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The analysis of the deterministic and stochastic
models with delays which describe the financial
crises contagions
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Abstract—A nonlinear dynamic model is set up to describe
the international financial crises contagion. The deterministic
and stochastic dynamic models with two delays are analyzed.
In the deterministic model we set the condition for the
existence of the delay parameter value for which the model
displays a Hopf bifurcation. For the stochastic system, we
identify the differential equation for the square mean value.
The Hopf bifurcation is found when the delays are identical.
The last part of his paper includes numerical simulations and
conclusions.
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I. INTRODUCTION

Since 1990s, the international financial crises have
frequently broken out, and their contagions also greatly have
increased [3].

In this paper, we investigate the financial crises contagions

between two financial markets by analyzing their mutual
impact changes within a short time during the crises. The
differential dynamic methods are used to set up a non-linear
model of the financial crisis contagion between two markets.
Also, the ordinary differential equations with delays and
stochastic differential equations with delays describe the
mutual impact state between two countries or two financial
markets within a short time during the crisis.

The paper is organized as follows. Section 2 focuses on
setting to nonlinear contagion model by using the
differential  equation  with  delay and  stochastic
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differential equation with delay. Section 3 analyzes
the model described by the differential equation with delay,
the Hopf bifurcation is found for delay as well as the normal

form. In Section 4 the model with 7, =7, =7is studied.

Section 5 analyzes the square mean values of the stochastic
disturbed linearized variables of deterministic system. Section
6 presents the numerical simulations of the dynamics of the
determinist and stochastic system. The last section summarizes
our studies.

II. THE DETERMINISTIC AND STOCHASTIC MODELS

The financial crisis contagion firstly affects the financial
security of a country. It may lead to the great volatility of the
financial asset prices (such as stocks, bonds, currencies, real
estate, etc) deteriorating the operating conditions of the
financial institutions, cause the capital flight, decline the
foreign exchange reserves, and increase the foreign debt [3].

We constructed a nonlinear dynamic model with delays, as
follows:

dx(t)/dt = a - x,(t) x5(t -1 ,)?
(D
dx(t)/dt = x5(t)(- bt x;(t - T 1) Xa(1))

where a, b are positive constants, a is the
increasing rate of the average stock returns of A country under
the normal situation, and b is the decreasing rate of the stock
returns of B country. The variables x,(t), x,(t) are respectively
the stock return rates of A and B country for te R; and x,(t- 7 ),
X,(t-15) for t-ty, t-1, respectively, where 1,>0, 1,>0, are delays.
For t,=0, t,=0, the system (1) describes the model
from Chen [3].

From (1), the equilibrium point is given by (X9, X20), Where

2

a
Xj0= —, Xp = —. 2

0=~ 0 = 2

As follows, we shall analyze the model (1) in the case
p><a®>. In Chen [3] for 1,=0, 1,=0 the -cases

a’> <b’and a® =b’ are investigated.

Let (Q, F,, P}), t=0 be a given probability
space [4], and w(t)eR be a scalar Wiener
process defined on Q having independent stationary Gauss
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increments ~ with  w(0)=0,  E(w(t)-w(s))=0, and
E(w(t)w(s))=min(t,s). The symbol E denotes the mathematical
expectation. The sample trajectories of w(t) are
continuous, nowhere differentiable, and have infinite variation
on any finite time interval [4].

What we are interested in knowing is the effect of the noise
perturbation on the equilibrium point (X;¢, X9).

The stochastic perturbation of (1) given by the
form of a stochastic differential equations with delays is:
dx;() =(a - xi(8) X2(t-12) > )dt + o x1(1)- X10)dw(D) 3)

dxa(t) = (x2(t)(- b + Xy (t- T 1) X2(1))dt +6( X(t)- X0)dW(1)
where o >0 and w(t) is a scalar Wiener process and we
denote x,(¢) =x,(¢,w),x,(¢) = x,(¢,w) the components of a

stochastic process on the probability space [4], [6], [8].

III. HOPF BIFURCATION ANALYSIS FOR
DETERMINISTIC MODEL (1)

The system (1) has only one positive equilibrium point (X,
Xa0), Where X;o and X, are given by (2).
By carrying out the transformation u;(t) = x;(t) - X;0, Uy(t) =
X5(t) - Xy from (1) we got the system (4):
2 b2

a
duy (t)/ dt = —b—zul(t)—Zbuz(t—rz)—jug(t—rz)—

=28 Ous (1= 72) O3 ¢~ )

2 2
a b
duy (t)/ dt = e (t —7,)+bu, (1) +7u22(t) +

“)
2a 2
+ 5 (1 =7)uy () +uy (¢ — 7y Ju; (1)
The linearized system of (4) in (0,0) is given by:
dyldt=Ay(t)+ Byt —7,)+ B,y(t —7,) (5)
where (1) = (3, (t),5,(®))" and
2
_a 0 0 0 —2b
a=|77 O =|a® | c= . (6)
— 0 0 0
0 b b
The characteristic function for (5) is given by
hA,7)= A + pA—q+2ge ™. (7
where t=t;.7, and
a? a’
=—-b, g=—. 8
p=r=b =7 ®)

From (6) and (8) result:

Proposition 1. If 5> <g? and © = 0 then the equation
h(1,0)=0 has the roots with a negative real part. The
equilibrium point (X1, X9) is locally asymptotically stabile.

In what follows we discuss the stability of the delay model
about the equilibrium point and the Hopf bifurcation.
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Regarding the existence of the Hopf bifurcation, a critical
time delay 1y must exist such that

H; : Aa(t9) = Liwy (0 > 0) are the roots of the
equation h(A,7o)=0, and all other roots have negative real part.
dA,(t
H,: Re( 12( ))H £0.
dr !

For the existence of the condition H, we assume that
there is a pair of imaginary roots for h(A,t)=0. Let
A=i® (o> 0) be one of its roots. Substituting in h(A,7)=0 we
obtain:

@’ +pwi— q+2q (cos(wr)-i sin(wt))=0. 9
Thus,  satisfies equation:
o'+ (p?+2q) o’ -3q> =0. (10)

Because (p 2 +2q) 212 q 2 >0, and -3q 2 <0, the equation
(10) has a positive root.

Let wy be a positive root of (10), then the critical value of
delay tis given by:

Py
oy +q°
Let A=A(t) be a solution of the equation h(A(t),7)=0.
Differentiating with respect to T we have

(11)

1
Ty =——arctg
@

) 2qMz)e M (12)
dr  2M(r)+ p-2qre "
From (12), we have:
dA(7) _ A +id,
dr 1#™=% " B 4+iB, (13)
where
A =2quy sin(eTo), Ay =2qey cos(wyTo)
B =p - 2qq toc08(exTo), By =2y +2qresin(wty)  (14)
We denote by
M =Re( dA(r) rtonren) = AIB; + Azfz
dr B"+B, (15)
N= Im(dll(r) | A=iwy,r=1, ) = AZBZI — Alsz
dr ’ B"+B,
From (15) and (14) we get:
M a)oz(p2+4q+2a)02)
p2 +4a)02 +4q21'g +z’0p(2a)02 -q) (16)

v = PO(@0’ +q) =20y’ p-4q o1
p2 + 40)02 + 4qzr§ + Top(2a)02 -q)
From (16 M # 0. Then the Hopf bifurcation exists for the
system (1).
Let 1o be given by (11), 7, €(0, 1,/2), and %=1 - T,. In the
study of the Hopf bifurcation problem, first we transform the

system (4) with 1, = 1, O+p, where 1 €R, we regard p as the
bifurcation parameters.
For ¢eC([-15, 0], C 2 ) we define a linear operator

L, =A90)+Bp(~7,) + Brg(~7,) (17)
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where A, By, B, are given by (6) and,

F(u,9) =[UJ (18)
V
where
b 2a )
= __2¢2 (=72) _7¢1 (0)¢,(=72) = 41 (0)g,” (-7,)
4 =—¢z (0) +2 ¢1 (20> (0)+ 4 (=21),° (0)

By the Rlesz representatlon theorem, there is a matrix

whose components are bounded variations functions,
n(0,p) with © e[- 7, °,0], such that
0
L= [dn@, o) (19)
0
We can choose
A4,0=0
(0, 1) ={B,5(0+1),0 e[~ ,~7,)
B,6(0+71,),0 €[-7,,0).
For ¢eC' ([-1,°,0],R?) we define
4O) iz 0)
do
A(u)g=1 0 (20)
[ant.p.0=0
0
and
0,0 € —TO,O
Rupp = 0P <Lm0) @)
F(u,0),0 =0.

Then, we can rewrite (4) in the following vector form:
ut. = A(,u)u, + R(,u)u,
where u=(u; u) ', u, =u(t+0) , 0e[- 1,°.0].

For d)eC1 ([0, 7y 0], R’ ) the adjoint operator A” of A is
defined as

(22)

dﬁ:ES) ,8 € (0,2'10)

0 .
[an™ @ow-o.s =0

-0

For ¢eC ([-1,°,0], C*)and yeC ([0, 1,°], C*) define
the bilinear form:

A"y (s) = (23)

0 @
v 060~ [ [ v -0 @4

—7) =0

(v, ¢)=

when n(0) =n(6,0).

Considering A;=imy, A,=- imy A where o is the positive
root of (10), from (20), the eigenvector of A(0) corresponding
to Ay is given by v = (vy, v,)" where

0
vi=h -b, v;=(a’/b?)e (25)

and
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vi@)=ve 40 0el-1,°,0]
is the eigenvector of A.

From (23) we obtain that the eigenvector of A (0)

(26)

corresponding to kz is given by vi=w© V2 “)T where

(42 +f)r° Al 2 e ey

V1

+
‘L
bz

2 2

(4 +Z—2—2%e

0
elzz’,

(27)
Aty + AT, );2

+

a2

b2

3 1—w1 (vi —2bvar,e™™)
B 1171

0
7
6/12 !

*

vz +r vle
and
¥, 5 €[0,00).

Vvi(s)=v" e’ (28)

We can verify that
,v> =0.
Using the approach of Hassard et al. [2] we next compute the
coordinates to describe the center manifold €, at p = 0. Let
u=u(t+0), 0¢e[- 1 0 ,0) be the solution of (4), when p=0.
We define
2 =<v", u> w(t0) = u (8)-2Re{ z(t), v(6) }. (29)

* *
<v ,v> =1, <v

On the center manifold 2, we have
w(t, 0) = w(z(t), z(2),90)

_ 2
where w(z,z,0) = wy (9)27

(30)
B -2
+wy,(0)zz + Wy (9)27+... (31)
and Z,Z are the local coordinates of the center manifold €,

in the direction of v and v* respectively. Notice that for
p =0 and for the solution u; €Q), of (4), we have
dz/dt = 4,z(t) + g(2(1),2(1)) (32)

with

2(z,2) = v TR(W(z, z,0) + 2Re(2v(0))). (33)

We expand the function g( z, ; ) on the center manifold €2,

in the powers of z and z
72

ZZZ

—2

g(z, Z) &20 5 2 +g1122+g02 2 8 5 (34)
From (33), (32) and (34) using the method of [2] we get:
Proposition 2. For the system (4), we have:

820 =Vi Fioo+Vvy Fios gui=vi Fiii+vy o,

8o =Vi Fip +vy Faops 821 =V1 Fioi +Vvy Fiye (35)

where v,",v,” are given by (27) and
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2
b 2 a 2
Fiy =—27v2 ehn 4;v1vze Atz

2

- 4 = _
Fipp = ——vyvy = 2—(n 1,7 +vvye7),
a b
F102 = F1207
: Ao | A
T Xz
Fp = _27(2"2“’211(—1'2)9 20+ vywan(—72)e ) —

a — _ Wayo(—=75)
—43(V1W211(—72)+V2V2W111(0)e%72)+"1u+

+ V2 Wigg (0)e™™

2

Fpy=2202 +4% 0y 07
a b
¥ - —
Fy i =—v,v, +2%(v1 vzeﬂaf‘0 +v1v2eﬂ“r‘0 ),
a
Fypp = Fyy,
b* —
Fy, = 27(2"2“’211(0) +Vvywa0(0)) + (36)

a Lo 11— 20
+42(V1W211(0)eﬂ“ +5V1W220(0)€A“ +

1 R
+vow i (-77) +EW120 (=t)vy)+

+4vv, vze% +2v3 v, et

W0 () = (Wy50(6), Wy (0))

—_820 40 _ gzo +Ee2’11
wy(0) = (W111(9),W211(9))T =
S g“ Sl ye?? 4 |
z 4 g
b2 2b
D D
P ' (B
1= 2 =5) \Fap S
@ g T
b*D, D,
b2’
E2 = — aZ a2 [EIIJ’
_1 1 Ay
b b

D1=(2/11+Z—2)(2/11 py+ 24" x P,

Therefore, we can compute the following parameters [2]:

CO)=5— (gzogn ~2gn [P+ \g02|)+g221
Re(C(O)) 7= Im(C(0)) + p, N
M @y |
B, = 2Re(C(0)) 37)
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where M and N are given by (16).

In the three formulas (37), Y, determines the
directions of the Hopf bifurcation; f, determines  the
stability of the bifurcation periodic solutions; T, determines
the period of the bifurcating periodic solution. Therefore:

1. If p, >0(<0) the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solution exists for
10 (<T0)

2. If B, <0(>0) the solutions are orbitally stable (unstable)

3. If T, >0(<0) the period increases (decreases).

According the above results, we conclude that there are
three cases of financial crises contagions between two
countries; if b <a?.

(a) If 0< 7, +1, <ty where 1y is given by (11), the stationary
solution of the system (1) is locally asymptotically stable. In
this case, the financial crises contagions have evolved into a
disaster and both the two countries have to endure a strong
impact , there is a limit cycle for the system (1).

Its phase p

(b) If 7, +7, =7,lane shows that it occurs an alternating

oscillation of stock returns between two countries. However,
this oscillation may not enlarge without any limitation due to
there exists a limit cycle. The immunity ability and self-repair
capacity of the economic system in both countries may
limit the oscillation magnitude within some
controllable size, which depends on the size of the
limit cycle. So it is a contagion case with limit and
controllable oscillation.

(¢)If 7, +7,> 1, the stationary solution of the system (1) is

unstable.

IV. THE HOPF BIFURCATION ANALYSIS FOR
DETERMINISTICMODEL (1) WITH 7, =7, =7

By carring out the transformation u;(¢) =x,(t)—xy,

u,(t) = x2 (t) — x5 , from (1) we get the system :
2

“l(f’—‘f”l(f’ Zbuy(t = ”‘7 - r)—%umuz(z o)~ uy(Oud(t —7)

2

(1) =5 © - )+ b0+ - B0+ 2= Do)+ 000y OF)
The linearized system of (38) in (0, 0) is given by:
(0)= AV(0)+ Byt 1) (39)
where y(t)=(y1(1), y2(t))" and
a® 0 -2b
A=|"7 O,B[az 0} (40)
0 b b*

The characteristic function for (39) is given by:
My (A7) =2+ pA—q+2ge"*
2 2
a a
where p=—-b,qg=—.
Py
As in the previous section we obtain:
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Proposition 3. If b’<a’® and 7=0then the equation
h5(4,0) =0has the roots with a negative real part. The

equilibrium point (X;o, Xp0) is locally asymptotically stable.
2. There is a critical time delay 7, so that

Ao (1) = tiwy(w, > 0)are the of the
hy5(A,7y) = 0and all other have negative real part. In addition,
RG(MJ |r=‘r A=ioy 0.

dr 0o

The value 7, is given by:

roots equation

1
Ty =—arctg fwo 5 41
20} wy t+4q

where

@ = \/J(p2 R S A (42)

2
Let 7, given by (41). In the study of the Hopf bifurcation, first

we transform the system (4) with 7=7,+ ¢, where yeR.

We regard u as the bifurcation parameter.

For ¢ e C([-7,0],C?) we define a linear operator:

Ly, ¢ = Ap(0)+ Bo(-7)
where A and B are given by (40) and

2
L B 0= 24000 -hOF )
Glud)=| 4 .
7¢§(0)+7¢1 (—0)¢,(0) + ¢ (—7)¢ (0)

By the Riesz representation theorem, there is a matrix whose
components are bounded variation function 7,,(8, ) with

6 €[-7,,0] so that

0
Lib= [dn(0.008(0).

-7,

We can choose

b 4,  6=0
MO =1 50+ 2,), 6 el-z,0]
For ¢ € C'([-75,0],R*) we define:
d¢(6
%, 0 €[-1,,0)
Ap (=1 43)
[an. . $=0
0, 0 €[-1,,0)
Rlz(#w_{G(yﬁ), =0

For l//ECl([O,TO],Rz)thC adjoint operator A" of 4, is
defined as
dy(s)

. ds
Aye={0
[anb om0, s=0

-7,

s€(0,7)
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For  ¢eC([-74,0],C?).p € C([0,7,],C*) we
bilinear form:

define  the

0 9
<p>=7 OO~ | [7 (E-0)dn,0)p(&)d.
—75 £=0
Let A4 =iwy, A =—-iw,, where a,is given by (42). From
(43), we obtain that the eigenvalue of A(0) corresponding to
A, is given by v=(v1,v»)", where
2

a  ar
v =4 -b,v, =b—ze 2%0

and v(&) =ver? O e [-7,,0] is the eigenvector of Aj,.
From (24) the eigenvector of A corresponding to A, 1s given
by v*:(v* l,v*z)T, where
. A —b
=75 2 Ao 3 -
b7 (4, =b)=2brya e )y =2b7(ty(A, D)+ ")y,
* 2be™m0
V2 = vV,
A, —=b

and v(s) =v'eh®

1

,5 €[0,00).
We can verify that
<Viv>=1,<v,v>=0.
Using the approach of Hassard et al [2], we next compute the
coordinates to describe the center manifold Qg at g, .
Let u, =u(t+8),0 €[-7,,0)be the solution of (38), when
1 =0. Define:
z(t) =< v*,u, >, w(t,0) =u,(0) - 2Re{z(t)v(0)}
On the center manifold Q,, we have:
w(t,0) = w(z(),z(1),0)

where
z2 z2
w(z,2,0) =wy (9)?+ w1 (0)zz +wpy (9)7+---

and z,z are the local coordinates of the center manifold Q,in

the direction of v* and Vv respectively. Notice that for
4 =0and for the solution u, € Q,o0f (38), we have:

z(1) = 4z(1) + g(z(2),2(?)) (46)
with
g(z,z) = G*TR(w(z,E, 0)+2Re(zv(0))) 47)
and
0, 0 €[-7,,0]
R(p)p = (48)
g {G(#»cﬁ), 0=0

We expand the function g(z,z) on the center manifold Qin

the powers of zand z
2 72 2=

_ z _ z°z
g(zaz)=g207+gllzz+g027+g217~ (49)
From (46), (47) and (49) using the method of [2] we have:

Proposition4. For the system (39) we have:
820 =V Gioo +v2G0: 811 = V1 G111 +,Goyy

—k % —k —k
802 = V1 Gio +V2G025 821 =V Gioy V2G4 (50)
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where \71*,\7; are given by (44) and

2 20t AT, _
Gy =—" ¢ —— e, Gy =Gy,
Giii = b — 2, 4. — Ly = 47
m=-_- VaVre _;(Vlvze +re™),
? i 2
__“v _ 2To |5 _ lzg _
Gy = . (2vywy 1 (=79)e™ " + vy wyg(—7¢)e

4a T 1_
—7("1“’211(—70)*"’2‘4’111(0)9/JLZ 0 +EV1W220(_TO)+

2 24,7,

1_ _ _
+Ev2w120 (O)e’i‘f” )—6(vvye =2v,v,1)),

2b%

da A -
— 270 —
Gy = P vy + b Ve, Gygp = G

2
= 2a , _ T = AT
Gy1y :_a VoV, +7(v1vze 20 1y n,e™0),

2
Gy = — (2v,w311(0) + v, wyp(0)) +

4a 1
+ e (w11 (0)e”27 +vmy (=79 )e’2 + 3 ViWag (0)e™™ +

- 2 4

1 V. p—
+Ev2W120 (_TO)) + 6(v1v2e o + 2V2V2V181210 ))

For computing w;,,(0),w;;(0),i =1,2 the following formulas
are used:

Wyo(0) = &2 veh? _S20 ve?? + Ee*M?
20 2 1
1 |

wy(0) = ElL ot _ Sl k0 E,
1 1
where

Wi () = (Wi29(6), wpg (‘9))Ta wy(0) = (W111(9)9W211(‘9))Ta
and
2

a . —2iw,T,
. —b—2—21a)0 —2be 7% [GIZOJ
1= 7 2 >
Z_z o200 b—2iw, G
2
a
-—— =2b
_ b2 Gy
E,=—- % .
a b Gon
bz

Therefore, we can compute the parameters (37) using (50)

V. THE STOCHASTIC MODEL WITH DELAY

In this section we consider the stochastic perturbation of
(1) given by the stochastic differential system with delay
3.

Linearizing (4) around the equilibrium (X9, X29) T , yields
the linear stochastic differential equation with delay
du(t)=(Au(t)+ Bju(t- t))+Byu(t-t,)dt)+Cu(t)dwi(t)
where u(t)= (u(t), u, (t)) T and A, By, B, are

(5D
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given by (6) and C=diag(c,0).
Using the method from [6], we analyze the first and second
moments of the solutions for (38) with respect to t; and t,.
Proposition 5. 1. The first moment of the solution of (51) is
given by
dEu(t))/dt = AE(u(t))+ B E(u(t — 7))+ BLE(u(t — 7,)) (52)
2. The characteristic function for (52) is given by (7).
3. Forte[0,1p) the equilibrium point (0,0) is
asymptotically stable, where T, is given by (11).
4. The value 1, given by (11) is a Hopf bifurcation.
5. The solution of (52) with 7, +7, =7, on the center

locally

manifold are given by

E(t) = z(t) + z(t)v (53)
where v=(v,,v») " is given by (25),
E(t) =E(u(t) = (B(uy(t)), E(uz (1))
and
2(t) = z(t), A =iy (54)

and w, is a positive root of (10).
To examine the stability of the second moment of u(t) for
the linear stochastic differential delay equation (51) we use

Ito's rule to give the stochastic differential of u(t)u(s) T
Let R(t,s)=E(u(t)u(s)”) be the covariance matrix of the
process u(t) so that R(t,t) satisfies:

dR(t,t)/ dt = E(du(t)u" (t)+u(t)du" (t)+
+Cu(Hu ()C) = AR(t,1) + R(1,1) A" +
+BR(t,t—7))+R(t,t—7))B] +
+B,R(t,t —7,) + R(t,t —7,)B} +CR(1,1)C.
From (55) and R*y(t,s) =E(u; (), y(s)), 1,j=1,2, we get

(55)

Proposition 6. 1.
written as:

The differential system (55) can be

. 24?
Ry (2,0) = (—b—2+0'2)R11(t»f)—4bR22(f,f—Tz)

. 2a?
Ry, (t.1) =(2b+oz)Rzz(t,r)+b—2Rlz(t,r—rl)

(56)
a2 2 a2
Ry (1,0) = (—b—2+ o )Ry,(1,1) +b—2R11(f»t —7y)-
—2bR,, (t,t —75).
2. The characteristic function of (56) is

h(r,7) = 42> + p, 22 + pi A+ po +4q, (44 +q0)e ™ (57)

where
2

T=7,+7,,D, =4bL274b76c72,
P = (47£)04 +(4L,6L 4b)o? _4a’

: b? b b b? (58)

a 202 2 2 2 a2

= (E20Y)2b+0)ot,q =—,
po === ) hn=7
2

a

Gy =——-2b-20".
0 b2
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Proposition 7 1. If t1=0, and o satisfy
P2>0, py+44,>0, py+q,99>0
P2(py +4q) —4po + 4190) >0 (59)
then the equation h(A,0)=0 has the roots with a negative
real part.
2. If ©#0, and o satisfy (59) then for t€[0, Tg9 ) the
equation h(A, t)=0 has the roots with a negative real part,
where

2 3
400 (D200 — Po) — 90 (400" — P1W00) (60)
3
40 (D200 — Po) + 400 (403" — P1@y0)
and g is a positive root of equation
160° +(p3 =8p))@” +(pi =2p,po +
+ 256q12)a)2 + pg - 16q12q§ =0
3. Tgo is @ Hopf bifurcation.

From Proposition 7, we obtain that for 7, +7, < 190 the

square mean values of the variables of (51) are asymptotically
stable, and 7y is a Hopf bifurcation. The solutions of (56) on
the center manifold are given by

R(t) = z(1)v + z(t)v

1
Top =——arclg
@0

(61)

(62)
where

R(t) = (R, (t,1), Ryy (¢,0), Ry (8,1)) " and

v is the eigenvector corresponding the eigenvalue, A; = iwyy

and

z* (1) = A52(1), 2(1) = x() + iy (1). (63)

T
The vector's components v = (v, Vo2, Vip)  are
given by

= —4be ™ (20, - 2b— o>

11 e (24 o)
e 2a° 2a°

Vyy =M yEa (2 A~ —o?)

2
v, =24 +2bi2—c;2)(2z3 —2b—-0?)

00

where 7 = Too — 7, and 730 < 1.

VI NUMERICAL SIMULATIONS

For the parameters a = 2, b = 1.5, we obtain the equilibrium
point Xy = 1.125, yo = 1.125. If 1, = 1, =0 the equilibrium
point is asymptotically stable. The bifurcation Hopf is given
by 71o=10.028. Let 1,=0.013. Result 1, =0.015. The
parameters Wy, T,, P, are given by: p, =-3588, 3, =1 777,
T, =1173. Because W, < 0 the Hopf bifurcation is subcritical
and the bifurcating periodic solution exists for 1 < T,
Because 3, > 0 the solutions are orbitally unstable. Because
T, > 0 the period decreases. In figures Fig.1, Fig. 2 we can
visualize the orbits (¢, x,(¢)), (£,x2(?)):
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1.1 29002
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1.ananae
1.333337
1.33333%
1.333335
1.333334
1.ananaa
1.anaaaa]
1.933331
1, 233330

1.3333285-

Figl. (¢, x1(?))

<

Fig2. (¢, x,(?))

In what follows we have the numerical simulation of the
differential stochastic system (3). Fora=2, b=1.5,1 =1,
=0, o; =07 =0.3 we obtain the orbits (n, x;(n, ®)), (n, x,(n,

)).

1.

¥

LR

Fig3. (n, x;(n, ®))
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EER
11:
2.0:
1.9;
1,5:
1.7

1.5

1.4

Fig4. (n, X2(n, ))

The value of 149 (60) is given by 19o=1.01112. For 19, = 0.5,
Too1 = 0.511 is obtained. The solutions of (56) (n, Ry1(n)),
(n;Rp(n)); (n;R15(n)) on the center manifold can be visualized
in Fig. 5, Fig. 6, Fig. 7

Fig. 6. (n, Rxn(n))
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The numerical simulations verify the theoretical results.

VI CONCLUSIONS

In the present paper, the deterministic and stochastic dynamic
models with delays of the financial crises contagions were
considered. The deterministic system was analyzed both
analytically and numerically. It has been established that the
system of the model is stable without delays, but by
introducing the delay parameter, a Hopf bifurcation takes
place. The Hopf bifurcation is analyzed if T, = 7,. A similar
analysis can be conducted for the cases 1,70 and 71,=0 or 1,70
and 1,=0
Using Wiener process, the stochastic system was built in

the neighborhood of the equilibrium point. We have studied
the dynamics of the square mean value for the variables of the
linearized system obtained by the stochastic system. We have
determined the value of the delays for which the equilibrium
point is asymptotically stable in square mean. Also, the value
of the delay for which there is a Hopf bifurcation was
determined.

Using the methods from this paper an analogous analysis
was carried out in [7], [9], [10].
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