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Abstract - The efficient parallel computation of unstructured 

grid flow solver requires an adequate grid decomposition 
strategy because of its complex spatial data structure.  The 
difficulties of even and block-contiguous partitioning in 
frequently adapting unstructured Cartesian grid are overcome 
by implementing the 3D Hilbert space-filling-curve (SFC). 
Grids constructed by SFC in a parallel environment promise 
shorter inter-CPU communication time while maintaining 
perfect load balancing between CPUs.  The load imbalance due 
to local solution adaption is simply apportioned by re-
segmenting the curve into even pieces. The detailed structure of 
3D Hilbert SFC and the parallel computing efficiency results 
based on this grid partition method are also presented. 
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I.  INTRODUCTION 

N general, parallel algorithms are categorized into a s  
e i t h e r  task decomposition or data decomposition.  Task 

(or event) decomposition identifies tasks that can be executed 
concurrently.  Data (or domain) decomposition identifies 
local data for each task. Parallelization of a computational 
fluid dynamics solver (CFD) is achieved by f i r s t  
partitioning the computational domain into several smaller 
zones and distributing them to different CPUs.  Next, inter-
CPU boundary cell information is shared to update the 
state vectors of the boundary cells.  In this way, 
parallelization saves the wall clock calculation time by 
sharing the total CPU time by multiple processors.  

The two main conditions of parallel computing 
efficiency are load balancing and grid locality. Load 
balancing involves synchronizing the amount of CPU time 
per iteration between CPUs.  Grid locality involves 
reducing the communication time between CPUs by 
minimizing the inter-CPU boundary surface area. 
Satisfying these two conditions is not a challenging task in 
structured grids solver where the grids are continuously 
indexed by constant i,j,k lines. However, in contrast to 
structured grids, unstructured grids need a special 
consideration to meet these two conditions simultaneously 
because cell refinement distributions of unstructured grids 
are random and cell numbers are scattered. Therefore, 
unstructured grids need a domain decomposition strategy 
that reorganizes or pre-conditions the spatial data before the 
execution of parallel computing.  
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In fact, many modern unstructured grid solvers are 
already parallelized with adequate domain decomposition 
strategies suitable for their grid topologies and solver 
systems.  Well known NASA developed, tetrahedral based, 
unstructured grid solvers, FUN3D and USM3D, as well as 
many other academic unstructured grid solvers, utilize the 
MeTiS library for mesh partitioning [1]-[4]. MeTiS 
library is a set of serial programs for partitioning graphs, 
finite element meshes, and producing fill reducing orderings 
for sparse matrices. The algorithms implemented in MeTiS 
[5]-[7] are based on the multilevel recursive-bisection, multi-
level k-way, and multi-constraint partitioning schemes 
developed by George Karypis and his colleagues. 

The MeTiS library is known as the most efficient 
available mesh partitioning tool and is general enough to be 
applied to various type of unstructured graphs. However, if 
there are ways to construct the spatial data which do not 
require an iterative partitioning process, the method would 
be a lot more simplified.  Obviously but ironically, 
structured grids would be the perfect example for this kind 
of data structure. 

In order to achieve this kind of data structure within 
unstructured grids, researchers from a wide range of 
disciplines (i.e. image compression [8], vision sensing, 
ground mapping for GPS, motion picture [9], CAD [10],  
CFD [11]) recently have adopted the idea of a space-filling 
curve (SFC). 

A SFC is a one-dimensional curve that fills every node of 
a multidimensional space while preserving the nodal locality.  
Therefore, 2D or 3D spatial data can be stored in a single 
dimensional array and domain decomposition is easily 
achieved by chopping this array into even pieces. Also the 
curve itself can be decomposed into higher refinement levels  
so it is quite suitable for adaptive  grids as shown in the 
Fig. 2.  SPC’s were first described by the Italian 
mathematician, Giuseppe Peano [12].  A year later David 
Hilbert [13]   published a description of another such curve, 
perhaps the simplest to describe among all other SFCs. 
Several other versions were described by other mathematicians, 
such as Jordan, Morton, and Moore. While the Hilbert and 
Morton curves are most suitable for cubic shaped spatial data, 
the Hilbert curve has been chosen for the present work. It is 
known that Hilbert outperforms Morton in preserving 
locality [14]-[16] because the Hilbert curves always connect 
the closest two nodes but Morton does not in some cases.
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Fig. 1. Example of MeTiS Algorithm: The sequence of one level coarsening, finding a separator for the coarse graph, projecting 

the separator to the original graph, and refining the separator by dropping vertices [5] 

 
Therefore, grids constructed by the SFC for parallel 

environment promise short inter-CPU communication time 
by maintaining cells in contiguous blocks and also it is 
extremely simple to achieve good load balancing between CPUs 
because the SFC arranges the three dimensional data into a 
linear data format. This method is typically applicable to 
unstructured Cartesian grids, and in this work, it is 
implemented in NASCART-GT. 

NASCART-GT is a solution adaptive unstructured 
Cartesian grid based flow solver [17], [18]. NASCART-
GT’s governing equations are Euler, Euler + Integral 
boundary layer method, Navier-Stokes with two-equation 
(K-epsilon) turbulence model, and species conservation 
equations + vibrational energy equation for hypersonic 
reacting flows [19]. 

 
 

II.   DOMAIN DECOMPOSITION WITH 3D HILBERT SFC 

The Hilbert SFC has a very unique and organized 
internal structure. The SFC visiting millions of points in 
3D space with non-uniform refinement levels might look 
somewhat complicated but the 3D Hilbert SFC actually has 
only twenty four base elements (only four for 2D), regardless 
of how complex the curve is.  Each of these twenty four 
elements has eight nodal points at every turning location of 
the curve and any of these nodal points can decompose into 
higher refinement levels. Each nodal point corresponds to a 
cell center of the Cartesian grid. An important character of 
this curve is that each of these elements is always refined into 

the same combinations of sub-elements in the same order.  
In Fig. 4, the basic twenty four elements are shown. The 
numbers labeled for each element is arbitrarily assigned by 
the author and they can be differently represented in other 
sources. All elements have the exact same shape and are 
oriented in four directions for all six faces. The curve 
within each element has a direction and this direction has 
to be consistent because the cell numbers are assigned in that 
order. Table 1 shows its refinement combination and the 
number corresponding to each element number in Fig. 4. 
Using these elements and the refinement order, the 3D SFC 
can be constructed at multiple levels (Fig. 3). 

Once the SFC fills the space, domain decomposition can be 
performed by simply chopping the curve into even array 
pieces. The implementing code, NASCART-GT, contains 
some inactive cells during its array so only the active cells are 
counted in the array cutting process. 

As a 2D analog to the 3D curve, Fig. 5 shows how a 2D 
domain in decomposed and is evenly distributed to 4 CPUs 
by cell numbering based on the SFC. Each color represents a 
CPU index and the numbers inside cells represent the actual 
cell numbers in the computational array of the unstructured 
grid. The cell numbers written on the cell intersections 
represent the parent cells in a tree data structure. The parent 
cells do not participate in computation but are often used for 
unrefining the grids or for finding neighbor’s information. 
3D domain decomposition follows the exact same procedure 
as the 2D example, and the 2D example is shown simply 
because it is easy to be understood and illustrated. 
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Fig. 2.   2D  Hilbert(Top) and Morton(Bottom) Space Filling Curve [15] 

 

 
Fig. 3. 3D Space-Filling-Curve in Level 2 to 5 
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For the current work, a 3D Hilbert SFC is 
implemented to the initial grid generation routine, and the 
grid refinement and unrefinement routines of NASCART-
GT. It requires different methods for finding the neighbor 
pointer and for shifting cell numbers after the 
refinement/unrefinement process than the previous algorithm. 
Actually, three neighbor pointers out of six pointers can be 
trivially found by knowing the element number within 
which the point is located in. 

Once the domain is evenly decomposed to individual 
the CPUs, state vectors of CPU boundary cells should be 
communicated among the CPUs that share the CPU boundary 
surface. This communication is performed by using usual MPI 
routines, and detailed algorithms for the communication will 
not be discussed in this paper. 

 
 

III.  DESTINATION CELL FLAGGING TECHNIQUE 

Due to the inherent nature of unstructured grids, where 
the demarcation for splitting up the domain by the SFC for 
different CPUs need not involve smooth boundaries, it takes 
a searching procedure to identify these cells, based on their 
destination CPUs that they are to communicate with. This 
process can be somewhat intricate in terms of efficiently 
managing the computer memory when a communicating 
cell has multiple destinations such ‘A’, ‘B’, ‘C’, and ‘D’ 
cell in Fig. 6, which frequently happens in 3D. 

A simple way of flagging these cells would be by 
creating a memory slot of the size of the number of 
communicating cells times the number of communicating 
CPUs. However, it would waste a lot of available memory.  
Therefore, the present work suggests a simple technique to 
avoid this memory wasting problem as its idea is illustrated 
in Fig. 6. In the Fig., each color of the domains represents a 
CPU number, and the number inside of the cells represents the 
flagging integer to be stored in the memory. If a cell has 
multiple destinations, it uses three digits for each destination 
of the FORTRAN long integer data type, which has 
sixteen digits, so that it can store up to five destinations. 
As an example, if the state vector information of cell 
number 1937483 has to be sent to CPU2, CPU13, CPU14, 
CPU17, and CPU 31, then the representation of this flagging 
integer would be ”2,013,014,017,031”.  This technique can be 
flexibly expanded or contracted based on the total number 
of CPUs available and the size of the problem.  

 

IV.  PARALELLIZATION RESULTS 

Using the presented domain decomposition techniques, 
the partitioned domains are distributed to multiple CPUs. 
Fig. 7 show how domains are distributed to 8 CPUs while 
performing the solution adaption. Distinct colors in the 
figure represent the CPU number. The example shown in the 
figures are M∞=1.2 flow over a 3D sphere with 3 degree 
angle of attack. 

 

 
Fig. 4. 24 Base Elements of 3D Hilbert Curve 

 
As it is seen in the Fig. 7, CPU boundaries dynamically 

change as local region is finely refined due to solution 
adaption. 

Fig. 8 shows the parallelization efficiency results based 
on the presented domain de- composition method for the case 
of Fig. 7. The cluster used for the sample parallel speed up 
results has 16 AMD opteron248 processors with 1MB of L2 
cache each.  The speed up results without solution adaption 
show nearly 90% parallel speed up with 16 CPUS. The 
major sources of the 10% sublinear performance are the 
increase in communication data and also the fact that surface 
boundary cells require a little extra computational time than 
regular flow cells in Cartesian grids. The speed up results 
with solution adaption show only 57% parallel efficiency. 
This is expected because the current solution adaption and 
load balancing processes are not parallelized at this stage of 
the solver development. 
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Table 1.  Refinement Combination and Order 

 
 
 
 

Fig. 5. Domain Decomposition Process in 2D 
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Fig. 6. Illustration of Communicating Cell Flagging 

Technique 
 
 
In order to verify the validity of parallel schemes, the 

result from parallel run is compared with the serial run at a 
free stream Mach number of 0.85 over a sphere. Fig. 9 shows 
that the pressure coefficients obtained from the both cases are 
almost right on top of each other. 

 
Fig. 7.  NASCART-GT 3D Decomposition with 8 CPUs 

at Solution Adapted Grids over 3D Sphere 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
Fig. 8.  Current Parallel Speed Up vs. No. of CPUs 

 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 808



	  

	  

 
Fig. 9. Cp Distributions on sphere surface at M=0.85 
 
 

V. ONERA M6 VALIDATION 

An inviscid simulation of ONERA M6 wing case was 
performed as a test case for the current parallelization work. 
The case was run at a freestream Mach number of 0.84 and an 
angle-of-attack of α = 3.06o. Fig. 10 shows the solution 
adapted grids clustered around the transonic shock and the 
pressure contours. A total of 14 CPUs were used and the 
domain decomposition is shown in Fig. 11. Each color on the 
figure represents the CPU number from 1 to 14. In this 
figure, pressure contour lines are superimposed on the domain 
color map. The pressure contour results show effective and 
seamless communication across the CPU interfaces.  

Since this case was run in the inviscid mode, the 
location of transonic lambda shock is slightly different 
from the experimental data16 as shown in Fig. 12. Despite 
the use of solution adaption to well resolve the shock waves, 
perfect load balancing is achieved through use of the SFC. 

 

 
Fig. 10. Unstructured Cartesian grid and pressure contour over 

ONERA M6 wing. 
 

 
 

VI.  CONCLUSIONS 

This paper presented parallelization of the solution 
adaptive unstructured Cartesian grids flow solver using 3D 
Hilbert space filling curve (SFC). As expected, the domain 
decomposition strategy using the 3D Hilbert Space Filling 
Curve (SFC) provided evenly distributed and block 
contiguous grid partitioning. The master CPU redistributed 
the workload to each CPU after solution adaption so that 
load balancing is still maintained. Effective and seamless 
communication across CPU interfaces is demonstrated even 
when shock waves present. However, the grid generation part 
of NASCART-GT including the grid refinement routine 
was not parallelized in the present work. Therefore, it 
showed sub-linear speed up performance with solution 
adaption turned on, but the one without solution adaption 
showed almost a linear speed up. The recommendation for 
future work would be to parallelize the grid generation 
process to achieve linear speed up even with the solution 
adaption turned on. 
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