

Abstract—Lempel-Ziv methods were original introduced to

compress one-dimensional data (text, object codes, etc.) but recently

they have been successfully used in image compression.

Constantinescu and Storer in [6] introduced a single-pass vector

quantization algorithm that, with no training or previous knowledge

of the digital data was able to achieve better compression results with

respect to the JPEG standard and had also important computational

advantages.

We review some of our recent work on LZ-based, single pass,

adaptive algorithms for the compression of digital images, taking into

account the theoretical optimality of these approach, and we

experimentally analyze the behavior of this algorithm with respect to

the local dictionary size and with respect to the compression of bi-

level images.

Keywords—Image compression, textual substitution methods.

vector quantization.

I. INTRODUCTION

n textual substitution compression methods a dictionary D of

strings is continuously updated to adaptively compress an

input stream by replacing the substrings of the input sequence

that have a correspondence in the local dictionary D by the

corresponding index into D (these indices are referred as

pointers).

The D can be a static or adaptive dictionary. Static

dictionaries can be used when the behavior of the input source

is well known in advance, otherwise an constantly changing,

adaptive dictionary is used to give a good compromise

between compression efficiency and computational

complexity.

These algorithms are often called dictionary based methods,

or dictionary methods, or Lempel-Ziv methods after the

seminal work of Lempel and Ziv.

In practice the textual substitution compression methods are

all inspired by one of the two compression approaches

presented by Lempel and Ziv. These methods are often called

LZ77 and LZ78 or LZ1 and LZ2 respectively in the order in

which they have been published. There are many possible

variants of LZ1 and LZ2 and they generally differ in the way

the pointers in the dictionary are represented and in the

limitations on the use of these pointers.

Lempel and Ziv proved that these proposed schemes were

practical as well as asymptotically optimal for a general source

model.

The LZ2 algorithm (also known as LZ78) is presented in

Bruno Carpentieri is with the Dipartimento di Informatica of the

University of Salerno (Italy) (e-mail: bc@dia.unisa.it).

Ziv and Lempel in [1].

By limiting what could enter the dictionary, LZ2 assures

that there is at most one instance for each possible pattern in

the dictionary.

Initially the dictionary is empty. The coding pass consists of

searching the dictionary for the longest entry that is a prefix of

a string starting at the current coding position.

The index of the match is transmitted to the decoder using

log2 N  bits, where N is the current size of the dictionary.

A new pattern is introduced into the dictionary by

concatenating the current match with the next character that

has to be encoded.

The dictionary of LZ2 continues to grow throughout the

coding process.

In practical applications, to limit space complexity, some

kind of deletion heuristic must be implemented.

This algorithm is the basis of many widely used

compression systems.

Two-dimensional applications of textual substitution

methods are described in Lempel and Ziv [2], Sheinwald,

Lempel and Ziv [3], and Sheinwald [4].

All these approaches are based on a linearization strategy

that is applied to the input data, after which the resulting

mono-dimensional stream is encoded by using one-

dimensional LZ type methods.

Storer [5] first suggested the possibility of using dynamic

dictionary methods in combination with Vector Quantization

to compress images.

Constantinescu and Storer in [6] pioneered this approach.

II. THE SINGLE-PASS ADAPTIVE VECTOR QUANTIZATION

ALGORITHM

In the Adaptive Vector Quantization image compression

algorithm, as in the general one-dimensional lossless adaptive

dictionary method, a local dictionary D (that in this case shall

contain parts of the image) is used to store a constantly

changing set of items.

The image is compressed by replacing parts of the input

image that also occur in D by the corresponding index (we

refer to it as pointer) into D.

This is a generalization to two-dimensional data of the

textual substitution methods that Lempel and Ziv introduced

for one-dimensional data.

The compression and decompression algorithms work in

lockstep to maintain identical copies of D (which is constantly

changing).

The compressor uses a match heuristic to find a match

Dictionary Based Compression for Images

Bruno Carpentieri

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

187

between the input stream and the dictionary (the strategy used

to identify the correct matching is generally a greedy strategy

that finds the larger match between a dictionary entry and the

portion of the image that has to be encoded) then removes this

match from the not yet encoded part of the image and transmits

the index of the corresponding dictionary entry.

Finally the encoder updates the dictionary via an update

heuristic that depends on the current contents of the dictionary

and on the match that was just found.

If there is not enough room left in the dictionary, a deletion

heuristic is used to delete an existing entry.

We define as Growing Border the set of locations in the

input image that have not been coded yet and that are closest

to the already–coded locations.

A Growing Point is any not yet encoded point where a

match may take place (see Fig. 1).

In the rest of this work we assume that growing points come

only from the growing border and that they are located in

corners, as shown in Figure 1.

The data structure that stores the growing points is called

Growing Points Pool.

A Growing Heuristic is a set or rules used to identify the

next growing point to be processed.

There are many different ways to implement the growing

heuristic.

The growing heuristics (GH) are used to select a growing

point in the growing points pool for the next matching.

This can be done by considering the order in which the

growing points are added to the growing points pool or by

limiting somehow the possible x and/or y coordinates of the

next growing point.

As example of possible growing heuristics we can cite the

GH Wave, that selects the GP s with coordinates xs and ys for

which xs + ys <= x + y, for any other growing point with

coordinates x and y in the growing point pool.

In this case the growing point pool will be initialized with

the upper left corner pixel of the image and the covering of the

image will result in a wave that is perpendicular to the image’s

diagonal (see Figure 1).

Another example of growing heuristic is the GH circular

that selects from the growing points pool the growing point

that has minimum distance from a specific image point

(generally the center point of the image), as shown in Figure 2.

At each step the Adaptive Vector Quantization algorithm

(AVQ from now on) selects a growing point gp of the input

image.

The encoder uses a match heuristic to decide which block b

of a local dictionary D is the best match for the sub-block

anchored in gp of the same shape as b.

Fig. 1: Wave Growing Heuristic

Fig 2: Circular Growing Heuristic

The match heuristic chooses the largest block for which the

distortion from the original block (namely the mean squared

error) is less or equal to a threshold T.

The threshold T could be fixed for the whole image, or

dynamically adjusted to the image content: higher for smooth

areas, lower for zones with large variance (as in the presence

of sharp edges).

The Lossy Generic Encoding and Decoding Algorithms for

on-line adaptive vector quantization can be summarized as

follows.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

188

Lossy Generic Encoding Algorithm:

1. Initialize the local dictionary D to have one entry for

each possible pixel value (e.g., each possible byte value in an

8-bit per pixel gray scale image) and the growing points pool

with the initial set of growing points (e.g., a single point in the

upper left corner for the wave method).

2. Repeat

A. Use a Growing Method to choose the next growing point

gp.

B. Use a Match Method to find a block b in D that matches

with acceptable fidelity the sub-block anchored in the growing

point gp, and transmit the index of b.

C. Use an Update Method to add one or more new entries to

D; if D is full, first use a Deletion Method to make space.

D. Update the growing points pool according to a Growing

Points Update Method.

until the growing points pool is empty

Lossy Generic Decoding Algorithm:

1. Initialize D by performing Step 1 of the Encoder's

Algorithm.

2. Repeat

A. Perform Step 2A of the Encoder's algorithm to determine

a growing point gp.

B. Receive the index of the block b to be placed at gp and

output b.

C. Perform Step 2C of the Encoder's Algorithm modify D.

D. Perform Step 2D of the Encoder's Algorithm to modify

the growing points pool.

until the growing points pool is empty

The operation of the generic algorithms is guided by the

following heuristics:

The growing heuristic that selects one growing point from

the available Growing Points Pool.

The match heuristic that decides what block b from the

dictionary D best matches the portion of the image of the same

shape as b defined by the currently selected growing point.

The growing points update heuristic that is responsible for

generating new growing points after each match is made.

The dictionary update heuristic that adapts the contents of

the dictionary D to the part of the image that is currently

compressed/decompressed.

The deletion heuristic that maintains the dictionary D so it

can have a predefined constant size.

Figure 3 illustrates the concepts of growing point, dynamic

dictionary and current match.

The compression performance of AVQ typically equals or

exceeds the compression obtained by the JPEG standard on

different classes of images and often out-performs traditional

trained–vector quantizers.

The class of images on which JPEG still prevails is the one

on which it was tuned (“magazine photographs”).

III. THE THEORETICAL PERFORMANCE OF LOSSLESS LZ-

BASED IMAGE COMPRESSION

The complexity and asymptotic optimality of the one

dimensional Lempel-Ziv methods have been widely studied in

the literature, and this theoretical analysis are probably one of

the reasons of the huge popularity of these methods.

It is possible to prove with similar arguments also the

asymptotic optimality of the AVQ algorithm.

As shown in [7], the two-dimensional image compression

problem could be reduced to a lossless compression in one

dimension problem if we consider the the 2-dimensional UC

update method (2D-UC), i.e. a dictionary update heuristic that

adds to the dictionary the current match augmented by one

pixel chosen among the immediate neighbors on its right or

lower side.

This pixel is sent uncompressed to the decompressor

together with the pointer.

Pixels are added to the right side first, from top to bottom,

and to the bottom next, from left to right.

In this way the algorithm will tend to grow (almost) square

matches.

If we use AVQ with the 2D-UC method to lossless encode

an image INxM , where N and M are the width and height of the

image, and there is no overlap between matches and if we take

the sequence of matches and traverse it in a zig-zag order the

result is a distinct parsing of a sequence that is a one-

dimensional scan of the content of INxM .

If this sequence is drawn from an ergodic source, the

optimality of the compression achieved on this string follows

from :

Theorem (12.10.1 from Cover and Thomas [8]) :

Let X
i{ }

−∞

∞
 be a stationary ergodic process with entropy

rate

H X() , and let c(n) be the number of phrases in a

distinct parsing of a sample of length n . Then

lim sup

n→∞

c(n)lg c(n)

n
≤ H X()

with probability 1.

In other words if a string is parsed into distinct phrases (by

any method) and the i
th

 phrase is charged a cost of log2 i  ,

then the total cost is optimal in the information theoretic sense.

In [7] it is also shown how this complexity results also hold

when we consider the possibility of a parsing that has a

bounded overlap degree.

IV. DICTIONARY SIZE AND COMPRESSION PERFORMANCES

We have tested the lossy compression performance of our

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

189

AVQ implementation with respect to the local dictionary

dimensions.

The compression/decompression process is depicted in

Figure 4, which shows how the process works on the standard

Lena image.

Figure 4-a is a partially decompressed version of Lena (the

white part has not been compressed/decompressed yet) where

each rectangle has been colored with a random solid color to

illustrate the covering pattern.

Figure 4-b is the actual partially decompressed Lena image.

It can be seen that larger rectangles are “grown” from smaller

ones as the image is compressed and that to compress

“background” of the image large matches are used whereas

smaller matches of varying size are used to reproduce the

details of Lena’s face.

Of course the size of the local dictionary has to be finite

otherwise we could not code the pointers effectively.

If the dictionary is too small then the algorithms looses parts

of its adaptive behavior and this impacts the compression

performance.

On the other hand if the dictionary is too large, the cost of

encoding each pointer grows too much and again this can

affect the compression performances.

We have tested our implementation with different dictionary

sizes on the standard test data set including the classical Lena,

Zelda, Balloon, Peppers, Gold, Barb, Barb2, Girl, Boats and

Hotel images.

We have experimented with different dictionary sizes,

ranging from 2
11

 to 2
14

 elements (and more).

The first experimental result is that for our data set a

dictionary with more than 2
14

 elements does not work well: the

cost of encoding the pointers becomes too large.

The best performance is obtained with a dictionary of 2
14

,

i.e. 16384, elements.

Figure 5 shows our test data set.

The ten images, from left to right, top to bottom, are

respectively: Lena, Zelda, Balloon, Peppers, Gold, Barb,

Barb2, Girl, Boats, Hotel .

Table 1 shows our experimental results.

In the table we have as columns the Compression Ratio, the

values of the Signal to Noise Ratio (SNR) and Mean Squared

Error (MSE) as quality measures, and the original and

compressed sizes, both in bytes and KBs.

It is possible to have an average 4% improvement with

respect to the above results if we carefully code the pointers

while the dictionary fills up (i.e. the cost of coding a pointer

while the dictionary fills up depends on the real actual number

of entries that are currently in the dictionary).

Image C.R. SNR MSE Original

size

Comp.

size

Lena 6,614 23,42 16 263.224
(257 KB)

39.797
(38,8 KB)

Zelda 10,575 19,45 15 415.800
(406 KB)

39.321
(38,3 KB)

Balloon 8,651 23,91 4,3 415.800
(406 KB)

48.064
(46,9 KB)

Peppers 5,160 21,82 26 263.224
(257 KB)

51.012
(49,8 KB)

Gold 4,311 23,24 13,5 415.800
(406 KB)

96.458
(94,1 KB)

Barb 4,895 22,60 17,5 415.800
(406 KB)

84.945
(82,9 KB)

Barb2 4,410 21,39 17,5 415.800
(406 KB)

94.285
(92,0 KB)

Girl 8,573 23,30 16,5 415.800
(406 KB)

48.498
(47,3 KB)

Boats 4,906 24,71 8 415.800
(406 KB)

84.744
(82,7 KB)

Hotel 4,679 23,07 12 415.800
(406 KB)

88.858
(86,7 KB)

 Table 1: experimental results with dictionary size 2

14

V. AVQ AND BILEVEL IMAGES

We have so far considered the application of the AVQ

algorithm on images that have at least 8 bits of gray per pixel.

Of course the approach we have presented can be successfully

used also for color images.

The AVQ algorithm can also be efficiently used in the

lossless and near-lossless compression of bi-level images (i.e.

black and with images, as for instance the results of a normal

fax transmission).

We just need to use the lossless version of the algorithm

(i.e. the matching heuristic now will look only for exact

matches, without admitting errors) and by initializing the

dictionary with only to elements: the forst for the “black”

pixel, and the second for the “white” pixel.

The results obtained are interesting, our algorithm

outperformaces the standard gzip and compress lossless

compressor.

Even if straight AVQ does not equal the performaces of the

JPBIG standard, our first experiments seem to indicate that we

opportune tuning the AVQ algorithm can be probably as fast

and as efficient as JBIG.

In Table 2 we report our preliminary experiments on the

standard CCITT test data set. The results are given in terms of

compression ratio.

In the table there is also a column entry also for a slightly

modified version of AVQ that we called AVQ-INIT.

The improvement consists in the inizialization of the

dictionary also with the black and with patterns shown in

Figure 6 and with a set of square bloks, all black and all white,

of different sizes (6, 7, 8, …, 16, 32 , 64,…, 512).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

190

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The AVQ algorithm introduced by Constantinescu and

Storer is an adaptive vector quantization algorithm that applies

to the digital image data the LZ2 textual substitution methods.

This method maintains a constantly changing dictionary of

variable sized rectangles by “learning” larger rectangles from

smaller ones as the target image is compressed.

We have reviewed this LZ-based, single pass, adaptive

algorithms for the compression of digital images and the

asymptotic optimality of the AVQ algorithm.

We have experimentally analyzed its behavior with respect

to the size of the local Dictionary.

We have also experimentally analyzed the AVQ

performances on bi-level images.

We are testing different encoding strategies for dictionary

information. Moreover the impact of overlapping during the

encoding process has to be carefully studied.

References
[1] J. Ziv, A. Lempel, A Universal Algorithm for Data Compression, IEEE

Transaction on Information Theory, Vol. IT-23, n. 3, May 1977.

[2] A. Lempel, J. Ziv, Compression of Two-Dimensional Images, in:

A.Apostolico and Z.Galil (Ed.), Combinatorial Algorithms on Word,

NATO ASI Series, Vol. F12, Springer-Verlag Berlin, Heidelberg 1985.

[3] D. Sheinwald, A. Lempel, J. Ziv, Two-dimensional Encoding by Finite

State Encoders, IEEE Transaction on Communications, Vol. 38, pp.

341-347, 1990.

[4] D. Sheinwald, Finite State Two-Dimensional Compressibility, in: J. A.

Storer (Ed.), Image and Text Compression, Kluwer Academic Press,

Norwell, MA, 1992, pp.253-275.

[5] J. A. Storer, Data Compression: Methods and Theory, Computer

Science Press, 1988.

[6] C. Constantinescu, J. A. Storer, On-Line Adaptive Vector Quantization

with Variable Size Codebook Entries, Journal of Information Processing

Management, 1994.

[7] F. Rizzo, J. A. Storer, B. Carpentieri, Overlap and channel errors in

Adaptive Vector Quantization for Image Coding, Information Sciences,

Vol. 171, pp. 125-143, 2005.

[8] T. M. Cover and J. A. Thomas [1991]. Elements of Information Theory,

Wiley.M. Young, The Techincal Writers Handbook. Mill Valley, CA:

University Science, 1989.

IMAGE COMPRESS GZIP AVQ AVQ-INT JBIG

CCITT1 15.8 16.5 20.0 20.2 28.9

CCITT2 18.6 18.6 30.1 31.0 43.8

CCITT3 8.9 8.9 13.1 13.4 19.6

CCITT4 5.0 5.0 5.4 5.5 7.9

CCITT5 8.2 8.2 11.1 11.3 16.7

CCITT6 12.2 12.2 22.1 21.9 33.8

CCITT7 4.6 4.6 5.5 5.6 7.4

CCITT8 10.0 10.0 17.5 18.6 25.9

Table 2: AVQ compression ratio on bi-level images compared with other standard algorithms.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

191

Figure 3: Adaptive Vector Quantization

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

192

 Figure 4: AVQ compression/decompression of “Lena”

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

193

Figure 5: Grayscale Test Data Set

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

194

Figure 6: Dictionary inizialization patterns for bilevel images

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 6, 2012

195

