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I. INTRODUCTION

The partial differential equations govern many phenomena

that happen in the nature and they are indispensable for the

advance of the engineering and technology. Essentially all

the fundamental equations are nonlinear and, in general, such

nonlinear equations are often very difficult to solve explicitly.

Symmetry group techniques provide methods for obtaining

solutions of these equations. These methods have several

applications, for example, in the study of nonlinear partial

differential equations that admit conservation laws which arise

in many disciplines of the applied sciences.

Benjamin et al [3] proposed the regularised long wave

(RLW) equation, or Benjamin-Bona-Mahony equation (BBM),

ut + ux + uux − uxxt = 0,

as an alternative model to the Korteweg–de Vries equation for

the long wave motion in nonlinear dispersive systems. These

authors argued that both equations are valid at the same level

of approximation, but that BBM equation does have some

advantages over the KdV equation from the computational

mathematics viewpoint.

In order to understand the role of nonlinear dispersion in

the formation of patterns in an undular bore, Yalong [31]

introduced and studied a family of BBM-like equations with

nonlinear dispersion, B(m,n) equations

ut + (um)x − (un)xxt = 0, m, n > 1.

In [31], the exact solitary-wave solutions with compact sup-

port and exact special solutions with solitary patterns of the

equations were derived.

In [26] introduced the family of BBM equation with strong

nonlinear dispersive B(m,n) equation:

ut + ux + a (um)x + (un)xxt = 0,
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by using an algebraic method the authors obtained solitary

pattern solutions. The case n = 1 and m = 2 corresponds

to the BBM equation, [3]. This equation is an alternative

to the Kortewegde Vries (KdV) equation and describes the

unidirectional propagation of small-amplitude long waves on

the surface of water in a channel. The BBM equation is

not only convenient for shallow water waves but also for

hydromagnetic and acoustic waves and therefore it has some

advantages compared with the KdV equation.

Clarkson [13] showed that the similarity reduction of the

equation (1) for m = 3, n = 1 and a = 1
3 , obtained by using

the classical Lie group method reduces the partial differential

equation (PDE) to an ordinary differential equation (ODE) of

Painlevé type; whereas the PDE doesn’t possess the Painlevé

property for PDEs as defined by Weiss et al [27]. The author

proved that the only non-constant similarity reductions of this

equation obtainable either using the classical Lie method or

the direct method, due to Clarkson and Kruskal [14], are the

travelling wave solutions.

Conservation laws are fundamental laws of physics that

maintain that a certain quantity will not change in time during

physical processes. Nonlinear partial differential equations that

admit conservation laws which arise in many disciplines of the

applied sciences.

The investigation of conservation laws of the Korteveg-

de Vries equation was the starting point of the discovery

of a number of techniques to solve evolutionary equations

(Miura transformation, Lax pair, inverse scattering technique,

bi-Hamiltonian structures). The existence of a large number

of conservation laws of a PDE is a strong indication of its

integrability [33].

The knowledge of conservation laws is useful in the nu-

merical integration of PDEs, for example, to control numerical

errors. Numerical experiments first carried out by Abdulloev et

a1 (1976) and then by others (see Bona et a1 1983) show that

the BBM equation admits soliton solutions whose interaction

is inelastic though close to elastic. Considering the BBM

equation as a “deformation” of the Kdv equation, we see that

the latter displays surprising stability of its seemingly fragile

mathematical properties. Therefore a natural question arises as

to whether the behaviour of the solutions of the BBM equation

can be explained in terms of conservation laws.

Below, if the BBM equation is written as uxxt = ut − uux

(it takes this form after replacing u by −1− u in the original

version). Olver (1979) showed that this equation has no other

conserved densities depending only on x, u, ux, uxx, . . . than
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those indicated by Benjamin et a1 (1972): u (mass), (u2 +
u2
x)/2 (energy), and u3/3 (momentum). This result, however,

does not imply that the BBM equation is not a completely

integrable Hamiltonian system, since there might exist other

conserved densities which depend also on t and t-derivatives

of u and ux. Note that from the point of view adopted by Olver

these conserved densities, if they exist, can be considered also

as functions of x, u andx-derivatives of u which are however

non-local, since, for examples, ut = (1−D2
x)

−1(uux). In [15]

the authors proved that the BBM equation does not possess

further conservation laws of this kind.

In [22] (see also [21]) a general theorem on conservation

laws for arbitrary differential equation which does not require

the existence of Lagrangians has been proved. This new

theorem is based on the concept of adjoint equations for

non-linear equations. There are many equations with physical

significance are not self-adjoint. Therefore one cannot elim-

inate the nonlocal variables from conservation laws of these

equations. In [21] Ibragimov generalized the concept of self-

adjoint equations by introducing the definition of quasi-self-

adjoint equations.

In this paper we study the Lie symmetries of equation

ut + bux + a (um)x + (un)xxt = 0, (1)

where a, b are constants and m or n 6= 1, by using the

Lie method of infinitesimals. We determine, for equation (1),

the subclasses of equations which are self-adjoint. We also

determine, by using the notation and techniques of the work

[21], [22], some nontrivial conservation laws for equation (1).

II. LIE SYMMETRIES

To apply the classical method to Eq. (1) we consider the

one-parameter Lie group of infinitesimal transformations in

(x, t, u) given by

x∗ = x+ ǫξ(x, t, u) +O(ǫ2),
t∗ = t+ ǫτ(x, t, u) +O(ǫ2),
u∗ = u+ ǫη(x, t, u) +O(ǫ2),

where ǫ is the group parameter. We require that this transfor-

mation leaves invariant the set of solutions of (1). This yields

to an overdetermined, linear system of equations for the in-

finitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u). The associated

Lie algebra of infinitesimal symmetries is the set of vector

fields of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (2)

Invariance of Eq. (1) under a Lie group of point transforma-

tions with infinitesimal generator (2) leads to a set of twenty

six determining equations. Solving this system we obtain

ξ = ξ(x), τ = τ(t) and η =
α(x, t)

un−1
− k1 u

2n
+

ξx u

2n
where ξ,

τ and α are related by the following conditions:

ξxxxn
2 u2n + k1 nun+1 + 3 ξxnun+1 − k1 u

n+1

+ξxu
n+1 − 2αn2 u+ 2αnu = 0,

a ξxxmum+n + 2 aαxnmum + b ξxxu
n+1

+2αtxxn
2 un + 2αxb n u+ 2αtnu = 0,

−a k1 m
2 um+n + a ξxm

2 um+n + a k1 nmum+n

+2 a τtnmum+n + a ξxnmum+n

+2 aαnm2 um − 2 aαn2 mum + b k1 nun+1

+2 bτtnun+1

+b ξx nun+1 − b k1 u
n+1 + bξxu

n+1

−2αb n2 u+ 2αb n u = 0.

The solutions of this system depend on the parameters of

Eq. (1). If a and b are arbitrary constants, the only symmetries

admitted by (1) are the group of space and time translations,

which are defined by the infinitesimal generators

v1 = ∂x, v2 = ∂t.

For λv1 + v2 the similarity variables and similarity solution

are:

z = x− λt

u = h(z) (3)

where h(z) satisfies

λ(hn)′′′ + λh′ − amhm−1h′ − bh′ = 0.

This equation, after integrating once with respect to z, can be

reduced to

λ (hn)
′′
= ahm + (b− λ)h+ k1, (4)

where k1 is an integrating constant.

The cases for which Eq.(1) with b 6= 0 have extra symmetries

have been studied by Bruzón, Gandarias and Camacho in [8]:

Table 1: Symmetries for a Generalization of a Family of BBM Equations.

i constants V i

3
v
i
∞

1 a · (m− 1) = 0 (n− 1)x∂x + (n− 1)t∂t + 2u∂u

2 m = 1, a = −b (n− 1)x∂x + 2u∂u τ(t)∂t

3 m = 2, n = 1 −t∂t +
(

u+ b

2a

)

∂u

4 m = 1, n = 1

2
−x∂x + 4u∂u τ(t)∂t

where τ(t) is arbitrary function.

III. TRAVELING WAVE SOLUTIONS

Wang et al [32] introduced a method which is called the
G′

G
-expansion method to look for travelling wave solutions of

nonlinear evolution equations. The main ideas of the proposed

method are that the travelling wave solutions of a nonlinear

evolution equation can be expressed by a polynomial in G′

G
,

where G = G(z) satisfies the linear second order ordinary

differential equation (ODE) G′′(z)+ωG′(z)+ζG(z) = 0, the

degree of the polynomial can be determined by considering the

homogeneous balance between the highest order derivatives
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and nonlinear terms appearing in a given nonlinear evolution

equation, and the coefficients of the polynomial can be ob-

tained by solving a set of algebraic equations resulted from

the process of using the proposed method.

In [7] we consider the BBM equation (1) with n = 1,m = 2
and look for the travelling wave solution of this equation. In

this case the reduced equation is

λh′′ = ah2 + (b− λ)h+ k1. (5)

We apply the G′

G
-expansion method to equation (5). We

suppose that solutions can be expressed by a polynomial in
G′

G
in the form

h =

k
∑

i=0

ai

(

G′

G

)i

, (6)

where G = G(z) satisfies the linear second order ODE

G′′(z) + αG(z) + βG = 0, (7)

ai, i = 0, . . . , k, α and β are constants to be determined later,

ak 6= 0.

General solutions of equation (7) are:

• If α2 − 4β > 0,

G(z) = c1 cosh
(

zα
2 − 1

2z
√

α2 − 4β
)

+c2 cosh
(

αz
2 + 1

2

√

α2 − 4βz
)

−c1 sinh
(

zα
2 − 1

2z
√

α2 − 4β
)

−c2 sinh
(

αz
2 + 1

2

√

α2 − 4βz
)

.

(8)

• If α2 − 4β < 0,

G(z) =
(

c2 cos
(

1
2z

√

4β − α2
)

+c1 sin
(

1
2z

√

4β − α2
))

(

cosh
(

zα
2

)

− sinh
(

zα
2

))

.

(9)

• If α2 = 4β,

G(z) = (c2 + c1z)
(

cosh
(zα

2

)

− sinh
(zα

2

))

. (10)

By using (6) and (7) we obtain

h2 = a2k

(

G′

G

)2k

+ · · · (11)

h′′ = k(k + 1)ak

(

G′

G

)k+2

+ · · · (12)

Considering the homogeneous balance between h′′ and h2 in

(5), based on (11) and (12) we require that k+2 = 2k ⇒ k =
2, so we can write (6) as

h = a0 + a1

(

G′

G

)

+ a2

(

G′

G

)2

, (13)

a2 6= 0.

Substituting the general solutions of (7) into (13) we obtain:

From (8),

h1(z) =
a2α

2

4 − a1α
2 + a0+√

α2−4β

8 (−4a2α+ 4a1)H1

+α2−4β
8 (+2a2) (H1)

2 ,

(14)

where H1(z) =
c2 cosh( 1

2

√
α2−4βz)+c1 sinh( 1

2

√
α2−4βz)

c1 cosh( 1

2

√
α2−4βz)+c2 sinh( 1

2

√
α2−4βz)

.

From (9),

h2(z) =
a2α

2

4 − a1α
2 + a0

+ 2a2

8

(

4β − α2
)

(H2)
2

+−4a2α+4a1

8

√

4β − α2 (H2)
3 ,

(15)

where H2(z) =
c2 cos

(

1

2
z
√

4β−α2

)

+c1 sin
(

1

2
z
√

4β−α2

)

c1 cos
(

1

2
z
√

4β−α2

)

−c2 sin
(

1

2
z
√

4β−α2

) .

From (10),

h3(z) =
a2α

2

4 − a1α
2 + a0 +

(2a2)c
2

1

2(c1z+c2)2

+ (−4a2α+4a1)c1
4(c1z+c2)

.
(16)

In the following we determine ai, i = 0, . . . , 2. From (13)

we calculate h2 and h′′ and we substitute this expression in

equation (5). Equating each coefficient of
(

G′

G

)i

, i = 0, . . . , 2

to zero, yields a set of simultaneous algebraic equations for

ai, α, β, λ and k1. Solving this system, we obtain the set of

solutions:

a0 =
λα2 − b+ 8βλ+ λ

2a
, (17)

a1 =
6αλ

a
, (18)

a2 =
6λ

a
, (19)

k1 = −
(

λα2 + b− 4βλ− λ
)

4a
(

λα2 − b− 4βλ+ λ
)

4a
. (20)

Substituting (17)-(19) into (14)-(16) we have three types of

travelling wave solutions of the BBM equation (1) with n = 1
and m = 2:

If α2 − 4β > 0:

u1(x, t) =
3(α2−4β)λ

2a F 2
1 − 2λα2+b−8βλ−λ

2a , (21)

where

F1 =
c2 cosh

(

1

2

√
α2−4β(x−λt)

)

+c1 sinh
(

1

2

√
α2−4β(x−λt)

)

c1 cosh
(

1

2

√
α2−4β(x−λt)

)

+c2 sinh
(

1

2

√
α2−4β(x−λt)

) .

If 4β − α2 > 0:

u2(x, t) =
3(4β−α2)λ

2a F 2
2 − 2λα2+b−8βλ−λ

2a , (22)

where

F2 =
c1 cos

(

1

2

√
4β−α2(x−λt)

)

−c2 sin
(

1

2

√
4β−α2(x−λt)

)

c2 cos
(

1

2

√
4β−α2(x−λt)

)

+c1 sin
(

1

2

√
4β−α2(x−λt)

) .

If α2 = 4β:

u3(x, t) =
12λc2

1

2a(c2+c1(x−λt))2 + λ−b
2a . (23)

IV. EXACT SOLUTIONS

By making the change of variables

hn = y (24)

equation (4) becomes

λy′′ = ay
m
n + (b− λ)y

1

n + k1. (25)
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After multiplying (25) by 2y′ and integrating once with respect

to z we get

λ(y′)2 =
2an

m+ n
y

m
n
+1 +

2(b− λ)n

n+ 1
y

1

n
+1 +2k1y+ k2, (26)

where k2 is an integrating constant.

Let us assume that equation (26) has solution of the form

y(z) = αfβ(z), (27)

where α and β are parameters to be determined later.

By substituting (27) into (26) we obtain

(f ′)2 = 2an
(m+n)λαβ2 f

βm

n
−β+2

+ 2(b−λ)n
(n+1)λαβ2 f

β

n
−β+2

+ 2k1

αβ2λ
f−β+2

+ k2

α2β2λ
f−2β+2.

(28)

In the following we will determine the exponents and coeffi-

cients of equations (28). So that equation (28) is solvable in

terms of Jacobi elliptic function, that is equation (28) becomes

(f ′)2 = r + pf2 + qf4, (29)

where r, p and q are constants.

Comparing the exponents and the coefficients of equations

(28) and (29) we distinguish the following cases:

Case 1: If k1 = 0 and k2 = 0.

Subcase 1.1: β =
2

m− 1
, n = 1 and m 6= 1.

α =
(b− λ)(m− 1)2

4pλ
, a =

(m+ 1)q(b− λ)

2p
.

Subcase 1.2: β =
2m

1−m
and n = m.

α =
(b− λ)(m − 1)2

2m(m+ 1)qλ
, a =

2mp(b− λ)

(m+ 1)q
.

Subcase 1.3: β =
2n

n− 1
and n = m.

α =
(b− λ)(m − 1)2

2m(m+ 1)rλ
, a =

2mp(b− λ)

(m+ 1)r
.

Subcase 1.4: β =
2n

n− 1
and m = 2n− 1.

α =
(b− λ)(n − 1)2

2n(n+ 1)rλ
, a =

(3n− 1)q(b− λ)

(n+ 1)r
.

Subcase 1.5: β =
2

1−m
and n = 1.

α =
(b− λ)(m − 1)2

4pλ
, a =

(m+ 1)r(b − λ)

2p
.

Subcase 1.6: β =
2n

n− 1
and m = 2n− 1.

α =
(n− 1)2(b− λ)

2n(n+ 1)pλ
, a =

(3n− 1)q(b− λ)

(n+ 1)pλ
.

Subcase 1.7: λ = b, β is arbitrary and m = n.

α is arbitrary, a = αβ2pb.

Subcase 1.8: λ = b, β = 2n
m−n

.

α =
a(n−m)2

2bn(n+m)q
.

Subcase 1.9: λ = b, β = 2n
n−m

.

α =
a(n−m)2

2bn(n+m)r
.

Case 2: If k1 6= 0 and k2 = 0.

Subcase 2.1: β = 2, n = 1 and m = 2.

α =
k1
2rλ

, b =
2k1p

r
+ λ, a =

3qk1
r

.

Subcase 2.2: β = −2, n = 1 and m = 2.

α =
k1
2qλ

, b =
2k1p

q
+ λ, a =

3k1r

q
.

Subcase 2.3: β = −2, n = m = 1
2 .

α =
k1
2qλ

, b =
3k1r

q
+ λ, a =

2k1p

q
.

Subcase 2.4: β = 2, n = m = 1
2 .

α =
k1
2rλ

, b =
3k1q

r
+ λ, a =

2k1p

r
.

Case 3: If k1 = 0 and k2 6= 0.

Subcase 3.1: β = 1, n = 1 and m = 3.

α = ±
(

k2
rλ

)
1

2

, b = λ

[

1± p

(

k2
rλ

)
1

2

]

,

a = ±2qλ

(

k2
rλ

)
1

2

.

Subcase 3.2: β = −1, n = 1 and m = 3.

α = ±
(

k2
qλ

)
1

2

, b = λ

[

1± p

(

k2
qλ

)
1

2

]

,

a = ±2rλ

(

k2
qλ

)
1

2

.

Subcase 3.3: β = 1, n = m = 1
3 .

α = ±
(

k2
rλ

)
1

2

, b = λ

[

1± 2q

(

k2
rλ

)
1

2

]

,

a = ±pλ

(

k2
rλ

)
1

2

.

Subcase 3.4: β = −1, n = m = 1
3 .

α = ±
(

k2
qλ

)
1

2

, b = λ

[

1± 2r

(

k2
qλ

)
1

2

]

,
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a = ±pλ

(

k2
qλ

)
1

2

.

Since in all these cases, r, p and q are arbitrary constants,

we may choose them properly such that the corresponding

solution f of the ODE (29) are expressed in terms of the

Jacobian elliptic functions. In the following we present some

exact solutions.

• If r = 1, p = −(1 + c2), q = c2, then

y = α (sn(z|c))β ,

where sn(z|c) is the Jacobi elliptic function, is a solution of

equation (26), [2].

From Subcase 3.1 for λ = k2, n = 1, m = 3, a = 2k2c
2 and

b = −k2c
2 we obtain the particular solution of equation (26)

y = sn(z|c).

From (24) and (3) for c = 1, n = 1, m = 3 and a = −2b we

obtain the exact solution of (1) given by

u(x, t) = tanh(x+ bt). (30)

If b = − 1
2 , (30) describes a kink solution (see Fig.1).
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10x

Fig. 1. Solution (30) for b = −

1

2
.

From Subcase 2.4 for λ = k1

2 , a = −2k1(c
2 + 1) and b =

k1(3c
2 + 1

2 ) we obtain the solution of equation (26)

y = sn2(z|c).

From (24) and (3), for c = 0, m = n = 1
2 and a = −4b, to

yield

u(x, t) = sin4(x− bt). (31)

• If r = 1−c2

4 , p = 1+c2

2 , q = 1−c2

4 , f = nc(z|c)± sc(z|c) is

solution of equation (29), [2]. Then

y = α [nc(z|c)± sc(z|c)]β

is solution of equation (26), where α and β are arbitrary

functions, nc(z|c) = 1
cn(z|c) , sc(z|c) = sn(z|c)

cn(z|c) where sn(z|c)
and cn(z|c) are the first and the second Jacobian elliptic

functions, respectively (the elliptic sine and the elliptic cosine).

From Subcase 1.7 for λ = b, a = bβ2 and n = m we obtain

the particular solution of equation (26)

y = [nc(z|1)± sc(z|1)]β .

From (24) and (3) if m = n and a = bβ2 we obtain the

solution of equation (1)

u(x, t) = [cosh(x − bt)± sinh(x− bt)]
β
. (32)

• If p = 1 and q = −1,

y = α (cn(z|1))β

is solution of equation (26).

From subcase 1.1 for λ =
b(m− 1)2

m2 − 2m+ 5
, n = 1 and a =

− 2b(m+ 1)

m2 − 2m+ 5
, the solution of equation (26) is

y = sech
2

m−1 (z).

From (24) and (3) we obtain the solution of equation (1)

u(x, t) = sech
2

m−1 (x− λt) . (33)

For m = 2 and λ = 1, (33) describes a soliton moving along

a line with constant velocity (see Fig.2).
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Fig. 2. Solution (33) for m = 2, λ = 1 and a = −6.

Solutions (30) and (33) were first found in [26]. As far as

we know, solutions (31) and (32) are new and have not been

previously described in the literature.

V. DETERMINATION OF SELF-ADJOINTNESS EQUATIONS

Given (1+1)-dimensional evolution equation of order n,

F ≡ F (x, u,u(1)(x), . . . ,u(n)(x)) = 0, where x = (x, t) are

independent variables, u = u(x) is a dependent variable and

u
(l)(x) denotes the set of all the partial derivatives of order l

of u; a conservation law is of the form

Dt ρ+Dx J = 0,

where ρ is the conserved density, J is the associated flux,

DxJ =
∂J

∂x
+

N
∑

k=0

∂J

∂ukx

u(k+1)x, N is the order of J , and

Dtρ =
∂ρ

∂t
+

M
∑

k=0

∂ρ

∂ukx

Dk
xut, with M the order of ρ.

In [22] Ibragimov introduced a new theorem. The theorem

is valid for any system of differential equations where the

number of equations is equal to the number of dependent

variables. The new theorem does not require existence of a

Lagrangian and this theorem is based on a concept of an

adjoint equation for non-linear equations.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 6, 2012 531



Given

F = ut + bux + a (um)x + (un)xxt ,

the adjoint equation F ∗ = 0 is defined

F ∗ ≡ δ

δu
(vF ) = 0,

where v = v(x, t) is a new dependent variable and the

variational derivative is

δ

δu
=

∂

∂u
−Di

(

∂

∂ui

)

+DiDk

(

∂

∂uik

)

−DiDjDk

(

∂

∂uijk

)

+ · · ·

We obtain F ∗. Setting v = u, F ∗ ≡ −amum−1 ux − b ux −
nun−1 ut x x−ut. Comparing F ∗ with F we obtain that F ∗ =
λF if λ = −1 and n = 1 and, consequently, we get the

following result:

Proposition. Equation F ≡ ut+bux+a (um)x+(un)xxt = 0
is self-adjoint if n = 1, i.e. when it has the following form

F = ut + bux + a (um)x + uxxt.

VI. CONSERVATION LAWS

Consider now the nonlocal conservation theorem method

given by Ibragimov [21], [22]. The formal Lagragian is

L = v(ut + bux + a
(

u2
)

x
+ uxxt). (34)

Conservation law Dt(C
1)+Dx(C

2) = 0 corresponding to an

operator

v = ξ1∂t + ξ2∂x+ η∂u

is given by

C1 = ξ1L+W (
∂L
∂ut

) +Dxx

(

∂L
∂utxx

)

+Dx(W )

(

−Dx

(

∂L
∂utxx

))

+Dxx(W )
∂L

∂utxx

C2 = ξ2L+W

[

∂L
∂ux

−Dx

(

∂L
∂uxx

)

+Dxt

(

∂L
∂uxxt

)

+Dxt

(

∂L
∂uxtx

)

+Dxx

(

∂L
∂uxxx

)]

+Dt(W )

[

−Dx

(

∂L
∂uxtx

)

−Dt

(

∂L
∂uxtt

)]

+Dx(W )

[(

∂L
∂uxx

)

−Dt

(

∂L
∂uxxt

)

−Dx

(

∂L
∂uxxx

)]

+Dxx(W )

(

∂L
∂uxxx

)

+Dxt(W )

(

∂L
∂uxtx

)

+Dxt(W )

(

∂L
∂uxxt

)

where

W = η − ξ1 ut − ξ2 ux.

BBM equation for n = 1 and m = 2 admits the following

generators

v1 = ∂x, v2 = ∂t, v3 = −t∂t+ b
2a u∂u,

From generators v1 and v2 we obtain trivial conservation laws.

For generator

v3 = −t∂t+
b

2a
u∂u,

the normal form for this group is

W = t ut + u+
b

2 a
. (35)

The vector components are

C1 =
tutvxx

3
+

uvxx
3

+
bvxx
6a

− uxvx
3

− tutxvx
3

(36)

+
uxxv

3
− 2atuuxv − btuxv −

2tutxxv

3

+uv +
bv

2a

C2 = − tuttvx
3

− 2utvx
3

+
2tutvtx

3
+

2uvtx
3

(37)

+
bvtx
3a

− uxvt
3

− tutxvt
3

+
2tuttxv

3

+
4utxv

3
+ 2atuutv + btutv + 2au2v
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+2buv+
b2v

2a

Substituting in (36) and (37) the expression (34) for L and the

normal form (35) for W , we get

C1 =
tutvxx

3
+

uvxx
3

+
bvxx
6a

− uxvx
3

− tutxvx
3

(38)

+
uxxv

3
− 2atuuxv − btuxv −

2tutxxv

3
+ uv

+
bv

2a

C2 = − tuttvx
3

− 2utvx
3

+
2tutvtx

3
+

2uvtx
3

(39)

+
bvtx
3a

− uxvt
3

− tutxvt
3

+
2tuttxv

3
+

4utxv

3
+ 2atuutv + btutv

+2au2v + 2buv +
b2v

2a

Now we substitute in (38) and (39) v for u,

C1 = t ut ux x

3 + 2u ux x

3 + b ux x

6 a
− (ux)

2

3 − t ut x ux

3

−2 a t u2 ux − b t u ux − 2 t u ut x x

3

+u2 + b u
2 a

C2 = − t ut t ux

3 − ut ux +
2 t u ut t x

3 + t ut ut x

3

+2 u utx + b ut x

3 a
+ 2 a t u2 ut

+b t u ut + 2 a u3 + 2 b u2 + b2 u
2 a

,

shift the terms of the form Dx(· · ·) into C2 and finally arrive

at the conserved vector with the following components:

C1 = − (ux)
2
+ u2 + b u

2 a

C2 = 2 u ut x + b ut x

2 a
+ 4 a u3

3 + 3 b u2

2 + b2 u
2 a

VII. CONCLUSIONS

We have considered classical symmetries of a B(m,n)
equation. In the case n = 1 and m = 2, by using the G′

G
-

expansion method, we have obtained three types of travelling

wave solutions. We obtain for special values of the parameters

of this equation, many exact solutions expressed by various

single and combined nondegenerative Jacobi elliptic function

solutions and their degenerative solutions (soliton, kink and

compactons). The concept of self-adjoint equation was intro-

duced by NH Ibragimov in [21], [22]. In this paper we found

the general classes of the self equations (1). By using the

Ibragimovs Theorem on conservation laws, we have derived

conservation laws for this equation.
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