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On Weighted Possibilistic Informational Coefficient
of Correlation

Robert Fullér, István Á. Harmati, Péter Várlaki, Imre Rudas

Abstract—In their previous works Fullér et al. introduced
the notions of weighted possibilistic correlation coefficient and
correlation ratio as measures of dependence between possibility
distributions (fuzzy numbers). In this paper we introduce a new
measure of strength of dependence between marginal possibility
distributions, which is based on the informational coefficient of
correlation. We will show some examples that demonstrate some
good properties of the proposed measure.

Index Terms—Fuzzy number, Possibility distribution, Measure
of dependence, Mutual information, Correlation.

I. INTRODUCTION

UNCERTAIN informations can be diveded into two main
categories: incomplete and imprecise information. Proba-

bility distributions can be interpreted as carriers of incomplete
information [1], and possibility distributions can be interpreted
as carriers of imprecise information. Measuring dependence
between uncertain variables plays a fundamental role in both
categories. In probability theory there are well-known mea-
sures of dependence between random variables, such as corre-
lation coefficient, correlation ratio, mean square contingency,
and so on. In possibility theory there are several treatments
for characterizing dependence between fuzzy numbers, see for
example [2] and [3].

In this approach we use simple probability distributions to
build up measures of dependence between possibility distribu-
tions. Namely, we equip each level set of a possibility distri-
bution with a uniform probability distribution, then determine
a probabilistic measure of dependence, and then define mea-
sures on possibility distributions by integrating these weighted
probabilistic notions over the set of all membership grades [4],
[5]. These weights (or importances) can be given by weighting
functions.

Definition 1. A function g : [0, 1] → R is said to be a
weighting function if g is non-negative, monotone increasing
and satisfies the ∫ 1

0

g(γ) dγ = 1

normalization condition
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In other words a possibilistic measure of dependence is
the g-weighted average of the probabilistic measure of depe-
nence. Different weighting functions can give different (case-
dependent) importances to level-sets of possibility istributions.
We should note here that the choice of uniform probability
distribution on the level sets of possibility distributions is
not without reason. We suppose that each point of a given
level set is equally possible and then we apply Laplace’s
principle of Insufficient Reason: if elementary events are
equally possible, they should be equally probable (for more
details and generalization of principle of Insufficient Reason
see [6], page 59). The uniform distribution is not the only way,
for example we can deal with probabilty distributions whose
density function is similar (has the same shape) to the joint
possibility distribution, see [7].

Definition 2. A fuzzy number A is a fuzzy set R with a normal,
fuzzy convex and continuous membership function of bounded
support.

Fuzzy numbers can be considered as possibility distribu-
tions. A fuzzy set C in R2 is said to be a joint possibility
distribution of fuzzy numbers A,B, if it satisfies the relation-
ships

max{x | C(x, y)} = B(y),

and
max{y | C(x, y)} = A(x),

for all x, y ∈ R. Furthermore, A and B are called the marginal
possibility distributions of C. Marginal possibility distributions
are always uniquely defined by their joint possibility distribu-
tion by the principle of falling shadows. A γ-level set (or
γ-cut) of a fuzzy number A is a non-fuzzy set denoted by
[A]γ and defined by

[A]γ = {t ∈ X | A(t) ≥ γ},

if γ > 0 and cl(suppA) if γ = 0, where cl(suppA) denotes
the closure of the support of A.

II. FORMER LEVEL-BASED MEASURES OF CORRELATION

A. Correlation Coefficient

In probability theory the correlation coefficient of random
variables X and Y is defined by

ρ(X,Y ) =
cov(X,Y )√

var(X)
√

var(Y )
=
E(XY )− E(X) · E(Y )

D(X) ·D(Y )
,

where E(X), E(Y ) and E(XY ) are expected value os X , Y
and X ·Y respectively, and D(X), D(Y ) are the square roots
of the variances.
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In 2011 Fullér, Mezei and Várlaki introduced the principle
of correlation (see [8]) that improves the earlier definition
introduced by Carlsson, Fullér and Majlender in 2005 (see
[4]). The main drawback of the earlier definition that it does
not necessarily take its values from [−1; 1] if some level sets
of the joint possibility distribution are not convex.

Definition 3. The g-weighted possibilistic correlation coeffi-
cient of fuzzy numbers A and B (with respect to their joint
distribution C) is defined by

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ)g(γ) dγ,

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
,

and, where Xγ and Yγ are random variables whose joint
distribution is uniform on [C]γ for all γ ∈ [0, 1], and
cov(Xγ , Yγ) denotes their probabilistic covariance.

If A and B are non-interactive fuzzy numbers then their
joint possibility distribution is defined by C = A×B, so we
the membership function of the joint possibiliy distribution is
determined from the membership functions of A and B by the
min operator. A more general notion of independence of fuzzy
numbers can be found in [9]. Since all [C]γ are rectangular and
the probability distribution on [C]γ is defined to be uniform
we get cov(Xγ , Yγ) = 0, for all γ ∈ [0, 1]. So the g-weighted
possibilistic covariance covg(A,B) = 0 and the g-weighted
possibilistic correlation coefficient ρg(A,B) = 0 for any
weighting function g. That is, non-interactivity entails zero
correlation.

Zero correlation does not always implies non-interactivity.
Let A,B be fuzzy numbers, let C be their joint possibility dis-
tribution, and let γ ∈ [0, 1]. Suppose that [C]γ is symmetrical,
i.e. there exists a ∈ R such that

C(x, y) = C(2a− x, y),

for all x, y ∈ [C]γ (the line defined by {(a, t)|t ∈ R} is the
axis of symmetry of [C]γ). In this case cov(Xγ , Yγ) = 0 and
ρg(A,B) = 0 for any weighting function g. (see [10]). For
more example on nonzero correlation see [11], [12] and [13].

B. Correlation Ratio
In statistics, the correlation ratio is a measure of the re-

lationship between the statistical dispersion within individual
categories and the dispersion across the whole population or
sample. The correlation ratio was originally introduced by Karl
Pearson [14] as part of analysis of variance and it was extended
to random variables by Andrei Nikolaevich Kolmogorov [15]
as a square root of

η2(X|Y ) =
D2[E(X|Y )]

D2(X)
,

where X and Y are random variables. If X and Y have a joint
probability density function, denoted by f(x, y), then we can
compute η2(X|Y ) using the following formulas

E(X|Y = y) =

∫ ∞
−∞

xf(x|y) dx

and
D2[E(X|Y )] = E(E(X|Y )− E(X))2,

and where,

f(x|y) =
f(x, y)

f(y)
.

It measures a functional dependence between random variables
X and Y . It takes on values between 0 (no functional
dependence) and 1 (purely deterministic dependence).

In 2010 Fullér, Mezei and Várlaki introduced the defini-
tion of possibilistic correlation ratio for marginal possibility
distributions (see [16]).

Definition 4. Let us denote A and B the marginal possibility
distributions of a given joint possibility distribution C. Then
the g-weighted possibilistic correlation ratio of marginal
possibility distribution A with respect to marginal possibility
distribution B is defined by

η2g(A|B) =

∫ 1

0

η2(Xγ |Yγ)g(γ) dγ

where Xγ and Yγ are random variables whose joint distri-
bution is uniform on [C]γ for all γ ∈ [0, 1], and η2(Xγ |Yγ)
denotes their probabilistic correlation ratio.

III. RÉNYI’S POSTULATES FOR MEASURES OF
DEPENDENCE

We use measures of dependence between random variables
to determine measures of dependence between possibility
distributions, so it is natural to describe what conditions should
satisfy a good measure. In [17] A. Rényi gave seven postulates
which should be fulfilled by a suitable measure of dependence
between random variables X and Y (δ(X,Y )):
A) δ(X,Y ) is defined for any pair of random variables X and

Y , neither of them being constant with probability 1.
B) δ(X,Y ) = δ(Y,X).
C) 0 ≤ δ(X,Y ) ≤ 1.
D) δ(X,Y ) = 0 if and only if X and Y are independent.
E) δ(X,Y ) = 1, if there is a strict dependence between X

and Y , i.e. either X = g(Y ) or Y = f(X), where g(x)
and f(x) are Borel-measurable functions.

F) If the Borel-measurable functions f(x) and g(x) maps the
real axis in a one-to-one way ono itself, δ(f(X), g(Y )) =
δ(X,Y ).

G) If the joint distribution of X and Y is normal, then
δ(X,Y ) = |ρ(X,Y )|, where ρ(X,Y ) is the correlation
coefficient of X and Y .

The correlation coefficient of the random variables X and
Y is defined only if D(X) and D(Y ) are finite and positve. It
may be zero also if X and Y are not independent, moreover, it
may vanish inspite of functional dependence between X and
Y . For example if the distribution of X is symmetrical to zero
and Y = X2, then ρ(X,Y ) = 0. |ρ(X,Y )| = 1 is equal to 1
if and only if there is a linear relationship between X and Y .
The correlation coefficient satisfies postulates B and G, and
its absolute value satisfies B, C and G.
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TABLE I
MEASURES OF DEPENDENCE AND FULFILLMENT OF THE POSTULATES

A B C D E F G

correlation coefficient X X

absolute value of corr. coeff. X X X

correlation ratio X X X

symmetrical correlation ratio X X X X

maximal correlation X X X X X X X

mutual information X X X X

informational coeff. of corr. X X X X X X X

The correlation ratio is defined provided that D(Y ) exist and
is positive. It is not symmetric, but one can consider instead
of η(X|Y ) the quantity

max {η(X|Y ), η(Y |X)}

which is symmetric. The correlation ratio satisfies postulates
B, C, E and G, the symmatric correlation ratio satisfies B,
C, D, E and G.

The maximal correlation introduced by H. Gebelein ([18])
of random variables X and Y is defined by

S(X,Y ) = sup
f,g
{ρ(f(X), g(Y ))}

where ρ(·, ·) is the correlation coefficient, and f(x) and g(x)
run over all Borel-measurable functions such that f(X) and
g(Y ) have finite and nonzero variance. It has all the properties
A to G listed above, but unfortunately the maximal correlation
is very difficult to determine and there does not always exist
such functions f0(x) and g0(x) that

S(X,Y ) = ρ(f0(X), g0(Y )) .

IV. INFORMATIONAL MEASURE OF CORRELATION

The well-known measures do not satisfy Rényi’s postulates.
For a better candidate first we recall the definition of mutual
information:

Definition 5. For any two continous random variables X
and Y (admitting a joint probability density), their mutual
information is given by

I(X,Y ) =

∫ ∫
f(x, y) ln

f(x, y)

f1(x) · f2(y)
dxdy

where f(x, y) is the joint probability density function of X and
Y , and f1(x) and f2(y) are the marginal density functions of
X and Y , respectively.

Some properties of the mutual information:
• I(X,Y ) ≥ 0.
• I(X,Y ) = 0 if and only if X and Y are independent.
• I(X,Y ) =∞ if X and Y are conmtinous and there is a

functional relationship between X and Y .
If the joint probability distribution is uniform on the γ-

levels, then the joint density function on a γ-level (f(x, y)) is

constant, so the formula above will be simpler. Let denote Tγ
the area of the γ-level. Then

I(X,Y ) =

∫ ∫
1

Tγ
ln

1

Tγ
f1(x)f2(y)

dxdy

=

∫ ∫
1

Tγ
ln

1

Tγ
dxdy −

∫ ∫
1

Tγ
ln f1(x) dydx

−
∫ ∫

1

Tγ
ln f2(y) dxdy =

= ln
1

Tγ
−
∫
f1(x) ln f1(x) dx−

∫
f2(y) ln f2(y) dy .

Moreover, if the joint probability distribution is uniform on
the γ-levels, and the marginal random variables X and Y has
the same distribution, then

I(X,Y ) = ln
1

Tγ
− 2

∫
f1(x) ln f1(x) dx .

Easy to check that the mutual information satisfies Rényi’s
postulates except C, E and G. Based on the mutual informa-
tion Linfoot ([19]) introduced a measure of dependence, which
satisfies all of the postulates.

Definition 6. For two random variables X and Y , let denote
I(X,Y ) the mutual information between X and Y . Their
informational coefficient of correlation is given by

L(X,Y ) =
√

1− e−2I(X,Y ) .

Based on the definition above, we can define the following:

Definition 7. Let us denote A and B the marginal possibility
distributions of a given joint possibility distribution C. Then
the g-weighted possibilistic informational coefficient of corre-
lation of marginal possibility distributions A and B is defined
by

L(A,B) =

∫ 1

0

L(Xγ , Yγ)g(γ) dγ

where Xγ and Yγ are random variables whose joint distri-
bution is uniform on [C]γ for all γ ∈ [0, 1], and L(Xγ , Yγ)
denotes informational coefficient of correlation.

V. EXAMPLES

First we show that non-interactivity implies zero for infor-
mational coefficient of correlation. In the second we show an
example for non-zero correlation. Then we give two examples
when the correlation coefficients and the correlation ratios are
also zero, but the marginal distributions are not independent.
So in these cases the correlation coefficient and the correlation
ratio are not appropriate tools for measuring the dependence,
but this problem not arises with the informational coefficient
of correlation. Finally we show an example when the measures
of correlation depend on the γ-level sets.
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Fig. 1. Joint possibility distribution defined by the min operator (Mamdani
t-norm). This is the case of non-interactivity of A and B, all of the γ-level
sets are rectangulars.

A. Non-interactivity implies zero correlation

The joint possibility distribution is defined by the Mamdani
t-norm ([20]), see Fig.1:

C(x, y) =

{
min{x, y} if 0 ≤ x, y ≤ 1 ,

0 otherwise .

The marginal possibility distributions are

A(x) =

{
x if 0 ≤ x ≤ 1 ,
0 otherwise .

B(y) =

{
y if 0 ≤ y ≤ 1 ,
0 otherwise .

In this case the γ-level set is a square, with vertices (0, 0),
(0, 1 − γ), (1 − γ, 0) and (1 − γ, 1 − γ). This is the case of
non-interactivity of the marginal possibility distributions. The
area of the γ-level set is

Tγ = (1− γ)2 .

The joint density function is:

f(x, y) =


1

Tγ
if γ ≤ x, y ≤ 1 ,

0 otherwise .

The marginal density function (we have the same expression
for f2(y) with y) is:

f1(x) =


1

Tγ
(1− γ) if γ ≤ x ≤ 1 ,

0 otherwise .

In this case Xγ and Yγ are independent (in probability sense),
because:

f1(x) · f2(y) =
1

Tγ
(1− γ) · 1

Tγ
(1− γ) = 1

(1− γ)2

=
1

Tγ
= f(x, y) .

So I(Xγ , Yγ) = 0, and then the informational coefficient of
correlation is

L(Xγ , Yγ) =
√
1− e−2I(Xγ ,Yγ) = 0 .

In this case the correlation measures are zeros for all γ, so
the g-weighted measures of correlation between the marginal
possibility distributions A and B for arbitrary weighting
function g(γ):

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · g(γ) dγ = 0

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · g(γ) dγ = 0

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · g(γ) dγ = 0

B. Łukasiewitz t-norm

The joint possibility distribution is defined by the well-
known Łukasiewitz t-norm ([21]), see Fig.2:

C(x, y) =

 max{x+ y − 1, 0} if 0 ≤ x, y ≤ 1
and x+ y ≥ 1 ,

0 otherwise .
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0.5
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Fig. 2. Joint possibility distribution defined by the Łukasiewitz t-norm. In
this case the γ-level sets are similar triangles.

The marginal possibility distributions are

A(x) =

{
x if 0 ≤ x ≤ 1 ,
0 otherwise .

B(y) =

{
y if 0 ≤ y ≤ 1 ,
0 otherwise .

The γ-level set:

[C]γ =
{
(x, y) ∈ R2| γ ≤ x, y ≤ 1, x+ y ≥ 1 + γ

}
.

The joint probability distribution on [C]γ :

f(x, y) =


1

Tγ
if (x, y) ∈ [C]γ .

0 otherwise .
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where Tγ is the area of the γ-level set:

Tγ =
(1− γ)2

2
.

The marginal density function (we have the same expression
for f2(y) with y):

f1(x) =


1

Tγ
(x− γ) if γ ≤ x ≤ 1 ,

0 otherwise .

For the mutual information I(Xγ , Yγ) we have to compute:

1∫
γ

f1(x) ln f1(x) dx =

1∫
γ

1

Tγ
(x− γ) ln

1

Tγ
(x− γ) dx

=
[
t =

x− γ
Tγ

]
=

1−γ
Tγ∫
0

t ln t · Tγ dt

= Tγ ·
[
t2

2
ln t− t2

4

] 1−γ
Tγ

0

= ln 2− ln(1− γ)− 1

2
.

With this result the mutual information is

I(Xγ , Yγ) =

= ln
1

Tγ
−
∫
f1(x) ln f1(x) dx−

∫
f2(y) ln f2(y) dy

= ln
1

Tγ
− 2 ·

(
ln 2− ln(1− γ)− 1

2

)
= ln

2

(1− γ)2
− 2 ·

(
ln 2− ln(1− γ)− 1

2

)
=

= 1− ln 2 .

From this the informational coefficient of correlation:

L(Xγ , Yγ) =
√
1− e−2I(Xγ ,Yγ) =

√
1− e−2(1−ln 2)

=
√
1− 4e−2 ≈ 0.6772 .

For this possibility distribution the correlation coefficient is
(see [23])

ρ(Xγ , Yγ) = −
1

2

and the correlation ratio is

η2(Xγ , Yγ) =
1

4
⇒ η(Xγ , Yγ) =

1

2

In this example η2 = ρ2, because of the linear relationship
between Xγ and Yγ . In this case the correlation measures
are not depend on the level γ, so the g-weighted measures
of correlation between the marginal possibility distributions A
and B for arbitrary weighting function g(γ):

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · g(γ) dγ ≈ 0.6772

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · g(γ) dγ = −0.5

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · g(γ) dγ = 0.5

C. Pyramidal joint possibility distribution

Let the joint possibility distribution be a pyramid, whose
vertices are (1, 0), (0, 1), (−1, 0) and (0,−1) on the xy-plane,
see Fig.3. The marginal possibility distributions are
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0
0.5

1

−1
−0.5

0
0.5

1

0

0.5

1

Fig. 3. Pyramid shaped joint possibility distribution. Because of symmetry
the correlation coefficient and the correlation ratio are both zeros, but A and
B are not independent.

A(x) =

 x+ 1 if −1 ≤ x ≤ 0 ,
1− x if 0 < x ≤ 1 ,
0 otherwise .

B(y) =

 y + 1 if −1 ≤ y ≤ 0 ,
1− y if 0 < y ≤ 1 ,
0 otherwise .

Then the γ-level set is a square with vertices (1−γ, 0), (0, 1−
γ), (−(1− γ), 0) and (0,−(1− γ)).

Because of symmetry the correlation coefficients and the
correlation ratio of Xγ and Yγ are both zero, but Xγ and Yγ
are not independent:

f(x, y) 6= f1(x) · f2(y) .

The area of the γ-level set:

Tγ = 2(1− γ)2 .

The marginal density function (we have the same expression
for f2(y) with y):

f1(x) =


1

Tγ
· 2(x+ 1− γ) if −1 + γ ≤ x ≤ 0 ,

1

Tγ
· 2(1− γ − x) if 0 ≤ x ≤ 1− γ ,

0 otherwise .
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We have to compute the following:
1−γ∫

−(1−γ)

f1(x) ln f1(x) dx =

=

0∫
−(1−γ)

1

Tγ
· 2(x+ 1− γ) ln

1

Tγ
· 2(x+ 1− γ) dx

+

1−γ∫
0

1

Tγ
· 2(1− γ − x) ln

1

Tγ
· 2(1− γ − x) dx

= 2 ·
(
1

2
ln

1

1− γ
− 1

4

)
= ln

1

1− γ
− 1

2
.

The mutual information:

I(Xγ , Yγ) = ln
1

Tγ
− 2 ·

(
ln

1

1− γ
− 1

2

)
= ln

1

2(1− γ)2
− 2 ln

1

1− γ
+ 1 = 1− ln 2 .

From this we get the informational coefficient of correlation
which is the same as in the previous example:

L(Xγ , Yγ) =
√

1− e−2I(Xγ ,Yγ) ≈ 0.6772 .

In this case the correlation measures are not depend on the
level γ, so the g-weighted measures of correlation between
the marginal possibility distributions A and B for arbitrary
weighting function g(γ):

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · g(γ) dγ ≈ 0.6772

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · g(γ) dγ = 0

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · g(γ) dγ = 0

D. Conical joint possibility distribution

Let the joint possibility distribution be a cone, whose axis
is the z-axis, and the base is a circle with radius 1, see Fig.4.
The marginal possibility distributions are:

A(x) =

 x+ 1 if −1 ≤ x ≤ 0 ,
1− x if 0 < x ≤ 1 ,
0 otherwise .

B(y) =

 y + 1 if −1 ≤ y ≤ 0 ,
1− y if 0 < y ≤ 1 ,
0 otherwise .

Then the γ-level set is a circle with centre (0, 0) and radius
1 − γ. All of the γ-level sets are symmetrical to the x and
the y axis, so in this case the correlation coefficient and the
correlation ratio are both zero, although Xγ and Yγ are not
independent, because

f(x, y) 6= f1(x) · f2(y) .

The area of the γ-level:

Tγ = π(1− γ)2 .
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1

Fig. 4. Conical joint possibility distribution. Because of symmetry the
correlation coefficient and the correlation ratio are both zeros, but A and
B are not independent.

The marginal density function (we have the same expression
for f2(y) with y):

f1(x) =


1

Tγ
· 2
√
(1− γ)2 − x2 if x ≤ |1− γ| ,

0 otherwise .

The integrals in this case are quite difficult, so we used
numerical methods. The mutual information is approximately:

I(Xγ , Yγ) = ln
1

Tγ
− 2

1−γ∫
−(1−γ)

f1(x) ln f1(x) dx ≈ 0.1447 .

With this approximation the informational coefficient of cor-
relation is:

L(Xγ , Yγ) =
√

1− e−2I(Xγ ,Yγ) ≈ 0.5013 .

In this case the correlation measures are not depend on the
level γ, so the g-weighted measures of correlation between
the marginal possibility distributions A and B for arbitrary
weighting function g(γ):

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · g(γ) dγ ≈ 0.5013

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · g(γ) dγ = 0

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · g(γ) dγ = 0

E. Larsen t-norm

Let the joint possibility distribution defined by the product
t-norm (Larsen t-norm, [22]), see Fig.5 (for more general case,
when the joint possibility distribution is defined by the product
of triangular fuzzy numbers see [12]):

C(x, y) =

{
xy if 0 ≤ x, y ≤ 1 ,
0 otherwise .

The marginal possibility distributions are
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Fig. 5. Joint possibility distribution defined by the product t-norm (Larsen
t-norm). In this case the correlation measures are depend on the γ-level sets.
The possibilistic correlation can be determined by an appropriate weighting
function.

A(x) =

{
x if 0 ≤ x ≤ 1 ,
0 otherwise .

B(y) =

{
y if 0 ≤ y ≤ 1 ,
0 otherwise .

Then a γ-level set of C is,

[C]γ =
{
(x, y) ∈ R2| 0 ≤ x, y ≤ 1, xy ≥ γ

}
.

The area of the γ-level:

Tγ = 1− γ + γ ln γ .

The marginal density function (we have the same expression
for f2(y) with y):

f1(x) =


1

Tγ
·
x− γ
x

if γ ≤ x ≤ 1 ,

0 otherwise .

In this case the correlation coefficient, the correlation ratio,
the mutual information and the informational coefficient of
correlation depend on the level γ. The integrals are quite
difficult (see [23]), so we used numerical integration methods.
The results are shown on Fig.6. The limits in zero and in 1
are the following (see [23], [24] )

lim
γ→0

ρ = 0 , lim
γ→1

ρ = −1/2 ,

lim
γ→0

η = 0 , lim
γ→1

η = 1/2 ,

lim
γ→0

L = 0 , lim
γ→1

L ≈ 0.6772 .

In this case the measures of correlation depend on γ, so
the weighted possibilistic correlation can be determined by
choosing a weighting function g(γ). If the weighting function
is g(γ) ≡ 1 then:

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · 1 dγ ≈ 0.5786

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · 1 dγ ≈ 0.3888

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · 1 dγ ≈ 0.4010

If the weighting function is g(γ) = 2γ then:

Lg(A,B) =

∫ 1

0

L(Xγ , Yγ) · 2γ dγ ≈ 0.6282

ρg(A,B) =

∫ 1

0

ρ(Xγ , Yγ) · 2γ dγ ≈ 0.4441

ηg(A,B) =

∫ 1

0

η(Xγ , Yγ) · 2γ dγ ≈ 0.4490

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

correlation coefficient
correlation ratio
informational coeff.

Fig. 6. The absolute value of the correlation coefficient, the correlation ratio
and the informational coefficient of correlation in function of γ, when the
joint possibility distribution is defined by Larsen t-norm.

VI. CONCLUSION

We have introduced the notion of weighted possibilistic
informational coefficient of correlation between marginal dis-
tributions of a joint possibility distribution. This coefficient is
equal to zero if and only if the marginal possibility distribu-
tions are independent (which does not hold for possibilistic
correlation coefficient and ratio).
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[11] R. Fullér, J. Mezei and P. Várlaki, Some Examples of Computing the
Possibilistic Correlation Coefficient from Joint Possibility Distributions,
in: Imre J. Rudas, János Fodor, Janusz Kacprzyk eds., Computational
Intelligence in Engineering, Studies in Computational Intelligence Se-
ries, vol. 313/2010, Springer Verlag, [ISBN 978-3-642-15219-1], pp.
153-169. doi: 10.1007/978-3-642-15220-7 13
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