
	

	

Implementation of a 3D Hilbert SFC into a
Parallel Cartesian- Grid Flow Solver

Stephen M. Ruffin and Jinwook Lee*

Abstract - The efficient parallel computation of unstructured

grid flow solver requires an adequate grid decomposition
strategy because of its complex spatial data structure. The
difficulties of even and block-contiguous partitioning in
frequently adapting unstructured Cartesian grid are overcome
by implementing the 3D Hilbert space-filling-curve (SFC).
Grids constructed by SFC in a parallel environment promise
shorter inter-CPU communication time while maintaining
perfect load balancing between CPUs. The load imbalance due
to local solution adaption is simply apportioned by re-
segmenting the curve into even pieces. The detailed structure of
3D Hilbert SFC and the parallel computing efficiency results
based on this grid partition method are also presented.

Keywords – Cartesian Grid, Parallel Computing, Space Filling
Curves, SFC, Hilbert

I. INTRODUCTION

N general, parallel algorithms are categorized into a s
e i t h e r task decomposition or data decomposition. Task

(or event) decomposition identifies tasks that can be executed
concurrently. Data (or domain) decomposition identifies
local data for each task. Parallelization of a computational
fluid dynamics solver (CFD) is achieved by f i r s t
partitioning the computational domain into several smaller
zones and distributing them to different CPUs. Next, inter-
CPU boundary cell information is shared to update the
state vectors of the boundary cells. In this way,
parallelization saves the wall clock calculation time by
sharing the total CPU time by multiple processors.

The two main conditions of parallel computing
efficiency are load balancing and grid locality. Load
balancing involves synchronizing the amount of CPU time
per iteration between CPUs. Grid locality involves
reducing the communication time between CPUs by
minimizing the inter-CPU boundary surface area.
Satisfying these two conditions is not a challenging task in
structured grids solver where the grids are continuously
indexed by constant i,j,k lines. However, in contrast to
structured grids, unstructured grids need a special
consideration to meet these two conditions simultaneously
because cell refinement distributions of unstructured grids
are random and cell numbers are scattered. Therefore,
unstructured grids need a domain decomposition strategy
that reorganizes or pre-conditions the spatial data before the
execution of parallel computing.

 *Authors are with the Georgia Institute of Technology, School
of Aerospace Engineering, Atlanta, GA 30332-0150, USA.

In fact, many modern unstructured grid solvers are
already parallelized with adequate domain decomposition
strategies suitable for their grid topologies and solver
systems. Well known NASA developed, tetrahedral based,
unstructured grid solvers, FUN3D and USM3D, as well as
many other academic unstructured grid solvers, utilize the
MeTiS library for mesh partitioning [1]-[4]. MeTiS
library is a set of serial programs for partitioning graphs,
finite element meshes, and producing fill reducing orderings
for sparse matrices. The algorithms implemented in MeTiS
[5]-[7] are based on the multilevel recursive-bisection, multi-
level k-way, and multi-constraint partitioning schemes
developed by George Karypis and his colleagues.

The MeTiS library is known as the most efficient
available mesh partitioning tool and is general enough to be
applied to various type of unstructured graphs. However, if
there are ways to construct the spatial data which do not
require an iterative partitioning process, the method would
be a lot more simplified. Obviously but ironically,
structured grids would be the perfect example for this kind
of data structure.

In order to achieve this kind of data structure within
unstructured grids, researchers from a wide range of
disciplines (i.e. image compression [8], vision sensing,
ground mapping for GPS, motion picture [9], CAD [10],
CFD [11]) recently have adopted the idea of a space-filling
curve (SFC).

A SFC is a one-dimensional curve that fills every node of
a multidimensional space while preserving the nodal locality.
Therefore, 2D or 3D spatial data can be stored in a single
dimensional array and domain decomposition is easily
achieved by chopping this array into even pieces. Also the
curve itself can be decomposed into higher refinement levels
so it is quite suitable for adaptive grids as shown in the
Fig. 2. SPC’s were first described by the Italian
mathematician, Giuseppe Peano [12]. A year later David
Hilbert [13] published a description of another such curve,
perhaps the simplest to describe among all other SFCs.
Several other versions were described by other mathematicians,
such as Jordan, Morton, and Moore. While the Hilbert and
Morton curves are most suitable for cubic shaped spatial data,
the Hilbert curve has been chosen for the present work. It is
known that Hilbert outperforms Morton in preserving
locality [14]-[16] because the Hilbert curves always connect
the closest two nodes but Morton does not in some cases.

I

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 803

Fig. 1. Example of MeTiS Algorithm: The sequence of one level coarsening, finding a separator for the coarse graph, projecting

the separator to the original graph, and refining the separator by dropping vertices [5]

Therefore, grids constructed by the SFC for parallel

environment promise short inter-CPU communication time
by maintaining cells in contiguous blocks and also it is
extremely simple to achieve good load balancing between CPUs
because the SFC arranges the three dimensional data into a
linear data format. This method is typically applicable to
unstructured Cartesian grids, and in this work, it is
implemented in NASCART-GT.

NASCART-GT is a solution adaptive unstructured
Cartesian grid based flow solver [17], [18]. NASCART-
GT’s governing equations are Euler, Euler + Integral
boundary layer method, Navier-Stokes with two-equation
(K-epsilon) turbulence model, and species conservation
equations + vibrational energy equation for hypersonic
reacting flows [19].

II. DOMAIN DECOMPOSITION WITH 3D HILBERT SFC

The Hilbert SFC has a very unique and organized
internal structure. The SFC visiting millions of points in
3D space with non-uniform refinement levels might look
somewhat complicated but the 3D Hilbert SFC actually has
only twenty four base elements (only four for 2D), regardless
of how complex the curve is. Each of these twenty four
elements has eight nodal points at every turning location of
the curve and any of these nodal points can decompose into
higher refinement levels. Each nodal point corresponds to a
cell center of the Cartesian grid. An important character of
this curve is that each of these elements is always refined into

the same combinations of sub-elements in the same order.
In Fig. 4, the basic twenty four elements are shown. The
numbers labeled for each element is arbitrarily assigned by
the author and they can be differently represented in other
sources. All elements have the exact same shape and are
oriented in four directions for all six faces. The curve
within each element has a direction and this direction has
to be consistent because the cell numbers are assigned in that
order. Table 1 shows its refinement combination and the
number corresponding to each element number in Fig. 4.
Using these elements and the refinement order, the 3D SFC
can be constructed at multiple levels (Fig. 3).

Once the SFC fills the space, domain decomposition can be
performed by simply chopping the curve into even array
pieces. The implementing code, NASCART-GT, contains
some inactive cells during its array so only the active cells are
counted in the array cutting process.

As a 2D analog to the 3D curve, Fig. 5 shows how a 2D
domain in decomposed and is evenly distributed to 4 CPUs
by cell numbering based on the SFC. Each color represents a
CPU index and the numbers inside cells represent the actual
cell numbers in the computational array of the unstructured
grid. The cell numbers written on the cell intersections
represent the parent cells in a tree data structure. The parent
cells do not participate in computation but are often used for
unrefining the grids or for finding neighbor’s information.
3D domain decomposition follows the exact same procedure
as the 2D example, and the 2D example is shown simply
because it is easy to be understood and illustrated.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 804

Fig. 2. 2D Hilbert(Top) and Morton(Bottom) Space Filling Curve [15]

Fig. 3. 3D Space-Filling-Curve in Level 2 to 5

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 805

	

	

For the current work, a 3D Hilbert SFC is
implemented to the initial grid generation routine, and the
grid refinement and unrefinement routines of NASCART-
GT. It requires different methods for finding the neighbor
pointer and for shifting cell numbers after the
refinement/unrefinement process than the previous algorithm.
Actually, three neighbor pointers out of six pointers can be
trivially found by knowing the element number within
which the point is located in.

Once the domain is evenly decomposed to individual
the CPUs, state vectors of CPU boundary cells should be
communicated among the CPUs that share the CPU boundary
surface. This communication is performed by using usual MPI
routines, and detailed algorithms for the communication will
not be discussed in this paper.

III. DESTINATION CELL FLAGGING TECHNIQUE

Due to the inherent nature of unstructured grids, where
the demarcation for splitting up the domain by the SFC for
different CPUs need not involve smooth boundaries, it takes
a searching procedure to identify these cells, based on their
destination CPUs that they are to communicate with. This
process can be somewhat intricate in terms of efficiently
managing the computer memory when a communicating
cell has multiple destinations such ‘A’, ‘B’, ‘C’, and ‘D’
cell in Fig. 6, which frequently happens in 3D.

A simple way of flagging these cells would be by
creating a memory slot of the size of the number of
communicating cells times the number of communicating
CPUs. However, it would waste a lot of available memory.
Therefore, the present work suggests a simple technique to
avoid this memory wasting problem as its idea is illustrated
in Fig. 6. In the Fig., each color of the domains represents a
CPU number, and the number inside of the cells represents the
flagging integer to be stored in the memory. If a cell has
multiple destinations, it uses three digits for each destination
of the FORTRAN long integer data type, which has
sixteen digits, so that it can store up to five destinations.
As an example, if the state vector information of cell
number 1937483 has to be sent to CPU2, CPU13, CPU14,
CPU17, and CPU 31, then the representation of this flagging
integer would be ”2,013,014,017,031”. This technique can be
flexibly expanded or contracted based on the total number
of CPUs available and the size of the problem.

IV. PARALELLIZATION RESULTS

Using the presented domain decomposition techniques,
the partitioned domains are distributed to multiple CPUs.
Fig. 7 show how domains are distributed to 8 CPUs while
performing the solution adaption. Distinct colors in the
figure represent the CPU number. The example shown in the
figures are M∞=1.2 flow over a 3D sphere with 3 degree
angle of attack.

Fig. 4. 24 Base Elements of 3D Hilbert Curve

As it is seen in the Fig. 7, CPU boundaries dynamically

change as local region is finely refined due to solution
adaption.

Fig. 8 shows the parallelization efficiency results based
on the presented domain de- composition method for the case
of Fig. 7. The cluster used for the sample parallel speed up
results has 16 AMD opteron248 processors with 1MB of L2
cache each. The speed up results without solution adaption
show nearly 90% parallel speed up with 16 CPUS. The
major sources of the 10% sublinear performance are the
increase in communication data and also the fact that surface
boundary cells require a little extra computational time than
regular flow cells in Cartesian grids. The speed up results
with solution adaption show only 57% parallel efficiency.
This is expected because the current solution adaption and
load balancing processes are not parallelized at this stage of
the solver development.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 806

	

	

Table 1. Refinement Combination and Order

Fig. 5. Domain Decomposition Process in 2D

.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 807

	

	

Fig. 6. Illustration of Communicating Cell Flagging

Technique

In order to verify the validity of parallel schemes, the

result from parallel run is compared with the serial run at a
free stream Mach number of 0.85 over a sphere. Fig. 9 shows
that the pressure coefficients obtained from the both cases are
almost right on top of each other.

Fig. 7. NASCART-GT 3D Decomposition with 8 CPUs

at Solution Adapted Grids over 3D Sphere

Fig. 8. Current Parallel Speed Up vs. No. of CPUs

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 808

	

	

Fig. 9. Cp Distributions on sphere surface at M=0.85

V. ONERA M6 VALIDATION

An inviscid simulation of ONERA M6 wing case was
performed as a test case for the current parallelization work.
The case was run at a freestream Mach number of 0.84 and an
angle-of-attack of α = 3.06o. Fig. 10 shows the solution
adapted grids clustered around the transonic shock and the
pressure contours. A total of 14 CPUs were used and the
domain decomposition is shown in Fig. 11. Each color on the
figure represents the CPU number from 1 to 14. In this
figure, pressure contour lines are superimposed on the domain
color map. The pressure contour results show effective and
seamless communication across the CPU interfaces.

Since this case was run in the inviscid mode, the
location of transonic lambda shock is slightly different
from the experimental data16 as shown in Fig. 12. Despite
the use of solution adaption to well resolve the shock waves,
perfect load balancing is achieved through use of the SFC.

Fig. 10. Unstructured Cartesian grid and pressure contour over

ONERA M6 wing.

VI. CONCLUSIONS

This paper presented parallelization of the solution
adaptive unstructured Cartesian grids flow solver using 3D
Hilbert space filling curve (SFC). As expected, the domain
decomposition strategy using the 3D Hilbert Space Filling
Curve (SFC) provided evenly distributed and block
contiguous grid partitioning. The master CPU redistributed
the workload to each CPU after solution adaption so that
load balancing is still maintained. Effective and seamless
communication across CPU interfaces is demonstrated even
when shock waves present. However, the grid generation part
of NASCART-GT including the grid refinement routine
was not parallelized in the present work. Therefore, it
showed sub-linear speed up performance with solution
adaption turned on, but the one without solution adaption
showed almost a linear speed up. The recommendation for
future work would be to parallelize the grid generation
process to achieve linear speed up even with the solution
adaption turned on.

REFERENCES

[1] Bhat, M. K. and Parikh, P., “Parallel Implementation of an
Unstructured Grid-Based Navier-Stokes Solver,” AIAA Paper 99–
16526 , Jan 1999.

[2] Nompelis, I., Drayna, T. W., and Candler, G. V., “A Parallel
Unstructured Implicit Solver for Hypersonic Reacting Flow
Simulation,” AIAA Paper 2005–4867, Jun 2005.

[3] Parikh, P., “Application of a Scalable, Parallel, Unstructured Grid-
Based Navier-Stokes Solver,” AIAA Paper 2001–2584 , Jun 2001.

[4] Park, Y. M. and Kown, O. J., “A Parallel Unstructured Dynamic
Mesh Adaptation Algorithm for 3-D Unsteady Flows,”
International Journal for Numerical Methods in Fluids , Vol. 48,
No. 6, June 2005, pp. 671–690.

[5] Karypis, G. and Kumar, V., “Analysis of multilevel graph
partitioning,” Technical Report TR 95-037, Department of
Computer Science, University of Minnesota, 1995, Also available
on WWW at URL
http://www.cs.umn.edu/users/kumar/papers/mlevel analysis.ps.

[6] Karypis, G. and Kumar, V., “A fast and high quality multilevel
scheme for partitioning irregular graphs,” Technical Report TR 95-
035, Department of Computer Science, University of Minnesota,
1995, Also available on WWW at URL
http://www.cs.umn.edu/users/kumar/papers/mlevel serial.ps.

[7] Karypis, G. and Kumar, V., “Unstructured graph partitioning
and sparse matrix ordering system,” Tech. rep., Department of
Computer Science, University of Minnesota, 1995, Available on
WWW at URL
http://www.cs.umn.edu/users/kumar/metis/metis.html.

[8] Pajarola, R. and Widmayer, P., “An Image Compression Method for
Spatial Search,” IEEE TRANS- ACTIONS ON IMAGE
PROCESSING , Vol. 9, No. 3, 2003.

[9] Mitchell, L. K., “Techniques for Artistically Rendering Space-
Filling Curves,” Associate Professor of University of Advancing
Technology.

[10] Hill, D. C., “Cartesian Mesh Generation and Highly-Compressed
Storage Using Hilbert Codes,” AIAA Paper 2004–240, Jan 2004.

[11] Aftosmis, M. J., Berger, M. J., and Murman, S. M., “Applications of
Space-Filling-Curves to Cartesian Methods for CFD,” AIAA Paper
2004–1232 , Jan 2004.
Peano, G., “Sur une Courbe qui Remplit Toute une Aire Plane,”

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 809

	

	

Fig. 11. Domain Decomposition over OneraM6 wing. Left: Hub, Center: Mid-Span, Right: Tip

Fig. 12. Pressure coefficient on surface of ONERA M6 wing.

[12] Math. Ann., Vol. 36, 1890, pp. 157–160.
[13] Hilbert, G., “U ber die stetige Abbildung einer Linie auf

Flachenstu ck,” Math. Ann., Vol. 38, 1891, pp. 459–460.
[14] Jagadish, H. V., “Linear Clustering of Objects with Multiple

Attributes,” Proc. ACM SIGMOD Conf., May 1990, pp. 332–342.
[15] Moon, B, Jagadish, H. V., Faloutsos, C., and Saltz, J. H.,

“Analysis of the Clustering Properties of the Hilbert Space-Filling
Curve,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 12, No. 1, Jan 2001, pp. 459–460.

[16] Schmitt, V. and Charpin, F., “Pressure Distributions on the
ONERA-M6-Wing at Transonic Mach Numbers,” AGARD
Advisory Report 138, North Atlantic Treaty Organization, May
1979.

[17] Ruffin, S.M., Lee, J.D., “Adaptation of a k-Epsilon Model to a
Cartesian Grid Based Methodology,” International Journal of
Mathematical Models and Methods in Applied Sciences, Vol. 3, No.
1, 2009.

[18] Lee J.D., “Development of an Efficient Viscous Approach in a
Cartesian Grid Framework And Application To Rotor-Fuselage
Interaction,” PhD Dissertation, Georgia Tech, 2006.

[19] Lee, Jinwook, Orsini, A., and Ruffin, S.M., “Unstructured Cartesian-
Grid Methodology for Non-equilibrium Hypersonic Flows,” Journal
of Thermophysics and Heat Transfer, Vol. 24, No. 1, Jan-Mar 2010.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 6, 2012 810

