, are 

respectively: Lena, Zelda, Balloon, Peppers, Gold, Barb, 

Barb2, Girl, Boats, Hotel . 

Table 1 shows our experimental results. 

In the table we have as columns the Compression Ratio, the 

values of the Signal to Noise Ratio (SNR) and Mean Squared 

Error (MSE) as quality measures, and the original and 

compressed sizes, both in bytes and KBs.  

It is possible to have an average 4% improvement with 

respect to the above results if we carefully code the pointers 

while the dictionary fills up (i.e. the cost of coding a pointer 

while the dictionary fills up depends on the real actual number 

of entries that are currently in the dictionary). 

 

Image  C.R.  SNR  MSE  Original 

size 

Comp. 

size 

Lena  6,614  23,42  16  263.224  
(257 KB)  

39.797 
(38,8 KB) 

Zelda  10,575  19,45  15  415.800  
(406 KB)  

39.321  
(38,3 KB) 

Balloon  8,651  23,91  4,3  415.800  
(406 KB)  

48.064  
(46,9 KB) 

Peppers  5,160  21,82  26  263.224  
(257 KB)  

51.012  
(49,8 KB) 

Gold  4,311  23,24  13,5  415.800  
(406 KB)  

96.458  
(94,1 KB) 

Barb  4,895  22,60  17,5  415.800  
(406 KB)  

84.945  
(82,9 KB) 

Barb2  4,410  21,39  17,5  415.800  
(406 KB)  

94.285  
(92,0 KB) 

Girl  8,573  23,30  16,5  415.800  
(406 KB)  

48.498  
(47,3 KB) 

Boats  4,906  24,71  8  415.800  
(406 KB) 

84.744  
(82,7 KB) 

Hotel  4,679  23,07  12  415.800  
(406 KB)  

88.858  
(86,7 KB) 

 
 Table 1: experimental results with dictionary size 2

14
 

 

V. AVQ AND BILEVEL IMAGES 

We have so far considered the application of the AVQ 

algorithm on images that have at least 8 bits of gray per pixel. 

Of course the approach we have presented can be successfully 

used also for color images. 

The AVQ algorithm can also be efficiently used in the 

lossless and near-lossless compression of bi-level images (i.e. 

black and with images, as for instance the results of a normal 

fax transmission). 

We just need to use the lossless version of the algorithm 

(i.e. the matching heuristic now will look only for exact 

matches, without admitting errors) and by initializing the 

dictionary with only to elements: the forst for the “black” 

pixel, and the second for the “white” pixel. 

The results obtained are interesting, our algorithm 

outperformaces the standard gzip and compress lossless 

compressor. 

Even if straight AVQ does not equal the performaces of the 

JPBIG standard, our first experiments seem to indicate that we 

opportune tuning the AVQ algorithm can be probably as fast 

and as efficient as JBIG. 

In Table 2 we report our preliminary experiments on the 

standard CCITT test data set. The results are given in terms of 

compression ratio. 

In the table there is also a column entry also for a slightly 

modified version of AVQ that we called AVQ-INIT. 

The improvement consists in the inizialization of the 

dictionary also with the black and with patterns shown in 

Figure 6 and with a set of square bloks, all black and all white, 

of different sizes (6, 7, 8, …, 16, 32 , 64,…, 512). 
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VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

The AVQ algorithm introduced by Constantinescu and 

Storer is an adaptive vector quantization algorithm that applies 

to the digital image data the LZ2 textual substitution methods. 

This method maintains a constantly changing dictionary of 

variable sized rectangles by “learning” larger rectangles from 

smaller ones as the target image is compressed. 

We have reviewed this LZ-based, single pass, adaptive 

algorithms for the compression of digital images and the 

asymptotic optimality of the AVQ algorithm. 

We have experimentally analyzed its behavior with respect 

to the size of the local Dictionary. 

We have also experimentally analyzed the AVQ 

performances on bi-level images. 

We are testing different encoding strategies for dictionary 

information. Moreover the impact of overlapping during the 

encoding process has to be carefully studied. 
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IMAGE COMPRESS GZIP AVQ AVQ-INT JBIG 

CCITT1 15.8 16.5 20.0 20.2 28.9 

CCITT2 18.6 18.6 30.1 31.0 43.8 

CCITT3 8.9 8.9 13.1 13.4 19.6 

CCITT4 5.0 5.0 5.4 5.5 7.9 

CCITT5 8.2 8.2 11.1 11.3 16.7 

CCITT6 12.2 12.2 22.1 21.9 33.8 

CCITT7 4.6 4.6 5.5 5.6 7.4 

CCITT8 10.0 10.0 17.5 18.6 25.9 

 

Table 2: AVQ compression ratio on bi-level images compared with other standard algorithms. 
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Figure 3: Adaptive Vector Quantization 
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 Figure 4: AVQ compression/decompression of “Lena” 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 6, 2012

193



 

 

Figure 5: Grayscale Test Data Set 
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Figure 6: Dictionary inizialization patterns for bilevel images 
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