
 

 

  

Abstract—A nonlinear dynamic model is set up to describe 

the international financial crises contagion. The deterministic 

and stochastic dynamic models with two delays are analyzed. 

In the deterministic model we set the condition for the 

existence of the delay parameter value for which the model 

displays a Hopf bifurcation. For the stochastic system, we 

identify the differential equation for the square mean value. 

The Hopf bifurcation is found when the delays are identical.  

The last part of his paper includes numerical simulations and 

conclusions. 
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I. INTRODUCTION 

 

Since 1990s, the international financial crises have 

frequently broken out, and their contagions also greatly have 

increased [3]. 

In this paper, we investigate the financial crises contagions 

between two financial markets by analyzing their mutual 

impact changes within a short time during the crises. The 

differential dynamic methods are used to set up a non-linear 

model of the financial crisis contagion between two markets. 

Also, the ordinary differential equations with delays and 

stochastic differential equations with delays describe the 

mutual impact state between two countries or two financial 

markets within a short time during the crisis. 

The paper is organized as follows. Section 2 focuses on 

setting to nonlinear contagion model by using the               

differential equation with delay and stochastic                
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differential equation with delay. Section 3 analyzes                

the model described by the differential equation with delay, 

the Hopf bifurcation is found for delay as well as the normal  

form. In Section 4 the model with τττ == 21 is studied.  

Section 5 analyzes the square mean values of the stochastic 

disturbed linearized variables of deterministic system.  Section 

6 presents the numerical simulations of the dynamics of the 

determinist and stochastic system. The last section summarizes 

our studies. 

II. THE DETERMINISTIC AND STOCHASTIC MODELS 

The financial crisis contagion firstly affects the financial 

security of a country. It may lead to the great volatility of the 

financial asset prices (such as stocks, bonds, currencies, real 

estate, etc) deteriorating the operating conditions of the 

financial institutions, cause the capital flight, decline the 

foreign exchange reserves, and increase the foreign debt [3]. 

We constructed a nonlinear dynamic model with delays, as 

follows:  

            dx1(t)/dt = a - x1(t) x2(t -τ 2)
2 

                                                                                               (1) 

                dx2(t)/dt = x2(t)(- b+ x1(t - τ 1) x2(t)) 

 

where a, b are positive constants, a is the                       

increasing rate of the average stock returns of A country under 

the normal situation, and b is the decreasing rate of the stock 

returns of B country. The variables x1(t), x2(t)  are respectively 

the stock return rates of A and B country for t∈ R+ and x1(t- τ 1), 

x2(t-τ2) for t-τ1, t-τ2 respectively, where   τ1 ≥ 0, τ2 ≥ 0, are delays. 

For τ1=0, τ2=0, the system (1) describes the model                       

from Chen [3]. 

From (1), the equilibrium point is given by (x10, x20),  where 

                     x10  = ,
2

a

b
    x20    = .

b

a
                                 (2) 

      As follows, we shall analyze the model (1) in the case 
23

ab < . In Chen [3] for τ1=0, τ2=0 the cases                            

32
ba < and 

32 ba =  are investigated. 

        Let (Ω, F0, P}), t 0≥  be a given probability                            

space [4], and w(t)∈R be a scalar Wiener                            

process defined on Ω having independent stationary Gauss 
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increments with w(0)=0, E(w(t)-w(s))=0,  and                       

E(w(t)w(s))=min(t,s). The symbol E denotes the mathematical 

expectation. The sample trajectories of w(t) are                             

continuous, nowhere differentiable, and have infinite variation 

on any  finite time interval [4]. 

What we are interested in knowing is the effect of the noise 

perturbation on the equilibrium point (x10, x20). 

The stochastic perturbation of (1) given by the                  

form of a stochastic differential equations with delays is:  

dx1(t) =(a - x1(t) x2(t-τ2)
2

)dt + σ( x1(t)- x10)dw(t)           (3)                  

    dx2(t) = (x2(t)(- b + x1(t- τ 1) x2(t)))dt +σ( x2(t)- x20)dw(t) 

where 0≥σ  and w(t) is a scalar Wiener  process and we 

denote ),()(),,()( 2211 ωω txtxtxtx ==  the components of a 

stochastic process on the probability space [4],  [6],  [8]. 

  

III. HOPF   BIFURCATION ANALYSIS    FOR 

DETERMINISTIC MODEL   (1) 

 

The system (1) has only one positive equilibrium point (x10, 

x20), where x10 and x20 are given by (2). 

    By carrying out the transformation u1(t) = x1(t) - x10,  u2(t) = 

x2(t) - x20 from (1) we got  the system (4): 
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The linearized system of (4) in (0,0) is given by: 

 

  )()()(/ 2211 ττ −+−+= tyBtyBtAydtdy                          (5) 

where  Τ= ))(),(()( 21 tytyty   and  

,
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−=

b
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00
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=

b
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 −
=

00

20 b
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 The characteristic function for (5) is given by 

 

                .2),( 2 λτλλτλ −+−+= qeqph                            (7) 

where  τ =τ1 +τ2   and 

               ,
2

2

b
b

a
p −=  .

2

b

a
q =                                              (8) 

 From (6) and (8) result: 

 

Proposition 1. If  23
ab <  and τ = 0 then the equation 

h(λ,0)=0 has the roots with a negative real part. The 

equilibrium point (x10, x20) is locally asymptotically stabile. 

In what follows we discuss the stability of the delay model 

about the equilibrium point and the Hopf bifurcation. 

Regarding the existence of the Hopf bifurcation, a critical 

time delay τ0 must exist such that 

              H1 :  λ1,2(τ0) = ±iω0 (ω0 > 0) are the roots of the               

equation h(λ,τ0)=0, and all other roots have negative real part. 

              H2 :    .0)
)(

Re(
1

2,1 ≠=λλτ

τλ

d

d
 

           For the existence of the condition H1 we assume that                

there is a pair of imaginary roots for  h(λ,τ)=0. Let                

λ=iω  (ω > 0) be one of its roots. Substituting in h(λ,τ)=0 we 

obtain: 

        -ω 2
+pωi– q+2q (cos(ωτ)–i sin(ωτ))=0.                       (9)                              

              

Thus, ω  satisfies equation: 

                           ω 4
+ (p

2
+2q) ω 2

-3q
2

=0.                      (10) 

   Because   (p
2

+2q)
2

+12 q
2

>0,  and   -3q
2

<0, the equation        

(10) has a positive root. 

    Let ω0 be a positive root of (10), then the critical value of 

delay  τ is given by: 

                  
22

0

0

0
0

1

q

p
arctg

+
=

ω

ω
ω

τ                                      (11) 

Let λ=λ(τ) be a solution of the equation h(λ(t),τ)=0. 

Differentiating with respect to τ we have 

              
ττλ

ττλ

ττλ

τλ
τ
τλ

)(
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2)(2

)(2)(
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−+
=

eqp

eq

d

d
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From (12), we have: 

          
21

21
, 00

)(

iBB

iAA

d

d
i +

+
=== ττωλτ

τλ
                                    (13) 

where    

       

         A1  =2qω0 sin(ω0τ0),  A2  =2qω0 cos(ω0τ0) 

         B1  =p - 2q0 τ0cos(ω0τ0),  B2  =2ω0  +2qτ0sin(ω0τ0)     (14) 

  

   We denote by  

           

2
2

2
1

2112
,

2
2

2
1

2211
,

)
)(

Im(

)
)(

Re(

00

00
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==
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               (15)    

   From (15) and (14) we get: 

        

)2(44

42)(

)2(44

)24(

2
00

2
0

22
0

2

00
23

0
2

00

2
00

2
0
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0

2

2
0

22
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qpqp
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N

qpqp
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−−+
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                  (16)     

From (16 M ≠ 0. Then the Hopf bifurcation exists for the 

system (1).  

Let τ0 be given by (11), τ2 ∈(0, τ0 /2), and τ2
0=τ0  - τ2.  In the 

study of the Hopf bifurcation problem, first we transform the 

system (4) with τ1 = τ1
0

+µ  where µ ∈R, we regard µ  as the 

bifurcation parameters. 

      For  φ∈C([-τ2, 0], C
2

) we define a linear    operator 

             )()()0( 2211 τφτφφφµ −+−+= BBAL                      (17)        
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where A, B1 , B2 are given by (6) and, 
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F ),( φµ                                           (18) 
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By the Riesz representation theorem, there is a matrix          

whose components are bounded variations functions,          

η(θ,µ) with θ ∈[- τ1
0

,0], such   that    

                   ∫
−

=
0

0
1

)(),(

τ
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We can choose  









−∈+

−−∈+

=

=

).0,[),(

),[),(

0,

),(

222

2
0
1

0
11

τθτθδ

ττθτθδ

θ

µθη

B

B

A

 

   For  φ∈C
1
 ([- τ1

0
, 0], R

2
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and   







=

−∈
=

.0),,(

)0,[,0
)(

0
1

θθµ

τφ
φµ

F
R                                                     (21) 

    Then, we can rewrite (4) in the following vector form: 

                        ttt uRuAu )()( µµ +=•                                  (22) 

where u = (u1, u2) 
Τ

 ,  ut   = u(t +θ)  ,  θ∈[-  τ1
0

,0].      

    For    φ∈C
1
 ([0, τ1

0
], R

2
) the adjoint operator A

∗
 of A is 

defined as  

.

0),()0,(

),0(,
)(

)( 0

0
1

0
1













=−

∈

=

∫
−

Τ

∗

τ

ψη

τ
φ

ψ
sttd

s
ds

sd

sA                                    (23) 

 For   φ∈C ([- τ1
0

,0], C
2

) and  ψ∈C ([0, τ1
0

], C
2

) define 

the bilinear form: 

                

εεφθηθεψφψφψ
τ

θ

ε

dd )()()()0()0(,

0

00
1

−−=
Τ

− =

Τ

∫ ∫     (24)    

 when  η(θ) = η(θ,0).  

          Considering λ1=iω0, λ2=- iω0 , where ω  is the positive 

root of (10), from (20), the eigenvector of A(0) corresponding 

to  λ1   is given by v = (v1, v2)
T where  

           v1  =  λ1   - b,    v2  = ( a
2

/ b
2

)e
0
11τλ−

                       (25) 

and      

        v(θ) =  v e
θλ1 ,  θ∈[- τ1

0
,0]                                         (26) 

 is the eigenvector of A. 

      From (23) we obtain that the eigenvector of A
∗

(0) 

corresponding to λ2  is given by v
∗

= (v1
∗

,v2
∗

)T where  
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We can verify that  

             <v
∗

, v>  = 1,  <v
∗

, v >  = 0. 

Using the approach of Hassard et al. [2] we next compute the 

coordinates to describe the center manifold  Ω0  at µ = 0. Let 

u= u(t + θ), θ∈[- τ1
0

,0) be the solution of (4),  when µ = 0. 

     We define  

    z(t) = < v
∗

,  ut >,   w(t, θ)  =  ut (θ) -2Re{ z(t), v(θ) }.   (29)   

 

        On the center manifold Ω0 , we have  

                            w(t, θ) = w(z(t), )(tz , θ )                       (30) 

where ...
2

)()(
2

)(),,(

2

0211

2

20 +++=
z

wzzw
z

wzzw θθθθ    (31) 

and  zz,  are the local coordinates of the center manifold Ω0  

in the direction of  v
∗

 and  
∗
v  respectively. Notice that for  

  µ = 0 and for the solution ut ∈Ω0  of (4), we have  

                 ))(),(()(/ 1 tztzgtzdtdz += λ                             (32) 

with    

         ))).(Re(2),,((),( θθ zvzzwRvzzg += Τ∗                    (33)   

We expand the function  g( zz, ) on the center manifold Ω0              

in the powers of  z  and  z  

.
222

),(
2

21

2

0211

2

20

zz
g

z
gzzg

z
gzzg +++=                     (34) 

From (33), (32) and (34) using the method of [2] we get: 

 

Proposition 2.   For the system (4), we have: 

 

,2202120120 FvFvg
∗∗

+=   ,2112111111 FvFvg
∗∗

+=  

,2022102102 FvFvg
∗∗

+=  .2212121121 FvFvg
∗∗

+=            (35) 

where  
∗∗

21 ,vv  are given by (27) and  
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         Therefore, we can compute the following parameters [2]: 
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 where M and N are given by (16). 

In the three formulas (37),  µ2 determines the             

directions of the Hopf bifurcation; β2   determines  the 

stability of the bifurcation periodic solutions; T2  determines 

the period of the bifurcating periodic  solution. Therefore: 

1. If  µ2 >0(<0) the Hopf bifurcation is supercritical 

(subcritical) and the bifurcating periodic solution exists for 

τ>τ0 (<τ0) 

 2. If  β2 <0(>0) the solutions are orbitally stable (unstable) 

3. If  T2 >0(<0) the period increases (decreases). 

      According the above results, we conclude that there   are 

three cases of financial crises contagions between two 

countries; if 23 ab < .  

(a) If 210 ττ +≤ <τ0 where τ0 is given by  (11), the stationary 

solution of the system (1) is locally asymptotically stable. In 

this case, the financial crises contagions have evolved into a 

disaster and both the two countries have to endure a strong  

impact , there is a limit cycle for the system (1). 

 Its phase p 

(b) If 021 τττ =+ lane shows that it occurs an alternating 

oscillation of stock returns between two  countries. However, 

this oscillation may not enlarge  without any limitation due to 

there exists a limit cycle. The immunity ability and self-repair 

capacity  of the economic system in both countries may                 

limit the oscillation magnitude within some               

controllable size, which depends on the size of the                

limit cycle. So it is a contagion case with limit and  

controllable oscillation. 

(c) If  21 ττ + > τ0 ,  the stationary solution of the system (1) is 

unstable. 

 

IV. THE HOPF BIFURCATION ANALYSIS FOR 

DETERMINISTIC MODEL (1) WITH τττ == 21  

By carring out the transformation 1011 )()( xtxtu −= , 

2022 )()( xtxtu −= , from (1) we get the system : 
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The linearized system of (38) in (0, 0) is given by: 

                        )()()( τ−+= tBytAytyɺ                                       (39) 

where y(t)=(y1(t), y2(t))
T and 
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The characteristic function for (39) is given by: 
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b

a
qb

b

a
p

2

2

2

, =−= . 

As in the previous section we obtain: 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 6, 2012 586



 

 

Proposition 3. If b3<a2 and 0=τ then the equation 

0)0,(12 =λh has the roots with a negative real part. The 
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For )],,0([ 2
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1 RC τψ ∈ the adjoint operator ∗A of 12A is 

defined as 
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For )],,0([),],0,([ 2
0

2
0 CCCC τψτφ ∈−∈ we define the 

bilinear form: 
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Let 0201 , ωλωλ ii −== , where 0ω is given by (42). From 

(43), we obtain that the eigenvalue of A(0) corresponding to 

1λ is given by v=(v1,v2)
T, where  
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211 ,
τλλ e

b

a
vbv =−=  

and ( ) ]0,[, 0
1 τθθ θλ −∈= vev is the eigenvector of A12. 

From (24) the eigenvector of A* corresponding to 2λ is given 

by v*=(v*1,v*2)
T, where  
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We can verify that 

0,,1, >=<>=< ∗∗
vvvv . 

Using the approach of Hassard et al [2], we next compute the 

coordinates to describe the center manifold 0Ω at 0µ . 

Let )0,[),( 0τθθ −∈+= tuut be the solution of (38), when 

0=µ . Define: 

             )}()(Re{2)(),(,,)( * θθθ vtzutwuvtz tt −=>=<  

On the center manifold 0Ω , we have: 

                             )),(),((),( θθ tztzwtw =  

where 

...
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20 +++=
z

wzzw
z

wzzw θθθθ  

and zz, are the local coordinates of the center manifold 0Ω in 

the direction of ∗v  and *v respectively. Notice that for 

0=µ and for the solution 0Ω∈tu of (38), we have: 

                       ))(),(()()( 1 tztzgtztz += λɺ                           (46) 

with  

              )))(Re(2),,((),( θθ zvzzwRvzzg T += ∗               (47) 

and  
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We expand the function ),( zzg on the center manifold 0Ω in 

the powers of z and z  
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From (46), (47) and (49) using the method of [2] we have: 

Proposition4. For the system (39) we have: 
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For computing 2,1),(),( 1120 =iww ii θθ the following formulas 

are used: 
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Therefore, we can compute the parameters (37) using (50) 

V. THE    STOCHASTIC   MODEL   WITH     DELAY 

In this section we consider the stochastic perturbation of          

(1) given by the stochastic differential system with delay          

(3). 

     Linearizing (4) around the equilibrium  (x10, x20) 
Τ

, yields 

the linear stochastic  differential equation with delay 

du(t)=(Au(t)+ B1u(t- τ1)+B2u(t-τ2)dt)+Cu(t)dw(t)               (51)            

where  u(t)= (u1(t), u2 (t)) 
Τ

 and A, B1, B2 are 

given by (6) and C=diag(σ,σ). 

Using the method from [6], we analyze the first and second 

moments of the solutions for (38) with respect to τ1 and τ2. 

Proposition 5. 1. The first moment of the solution of (51) is 

given by  

 ))(())(())((/))(( 2211 ττ −+−+= tuEBtuEBtuAEdttudE (52) 

    2. The characteristic function for (52) is given by (7). 

    3. Forτ∈[0,τ0) the equilibrium point (0,0) is  locally 

asymptotically stable, where τ0  is given by (11). 

    4. The value τ0  given by (11) is a Hopf bifurcation. 

    5. The solution of (52) with 021 τττ =+  on the center 

manifold are given by 

                         vtzvtztE )()()( +=                                    (53) 

where v=(v1,v2)
Τ

 is given by (25),  

E(t) =E(u(t)) = (E(u1(t)), E(u2 (t))) 
Τ

 

 and   

                  z(t) = λ1  z(t),  λ1  = iω0                                                     (54) 

and ω0    is a positive root of (10).    

To examine the stability of the second moment of u(t) for 

the linear stochastic differential delay equation (51) we use 

Ito's rule to give the stochastic  differential of u(t)u(s) 
Τ

. 

Let R(t,s)=E(u(t)u(s)T) be the covariance matrix of the 

process u(t) so that R(t,t) satisfies: 
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From (55) and  R*y(t,s) = E(uj (t), uj(s)),  i, j = 1, 2,  we get 

 

     Proposition 6. 1. The differential system (55) can be 

written as: 
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         2. The characteristic function of (56) is 
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  Proposition 7    1.  If  τ = 0, and  σ satisfy  

             2p >0, 11 4qp + >0, 010 qqp + >0 

            )(4)4( 010112 qqpqpp +−+ >0                              (59) 

then the  equation h(λ,0)=0 has the roots with a negative          

real part. 

   2.  If  τ ≠ 0, and  σ satisfy (59) then for  τ∈[0, τ00 ) the 

equation h(λ, τ)=0 has the roots with a negative real part, 

where 
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    and ω00 is a positive root of equation 
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  3.  τ00 is a Hopf bifurcation. 

From Proposition 7, we obtain that for 21 ττ +  < τ00  the 

square mean values of the variables of (51) are asymptotically 

stable, and  τ00  is a Hopf bifurcation. The solutions of (56) on 

the center manifold are given by   

                       vtzvtztR )()()( +=                                      (62) 

  where  
Τ= )),(),,(),,(()( 122211 ttRttRttRtR   and  

v is the eigenvector corresponding the eigenvalue,  λ3  = iω00 

and  

              ).()()(),()( 3 tiytxtztztz +==• λ                            (63) 

   The vector's components v = (v11, v22,   v12) 
Τ

 are 

   given by 
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where 00
200

00
1 τττ −=  and  00

2τ < τ00. 

 

 

         VI    NUMERICAL SIMULATIONS 

 

For the parameters a = 2, b = 1.5, we obtain the equilibrium 

point x0 = 1.125, y0  = 1.125.  If  τ1 =  τ2 =0 the equilibrium 

point is asymptotically stable. The bifurcation Hopf is given 

by   τ0 = 0.028.  Let    τ2= 0.013.  Result   τ1 = 0.015.  The 

parameters  µ2,  T2,  β2 are  given by:   µ2 = - 3588, β2  =1 777,   

T2 = 1173.  Because  µ2 < 0 the Hopf bifurcation is subcritical 

and the bifurcating periodic solution exists for  τ < τ0   

Because β2 > 0 the solutions are orbitally unstable. Because  

T2 > 0 the period decreases. In figures Fig.1, Fig. 2 we can 

visualize the orbits (t, x1(t)); (t,x2(t)): 

 
                             Fig1. (t, x1(t)) 

 
Fig2. (t, x2(t)) 

 

 In what follows we have the numerical simulation of the 

 differential stochastic system (3).  For a= 2,  b=1.5, τ1  = τ2 

=0,  σ1 = σ1  =0.3 we obtain the orbits (n, x1(n, ω)), (n, x2(n, 

ω)). 

 

 
Fig3. (n, x1(n, ω)) 
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Fig4. (n, x2(n, ω)) 

 

 

The value of τ00 (60) is given by τ00 =1.01112. For τ002 = 0.5,  

τ001 = 0.511 is obtained. The solutions of (56) (n, R11(n)); 

(n;R22(n)); (n;R12(n)) on the center manifold can be visualized  

in Fig. 5, Fig. 6, Fig. 7 

 

 
Fig. 5.  (n, R11(n)) 

 

 
Fig. 6.  (n, R22(n)) 

 

 

 

 

 
Fig. 7.  (n, R12(n)) 

 

The numerical simulations verify the theoretical results. 

 

 

          VI      CONCLUSIONS 

 

 

In the present paper, the deterministic and stochastic dynamic 

models with delays of the financial crises contagions were 

considered. The deterministic system was analyzed both 

analytically and numerically. It has been established that the 

system of the model is stable without delays, but by 

introducing the delay parameter, a Hopf bifurcation takes 

place. The Hopf bifurcation is analyzed if τ1 =  τ2. A similar 

analysis can be conducted for the cases τ1≠0 and  τ2=0 or τ2≠0 

and  τ1=0 

       Using Wiener process, the stochastic system was built in 

the  neighborhood of the equilibrium point. We have studied 

the dynamics of the square mean value for the variables of the 

linearized system obtained by the stochastic system. We  have  

determined the value of the delays for which the equilibrium  

point is asymptotically stable in square mean. Also, the value 

of  the delay for which there is a Hopf bifurcation was 

determined. 

Using the methods from this paper an analogous analysis 

was carried out in [7], [9], [10]. 
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