
 

 

  

Abstract—One of the major concerns, especially at the beginning 
of a system restoration, is related to temporary overvoltages. Such an 
overvoltage might damage some equipment and delay  power system 
restoration. In this paper an Artificial Neural Network (ANN)-based 
approach is used to  evaluate switching overvoltages during 
transformer  energization. In proposed methodology, Levenberg-
Marquardt method is used to train the multilayer perceptron. The 
 developed ANN is trained with the extensive simulated results, and 
 tested for typical cases. Then the new algorithms are presented and 
demonstrated for a partial of 39-bus New England test system. The 
simulated results  show that the proposed technique can estimate the 
peak values and  duration of switching overvoltages with good 
accuracy. 
 
Keywords—Artificial neural networks, harmonic overvoltages, 

power system restoration, transformer energization.  

I. INTRODUCTION 

HE problem of restoring power systems after a complete 
or partial blackout is as old as the power industry itself. In 

recent years, due to economic competition and deregulation, 
power systems are being operated closer and closer to their 
limits. At the same time, power systems have increased in size 
and complexity. Both factors increase the risk of major power 
outages. After a blackout, power needs to be restored as 
quickly and reliably as possible and, consequently, detailed 
restoration plans are necessary [1, 2]. 

One of the major concerns, especially at the beginning of a 
system restoration, is related to temporary overvoltages. 
During the early stages of the restoration procedures following 
a partial or complete blackout of the power system, the system 
is lightly loaded and resonance conditions are different from 
the ones at normal operation. 
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The reliable operation of any electrical power system is 
determined to a great extent by the amplitude, duration and 
frequency of the transient voltages appearing in different 
places in the network. Power transformers, surge arresters and 
circuit breakers will be the equipment earliest affected by 
overvoltages. Transient overvoltages are usually a significant 
factor at transmission voltages above 400 kV. At higher 
transmission voltages, overvoltages caused by switching may 
become significant, because arrester operating voltages are 
relatively close to normal system voltage and lines are usually 
long so that the energy stored on the lines may be large. 
Overvoltage will put the transformer into saturation, causing 
core heating and copious harmonic current generation. Circuit 
breaker called upon to operate during periods of high voltage 
will have reduced interrupting capability. At some voltage 
even the ability to interrupt line-charging current will be lost 
[3-5]. 

In this paper power system blockset (PSB), a 
MATLAB/Simulink-based simulation tool [6, 7] is used for 
computation of both switching and temporary overvoltages. 
This paper presents the artificial neural network (ANN) 
application for estimation of peak and duration overvoltages 
under switching transients during transformer energization. A 
tool such as proposed in this paper that can give the maximum 
switching overvoltage and its duration will be helpful to the 
operator. It can be used as training tool for the operators. The 
proposed ANN is expected to learn many scenarios of 
operation.To give the maximum peak overvoltage and it's 
duration in a shortest computational time which is the 
requirement during online operation of power systems. In the 
proposed ANN we have considered the most important 
aspects, which influence the transient overvoltages such as 
source voltage, line length, switching angle, line capacitor, 
saturation curve slope and remanent flux. This information will 
help the operator to select the proper sequence of transformer 
to be energized safely with transients appearing safe within the 
limits. Results of the studies are presented for a partial of 39-
bus New England test system to illustrate the proposed 
approach. 

II. MODELLING ISSUES 

A. PSB 

Simulations presented in this paper are performed using the 
PSB. The simulation tool has been developed using state 
variable approach and runs in the MATLAB/Simulink 
environment. This program has been compared with other 
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popular simulation packages (EMTP and Pspice) in [7]. The 
user friendly graphical interfaces of PSB enable faster 
development for power system transient analysis. 

B. Transmission-Line Model 

Transmission lines are described by PI cells, the R, L and C 
parameters being derived from lumped-line models. One PI 
section is used for every 25 km line section [8]. 

C. Generator Model 

In [9], generators have been modeled by the generalized 
Park’s model that electrical and mechanical parts are 
thoroughly modeled. In this work, generators are represented 
by a sinusoidal voltage source behind their subtransient 
reactances dX ′′ . Phases of voltage sources are determined by 

the load-flow results. 

D. Load and Shunt Devices Model 

All of the loads and shunt devices, such as capacitors and 
reactors, are modeled as constant impedances. 

E. Transformer Model 

The model takes into account the winding resistances (R1, 
R2), the leakage inductances (L1, L2) as well as the magnetizing 
characteristics of the core, which is modeled by a resistance, 
Rm, simulating the core active losses and a saturable 
inductance, Lsat. The saturation characteristic is specified as a 
piece-wise linear characteristic [10]. 

III. HARMONIC OVERVOLTAGES DURING RESTORATION 

One of the major concerns in power system restoration is the 
occurrence of overvoltages as a result of switching procedures. 
These can be classified as transient overvoltages, sustained 
overvoltages, harmonic resonance overvoltages, and 
overvoltages resulting from ferro-resonance. Steady-state 
overvoltages occur at the receiving end of lightly loaded 
transmission lines as a consequence of line-charging currents 
(reactive power balance). Excessive sustained overvoltages 
may lead to damage of transformers and other power system 
equipment. Transient overvoltages are a consequence of 
switching operations on long transmission lines, or the 
switching of capacitive devices, and may result in arrester 
failures. Ferro-resonance is a nonharmonic resonance 
characterized by overvoltages whose waveforms are highly 
distorted and can cause catastrophic equipment damages [2]. 

The energization of power transformers may create 
saturation of the transformer magnetic core and can lead to 
large harmonic temporary overvoltages due to high inrush 
currents [8]. This paper concentrates on the estimation of 
harmonic overvoltages. These are a result of network 
resonance frequencies close to multiples of the fundamental 
frequency. They can be excited by harmonic sources such as 
saturated transformers, power electronics, etc. They may lead 
to long lasting overvoltages resulting in arrester failures and 
system faults [1]. 

The major cause of harmonic resonance overvoltage 
problems is the switching of lightly loaded transformers at the 
end of transmission lines. The harmonic-current components 
of the same frequency as the system resonance frequencies are 
amplified in case of parallel resonance, thereby creating higher 
voltages at the transformer terminals. This leads to a higher 
level of saturation, resulting in higher harmonic components of 
the inrush current that again results in increased voltages. This 
can happen particularly in lightly damped systems, common at 
the beginning of a restoration procedure when a path from a 
black-start source to a large power plant is being established 
and only a few loads are restored yet [2, 11]. 

The sample system considered for explanation of the 
proposed methodology is a 400 kV EHV network shown in 
Fig. 1. This is portion of 39-bus New England test system. The 
normal peak value of any phase voltage is 400√2/√3 kV and 
this value is taken as base for voltage p.u. In the system studies 
400 kV line-to-line base voltage and 100 MVA as a base 
power is considered. Fig. 2 shows the switching transient at 
bus 39 when transformer is energized. 

 
 
 

 

Fig. 1 Power system at the beginning of a restoration procedure 
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Fig. 2 Voltage at bus 39 after switching of transformer 

 

In practical system a number of factors affect the 
overvoltages factors due to energization or reclosing. In this 
paper following parameters is considered: 

 
• Source voltage 
• Line length 
• Line capacitor 
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• Closing time of the circuit breaker poles 
• Saturation curve slope 
• Remanent flux  

 
Source voltage affects the overvoltage strongly. Fig. 3 

shows the effect of source voltage on overvoltage at different 
saturation curve slope. The saturation curve, and especially the 
Lsat i.e. the final slope of this curve, is a key point for the 
computation of the inrush currents but is not very easy to 
obtain. The transformer manufacturer provides a Lsat slope 
value with a dispersion usually considered of ±20 %. Fig. 4 
shows the effect of line length on overvoltages at different 
source voltage. Controlled switching of high-voltage ac circuit 
breakers has become a commonly accepted means of 
controlling switching transients in power systems. Fig. 5 shows 
effect of switching angle on overvoltages at different remanent 
flux. Fig. 6 shows the effect of line capacitor on overvoltages 
at different switching angle. 
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Fig. 3 Overvoltage peak and duration at bus 39 as source voltage 
while line length 100 km, line capacitor 1.237e-8, switching angle 
18° and remanent flux 0.8 p.u . Lsat is saturation curve slope    
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Fig. 4 Overvoltage peak and duration at bus 39 as line length while 
line capacitor 1.237e-8, switching angle 18°, saturation curve slope 
0.32 p.u. and remanent flux 0.8 p.u. S.V. is source voltage 
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Fig. 5 Overvoltage peak and duration at bus 39 as switching angle 
while source voltage 1 p.u., line length 100 km, line capacitor 
1.237e-8 and saturation curve slope 0.32 p.u. Φ0 is remanent flux 

 

INTERNATIONAL JOURNAL OF ENERGY, Issue 1, Vol. 6, 2012

19



 

 

1.18 1.2 1.22 1.24 1.26 1.28 1.3

x 10
-8

0

0.2

0.4

0.6

0.8

Line Capacitor [F/km]

D
u

ra
ti

o
n

 o
f 

(V
p

ea
k
>

1
.3

p
.u

.)
 [

S
ec

.]

 

 

αααα  = 0°°°°

αααα  = 90°°°°

1.18 1.2 1.22 1.24 1.26 1.28 1.3

x 10
-8

1.2

1.4

1.6

1.8

2

Line Capacitor [F/km]

V
o

lt
a

g
e 

[p
.u

.]

 

 

αααα  = 0°°°°

αααα  = 90°°°°

 
 

Fig. 6 Overvoltage peak and duration at bus 39 as line capacitor 
while source voltage 1 p.u., line length 100 km, saturation curve 
slope 0.32 p.u. and remanent flux 0.8 p.u. α is switching angle 

 
As discussed above for an existing system the main factors 

which affect the peak and duration values of switching 
overvoltage are source voltage, line length, line capacitor, 
switching angle, saturation curve slope and remanent flux. 
Here it should be mentioned that a single parameter often 
cannot be regarded independently from the other important 
influencing factors. The magnitude and duration of the 
overvoltages normally does not depend directly on any single 
isolated parameter and a variation of one parameter can often 
alter the influence of another parameter, in other words there 
exists an interaction between the various system and breaker 
parameters. This forbids the derivation of precise generalized 
rule of simple formulae applicable to all cases [12]. So an 
ANN can help to estimate the peak and duration values of 
switching overvoltages generated during transformer 
energization. 

IV. THE ARTIFICIAL NEURAL NETWORK 

The proposal in this work considers the adoption of feed 
forward Multilayer Perceptron (MLP) architecture. The 
schematic diagram of the proposed MLP neural networks 
architecture is shown in Fig. 7. The composition of the input 
variables for the proposed neural networks has been carefully 
selected. 

Supervised training of ANN is a usual training paradigm for 
MLP architecture [13]. Fig. 8 shows the supervised learning of 
ANN for which input is given to PSB to get the peak and 
duration values of transient overvoltages and the same data is 
used to train the ANN. Error is calculated by the difference of 

PSB output and ANN output. This error is used to adjust the 
weight of connection. Output values of the trained neural 
networks must be capable of computing the voltages with very 
good precision. Gradient-based training algorithms, like back 
propagation, are most commonly used for training procedures. 
They are not efficient due to the fact that the gradient vanishes 
at the solution. Hessian-based algorithms allow the network to 
learn more subtle features of a complicated mapping. The 
training process converges quickly as the solution is 
approached, because the Hessian does not vanish at the 
solution. To benefit from the advantages of Hessian based 
training, we focused on the Levenberg–Marquardt (LM) 
algorithm reported in [14]. 
 

 
 

Fig. 7 Proposed MLP-based ANN architecture 

 

 
 

Fig. 8 Supervised learning of ANN 

A. Levenberg-Marquardt (LM) Algorithm 

Suppose that we have a function )(xξ  which we want to 
minimize with respect to the parameter vector x, where 

 

 ∑
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Then the Marquardt–Levenberg modification to the Gauss–

Newton method is 
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Fig. 9 Single-line diagram of 39-bus New England system 
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The parameter µ is multiplied by some factor β whenever a 

step would result in an increased )(xξ . When a step 
reduces )(xξ , µ is divided by β. Notice that when µ is large the 
algorithm becomes steepest descent; while for small µ the 
algorithm becomes Gauss–Newton. One of the most critical 
problems in constructing the ANN is the choice of the number 
of hidden layers and the number of neurons. In this study, a 
MLP with two hidden layer and 10 hidden units per layer is 
found to be sufficient to get good accuracy and generalization 
for proposed scheme. A large number of testing data have been 
used to check the proposed solution in the most objective way 
at practically all possible parameters variation. Percentage 
error is calculated as:  

 

  100
PSB

PSBANN
error(%) ×

−
=                                       (3) 

V.   CASE STUDY 

In this section, the proposed algorithm is demonstrated for two 
case studies that are a portion of 39-bus New England test 
system. Single-line diagram of this system is shown in Fig. 9, 
and its parameters are listed in [15]. The simulations are 
undertaken on a single phase representation. 

A. Case 1 

Fig. 1 shows a one-line diagram of a portion of 39-bus New 
England test system which is in restorative state. The generator 
at bus 30 is a black-start unit. The load 1 shows cranking 
power of the later generator that must be restored by the 
transformer of bus 39. When the transformer is energized, 
harmonic overvoltages can be produced because the 
transformer is lightly loaded. Neural network is trained with 
the goal of mean square error (MSE) 1e-3. Fig. 10 shows the 
training of neural network. Results for a sample test data are 
presented in Table I and also shown in Figs. 11–12. 
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Fig. 10 Squared error against epoch curve 
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TABLE I CASE 1 SOME SAMPLE TESTING DATA AND OUTPUT 
 

errorT TANN TPSB errorV VANN VPSB Φ0 Lsat S.A. CLine L.L. S.V. 

2.0706 0.0838 0.0821 1.0708 1.3309 1.3168 0.8 0.34 18 1.237e-8 85 0.975 

1.4583 0.2838 0.288 0.0610 1.8031 1.802 0.8 0.26 18 1.237e-8 155 1.025 

1.9108 0.0308 0.0314 1.2607 1.4538 1.4357 0.5 0.24 81 1.224e-8 95 1.075 

1.9919 0.2253 0.2209 1.0445 1.7316 1.7137 0.1 0.32 333 1.249e-8 100 1 

2.0875 0.1027 0.1006 0.6315 1.3218 1.3302 0.5 0.32 135 1.274e-8 100 1 

3.0303 0.2278 0.2211 4.2845 1.6420 1.7155 0.3 0.34 315 1.249e-8 145 0.925 

1.7729 0.6372 0.6261 1.0717 2.0770 2.0995 0.8 0.3 18 1.237e-8 125 1.125 

0.9305 0.4365 0.4406 0.5704 1.6734 1.6830 0.7 0.3 99 1.274e-8 165 0.975 

3.1955 0.0515 0.0532 2.6852 1.3192 1.3556 0.8 0.42 18 1.237e-8 185 0.925 

0.6270 0.3804 0.3828 0.4997 1.6094 1.6175 0.3 0.32 63 1.224e-8 100 1 

2.0724 0.4489 0.4584 3.1689 1.5204 1.4737 0.1 0.36 9 1.199e-8 125 1.025 

2.4612 0.5152 0.5282 0.7297 1.3391 1.3294 0.3 0.32 81 1.298e-8 100 1 

1.6218 0.4073 0.4008 0.6436 1.7201 1.7091 0.8 0.42 18 1.237e-8 115 1.075 

4.1311 0.1462 0.1404 1.0941 1.5985 1.5812 0.1 0.4 225 1.298e-8 185 1.1 

1.8692 0.3488 0.3424 1.4119 1.5443 1.5228 0.7 0.32 27 1.199e-8 100 1 

S.V. = source voltage [p.u.], L.L. = line length [km], CLine = line capacitor [F/km], S.A. = switching angle [deg.], Lsat = saturation curve slope 
[p.u.], Φ0 = remanent flux [p.u.], errorV = voltage error [%] and errorT = duration time error [%]. 
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Fig. 11 ANN output: overvoltage peak and duration at bus 39 
simulated by ANN and PSB while line length 125 km, line capacitor 
1.237e-8, switching angle 18°, saturation curve slope 0.38 p.u. and 
remanent flux 0.8 p.u 

Table I contains the some sample result of test data of case 
1. Values in column VPSB are the absolute values of peak 
voltage at bus 39 calculated by PSB program where the VANN 
values are the values simulated by trained network. Also 

Values in column TPSB are the values of overvoltage duration 
calculated by PSB program and TANN values are the values 
simulated by trained network. 
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Fig. 12 ANN output: overvoltage peak and duration at bus 39 
simulated by ANN and PSB while source voltage 1 p.u., line length 
100 km, switching angle 45°, saturation curve slope 0.32 p.u. and 
remanent flux 0.3 p.u.      
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TABLE II CASE 2 SOME SAMPLE TESTING DATA AND OUTPUT 
 

errorT TANN TPSB errorV VANN VPSB Φ0 Lsat S.A. CLine L.L. S.V. 

1.5488 0.7737 0.7619 0.7927 1.7442 1.7582 0.8 0.3 18 1.237e-8 125 0.925 

0.7680 0.5248 0.5208 1.8502 2.0539 2.0927 0.8 0.38 18 1.237e-8 155 1.025 

1.7201 0.7451 0.7325 0.9127 1.5921 1.5777 0.5 0.26 45 1.199e-8 105 0.975 

0.2878 0.2425 0.2432 0.8339 1.8670 1.8827 0.7 0.34 9 1.224e-8 175 0.925 

1.0361 0.5071 0.5019 1.8813 1.5963 1.6269 0.5 0.32 27 1.298e-8 100 1 

0.5870 0.6097 0.6133 0.0460 1.7385 1.7393 0.3 0.32 81 1.249e-8 100 1 

1.3711 0.9094 0.8971 0.8575 2.0347 2.0174 0.5 0.3 45 1.298e-8 115 1.075 

1.1562 0.7499 0.7413 1.9865 1.6233 1.6562 0.8 0.38 63 1.274e-8 95 1.025 

1.2025 0.5891 0.5821 0.4278 2.2346 2.2442 0.3 0.26 81 1.199e-8 135 1.025 

1.0734 0.7532 0.7614 0.6086 1.6476 1.6577 0.7 0.32 9 1.224e-8 100 1 

1.8472 0.5238 0.5143 3.0251 2.1638 2.2313 0.8 0.26 18 1.237e-8 175 1.075 

1.3185 0.3458 0.3413 2.5402 1.9375 1.9880 0.1 0.38 27 1.249e-8 145 0.925 

0.8869 0.5923 0.5976 2.4724 1.8195 1.7756 0.8 0.34 81 1.274e-8 115 0.975 

0.9645 0.6909 0.6843 0.1384 1.6638 1.6615 0.1 0.32 45 1.199e-8 100 1 

1.1145 0.5146 0.5204 1.5593 1.4524 1.4301 0.1 0.38 63 1.249e-8 85 0.975 

S.V. = source voltage [p.u.], L.L. = line length [km], CLine = line capacitor [F/km], S.A. = switching angle [deg.], Lsat = saturation curve slope 
[p.u.], Φ0 = remanent flux [p.u.], errorV = voltage error [%] and errorT = duration time error [%]. 
 
 

Fig. 11 shows overvoltage peak and duration at bus 39 
against the source voltage and Fig. 12 shows overvoltage peak 
and duration at bus 39 against the line capacitor. 

A. Case 2 

As another example, the system in Fig. 13 is examined. It 
represents the same system as the one in Fig. 1, but a few 
restoration steps later. In the next step of the restoration, unit 
at bus 29 must be restarted. In order to provide cranking power 
for this unit, the transformer at bus 29 should be energized. In 
this condition, harmonic overvoltages can be produced 
because the load of the transformer is small. The various cases 
of transformer energization are taken into account and 
corresponding peak and duration overvoltages are computed 
from PSB program. Summary of few result are presented in 
Table II. It can be seen from the results that the ANN is able to 
learn the pattern and give results to acceptable accuracy. 

VI.   CONCLUSION 

A Neural Network approach to estimate the peak and 
duration overvoltages due to transformer  energization is 
proposed and implemented. The Levenberg–Marquardt second 
order training method has been adopted for obtaining small 
mean square error (MSE) without losing generalization 
capability of ANN. The results from this scheme are close to 
results from the conventional method and helpful in predicting 
the overvoltage of the other case studies within the range of 
training set. The proposed ANN approach is tested on a partial 
39-bus New England test system. The ANN application can be 
used an operator-training tool for estimation of temporary 
overvoltages during power system restoration. 
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