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Abstract:- A new method of elaboration of non-parametric 

universal filter elaborated. The method is based on low 

rank tensorial approximation of singular matrixes of 

SVD problem. Results of the approximation method 

were compared with classical methods of solutions of 

singular value decomposition problem.  It was shown 

that the elaborated method can be successfully used as a 

non-parametric universal filter for both stationary and 

non-stationary time series filtration. 
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I. INTRODUCTION.  

Despite of its generality and efficiency in some 

Time Series Analysis problems (we mean Singular 

Spectrum Analysis or SSA [1, 2]) it has not been used 

widely in many engineering fields, including mechanical 

engineering.  

Nowadays the method has only started to be used in 

several fields of mechanics and applied physics: Singular 

Value Decomposition (SVD) being generalization of 

Eigen Value Decomposition (EVD) permits to compute 

singular (proper) values of non-square matrices. Also it 

is used in such important engineering fields as 

processing of experimental data in vibrations problems, 

in numerical computation of the coefficients of 

amplitude equations and normal forms, in some 

problems of Hamiltonian Mechanics [3,4,5]. 
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Usage of classical Singular Value Decomposition 

(SVD) leads to necessity of calculation of eigen values 

and eigen vectors of high dimensional matrixes [1, 2]. 

There are a lot of well known and widely used methods 

of their computation [6, 7]. First of all, we outline a big 

group of so called transformation methods: Schur, LR, 

QR, Jacobi, Givens, and Householder etc.  Also found a 

wide use polynomial iteration methods (direct 

computation of det (A-λ B) determinant’s roots) and a 

group of methods (variational) based on stationary 

property of the eigen values (Rayleigh quotient) [2, 

6].We shall not discuss them as all these methods are 

well known and one can find their detailed consideration 

in many both classical and modern text books and 

monographs.  

Despite of their very different nature all these 

methods can be characterized with similar 

disadvantages: necessity of big computations volume, 

not reliable stability and sensitivity for ill-conditioning. 

The latter problem (ill-conditioning) is very important 

especially for SSA because the matrix X constructed on 

observed data can be turned to be ill-conditioning. To 

avoid these computational problems we elaborated a new 

approach and algorithms based on principally new 

approach. 

 

II. THEORETICAL PART. 

 
The all results of the work is based on the 

conception of approximation by low rank tensors and 

Eckart-Young theorem [8,9]. 

Definition [7]. A best rank-r approximation to a 

tensor kVVt ⊗⊗∈ ...1 is a tensor smin with  

,inf
)(

min tsts
rsrank

−=−
≤

 

where ⋅ - Frobenius norm[1] 

The latter generates Eckart-Young problem [8]: 

find a best r-rank approximation for tensor of order k.  
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The problem is not solvable in general.  But for 

matrixes it was proved as  

Eckart-Young theorem [7,8]. Given a 

np× matrix X of rank r ≤ n ≤ p, and its singular value 

decomposition, UΛV′, with the singular values arranged 

in decreasing sequence  

λ
1 
≥ λ

2 
≥ λ

3 
≥ … λ

n 
≥ 0 , 

then there exists a np×  matrix B of rank s, s ≤ r, which 

minimizes the sum of the squared error between the 

elements of B and the corresponding elements of X  

when  

B = UΛsV
T
, 

where U and V matrices consist of left and right 

singular vectors of the  matrix X and Λs is diagonal 

matrix with the diagonal elements  

λ1 ≥ λ2 ≥ λ3 ≥ … λs > λs+1 = λs+2 = … = λn = 0. 

From the theorem follows that one can represent 

factorization of a K×L matrix X (with rank  r ≤ 

min(K,L)) by means of Singular Value Decomposition 

as 

∑∑
==

==
r

i

ii

r

i

i HXX
11

λ , (1) 

where Xi - 1-rank matrices, which can be represented as 

a Kronecker product  iii vuX ⊗= of left ui and right vi 

singular vectors, corresponded to the singular value iλ  

and Hi = iiXλ  – also 1-rank matrices. Note that Hi are 

decomposable, so iii baH ⊗= , where ai and bi are 

linearly independent vectors. They may be expressed via 

left ui and right vi singular vectors. 

iii ua λ= and iii vb λ= . 

Each of the two systems of vectors ui (i=1,2,…,K) 

and vi (i=1,2,…,L) are orthonormal  systems, therefore 

full contraction of Xi matrices satisfies 

1,
( , )

0,
i j

i j
X X

i j

∗ =
= 

≠
. (2) 

One can consider (1) as a decomposition of the second 

order tensor (r-rank) X by a system of “coordinate” 

tensors Xi (1-rank). It is interesting to underline that 

singular values iλ  can interpreted as magnitudes of the 

projections of tensor X onto tensors Xi (i=1,2,…,r). The 

justification of such interpretation follows from 

orthonormality of vectors ui (i=1,2,…,K) and vi 
(i=1,2,…,L) 

1

,
( , ) ( , ) ( (( ),( ))

0,

r
j

j i i j i i i j j

i

i j
X X X X u v u v

i j

λ
λ λ

=

=
= = ⊗ ⊗ =

≠
∑ . 

If singular values and both types of singular 

vectors are known, one may use decomposition (1). Now 

we are interested in inverse problem: define singular 

values and both types of singular vectors, using matrix X 

and decomposition (1). It can be done by means of 

consequent computation of matrices H1, by means of 

minimization of the sum of the squared errors between 

the elements of X and the corresponding elements of H1. 

The squared sum of errors can be represented as follows  

2 2 2

1 1 1 1

( ) ( )
K L K L

ij ij ij i j

i j i j

S x h x a b
= = = =

= − = −∑∑ ∑∑ .  

Clear, that it is a function of (K+L)
2
 unknown 

variables ( , 1,..., )
j

ia i j K=  and  ( , 1,..., )
j

ib i j L= . So, 

minimization of the S
2
 leads to the system of equations  

2

1 1

( ) 0; ( 1,..., )
L L

ij j i j

j j

x b a b i K
= =

− = =∑ ∑  

2

1 1

( ) 0. ( 1,..., )
K K

mn m n m

m m

x a b a n L
= =

− = =∑ ∑   (3) 

Solution of the system gives vectors a and b, which 

define the best approximation of matrix X by 1-rank 

matrix H1. In fact, the matrix H1 is the first term in 

decomposition (1). Then, applying the same procedure to 

matrix X2=X-H1, we are getting the second term H2 and 

so on. 

Now, there is a problem - how to solve the system 

(3), because we have already reduced the problem of 

computation of (1) to the problem of solution of the 

system (3).  Few analysis permits to conclude, that the 

system can’t be solved analytically, so we elaborated 

numerical approach, which is the core of an algorithm of 

SVD by means of 1-rank tensors approximation. Below 

we represent full algorithm of the system (3) solution 

and SVD by means of approximation by 1-rank tensors, 

which is completely based on the above theoretical 

consideration. 

 

III. ALGORITHM  

 

Now we can represent the method, which, in fact, 

is a method of solution of the system (3). It starts with 

the choosing of any arbitrary matrix (vector) a
(1)

 with the 

dimensions K×1.  

The elaborated method consists of cycles and 

iterations. Total number of cycles equals to r where r is 

the rank of the matrix X or number of singular values of 

the matrix X. Each cycle consists of iterations and at the 

end of cycle i we have Hi where Hi is a component of 

decomposition ∑
=

=
r

i

iHX
1

and i is the number of 

current cycle. Iterations are computed by means of the 

following steps.  

Step 1: Choose arbitrary vector
(0)
a . 
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Step 2: Construct a matrix using tensor product 
(0) (0) (0)
w a b= ⊗ where b

(0)
 is a vector with unknown 

components; upper index in brackets shows number of 

iterations. These components can be computed by means 

of minimizing of Frobenius norm [2, 6] of differences 

between matrices X and w(0)    

(0) (0) 2

1
1 1

min ( )
i

K L

ij i j
a m

i j

x a b
≤ ≤

= =

 
− 

 
∑∑ . (4) 

Clear that minimizing of this norm is a special 

case of least square method [8]. As a result we shall have 

to get normal equations with respect to unknown 

components of   vector b 

( )
( ) ( )( )

2

(0) (0)

21 1 (0) (0)

(0)
1

2 0

K L

ij i j
L

i j

i ij i j

ij

x a b

a x a b
b

= =

=

 
∂ −  
  = − − =

∂

∑∑
∑  .  ( 

j=1,2,…,K)   

The latter is a normal equation for minimization 

problem of  (4). It is easy to define now unknown values 

of bj : 

( )

(0)

(0) 1

2
(0)

1

, where 1, , .

L

ij i

i
j L

i

i

x a

b j K

a

=

=

= =
∑

∑
…

  

(5) 

Step 3: Next step of the algorithm consists of 

calculation of 
(1)

ia  on the base of solution of the 

following problem  

( )
2

(1) (0)

1
1 1

min .
i

K L

ij i j
a K

i j

x a b
≤ ≤

= =

 
−  

 
∑∑   (6) 

Similar to (5), it is easy to represent the solution of 

(6) as 

( )

(0)

1(1)

2
(0)

1

, where 1, , .

K

ij j

j

i K

j

j

x b

a i L

b

=

=

= =
∑

∑
…   (7) 

Using (7) one can construct a new matrix 
(1) (1) (0)

w a b= ⊗  . If Frobenius norm of difference of 

matrices w
(0)

 and w
(1)

  

( )
2

2
(0) (1) (0) (0) (1) (0)

1 1

L K

i j i j

i j

w w a b a b
= =

− = −∑∑
 

is greater than predefined accuracy ε, then we start 

new iteration going to step 2. In general while iteration i 

, we have matrix  
( ) ( 1)

( )

( ) ( )

, 2 1

, 2

k k

j

k k

a b j k
w

a b j k

− ⊗ = −
= 

⊗ =
. 

At the end of each iteration we check 

inequality
2

( 1) ( )j jw w ε− − ≤ . If it holds we have to stop 

iterations and this is the end of current cycle and denote 

matrix w
(i)

 as H(1). Note that H(1) is the first component in 

SVD of matrix X.   

To start next cycle we calculate X- H(1)= X(2). The 

matrix defines new system of type (3), then we apply all 

above mentioned iteration to the system and so on till we 

get matrix X(r) .  

So we will get X=H1+H2 +...+Hr+Xn where Xn is 

very small which can be neglect able. So as a result  

∑∑∑ ⊗=⊗==
==

,
11

iiii

r

i

i

r

i

i vubaHX λ   (8) 

where iii ua λ= and iii vb λ= . The latter 

follows that left and right singular vectors can be 

represented as  

i
i

i

a
u

a
=  and i

i

i

b
v

b
=      

and taking into account (8) singular values can be 

represented as  

i i ia bλ = .  

Thus, the represented algorithm solves the inverse 

problem defined above: define singular values and both 

types of singular vectors, using matrix X and 

decomposition ∑∑
==

==
r

i

ii

r

i

i HXX
11

λ . 

IV. NUMERICAL EXAMPLE  

 

Below we represent result of application of 

suggested algorithm to computation of singular values 

and both (left and right) singular values of 7 x 9 singular 

matrix X (Table 1). Corresponding procedures were 

written in MatLab   programming language. 

 

 

7 x 9 singular matrix X                    Table 1 

91 56 28 41 70 47 53 39 87 

84 69 61 95 21 50 49 80 47 

22 90 67 91 57 90 5 95 74 

89 39 99 68 4 78 7 11 27 

39 96 27 96 78 99 95 9 37 

30 80 22 33 21 22 81 98 99 
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10 100 95 22 2 53 5 94 43 

 

All results of computations are represented in 

below Tables. 

 

First four left singular vectors.  Table 2 

Vector 1 Vector 2 Vector 3 Vector 4 

-0.3557 -0.3059 -0.2090 0.4682 

-0.4095 -0.0077 0.1119 0.3138 

-0.4477 0.2461 0.0682 -0.3997 

-0.3127 -0.0969 0.7104 0.3154 

-0.4126 -0.6178 -0.0791 -0.5697 

-0.3551 0.2047 -0.6447 0.2434 

-0.3336 0.6425 0.1121 -0.1981 

 

 

 

Last three left singular 

vectors.                        Table 3              

Vector 5 Vector 6 Vector 7 

0.5038 -0.3850 0.3390 

-0.3163 0.6646 0.4238 

0.6403 0.3451 -0.2134 

-0.1101 -0.2063 -0.4837 

-0.3067 -0.1478 0.0356 

-0.2748 -0.0153 -0.5305 

-0.2332 -0.4759 0.3785 

 

First five right singular vectors.                      Table 4 

Vector1  Vector3 Vector3 Vector4 Vector5 

-0.2916 -0.3114 0.2578 0.7500 0.0168 

-0.4380 0.1586 -0.1380 -0.3240 -0.2463 

-0.3177 0.3366 0.5353 0.0826 -0.1586 

-0.3775 -0.2585 0.2301 -0.1780 -0.0370 

-0.2180 -0.3641 -0.1909 -0.2300 0.5661 

-0.3647 -0.1641 0.3146 -0.3702 0.1334 

-0.2449 -0.3958 -0.4533 0.0526 -0.6383 

-0.3522 0.6099 -0.2917 0.0943 0.0386 

-0.3393 0.0983 -0.3860 0.3041 0.4066 

 

 

Last four right singular vectors.          Table 5                     

Vector 6 Vector 7 Vector 8 Vector 9  

-0.0182 0.3276 -0.2030 -0.1999 

-0.2955 0.3698 -0.5787 0.1984 

-0.3216 -0.0651 0.4746 0.3666 

0.7447 -0.1607 -0.0908 0.3406 

-0.1309 0.4495 0.4070 0.1589 

-0.1901 -0.3244 -0.0322 -0.6663 

-0.0983 -0.1404 0.3668 -0.0608 

0.3972 0.2240 0.2462 -0.3741 

-0.1834 -0.5905 -0.1690 0.2397 

 

 It easy verify that the same results could be obtained by 

means of corresponding MatLab software. 
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V. EXAMPLES OF TIME SERIES FILTRATION 

 

a. Non-Stationery time series 

 

One of the most important advantages of the 

method described in the article is its ability to be used as 

a nonparametric universal filter for time series modeling, 

filtration and forecasting. We have to outline that this 

field of science is one of the most quickly development, 

and a lot of advanced scientific researches are devoted to 

solutions of its main problems [10-12].   

Analysis of the time series permits to conclude 

easily that a time series may contain the following 

components:  1. trend; 2. low-frequency oscillation over 

trend; 3. several components of comparatively higher 

frequency. If it is necessary to separate these 

components one has to design different type of band- 

pass filters. Designing such kinds of filter requires first 

of all determinations of corresponding cut off 

frequencies which in turn requires investigation of time 

series Fourier spectrum. But because initial time series 

may contain trend and that means it is not stationary so 

one needs to eliminate the trend first. 

We would like to outline that the latter is typical 

parametrical approach because choosing of cut off 

frequencies depends on investigator’s personal 

experience. Also important to outline that eliminating 

trend is also typical parametrical approach, because 

choosing of type and order of trend (in general) also 

depends on researcher’s personal opinion and 

experience. 

It is easy to see that a lot of different very specific 

functions are needed in the filtering processes and usage 

of those functions requires high level professional skill. 

It is also requires certain practical experience to choose 

important parameters. These should be considered as 

significant disadvantages of traditional filtering methods. 

We represent usage of SSA as a universal filter 

with examples of two time series: 1. a stock's rates of 

return of 463 daily observations and 2. model data of a  

periodic signal corrupted with white nose. Clear, these 

data are quit different according to their nature, so, from 

conventional approaches point of view, their filtration 

requires correspondingly different approaches. 

Universality of the filter, based on the method under 

consideration, consist in that it can be directly applied to 

both of the mentioned problems. 

463 daily observations of rates of return are 

represented (dashed line) in the fig.1. The time series 

contains a trend, thus usage of  conventional methods 

requires several steps to filter it: 1. elimination of the 

trend, to obtain time series close to stationary (may be in 

wide sense); 2. design of  a filter for  residual time 

series, which also include certain steps: determination of 

Fourier Spectrum of the time series after elimination, 

choosing of cut-off frequencies etc.   
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Fig.1. rates of return of 463 daily observations: 

observations - dashed curve; filtered observations – 

continuous curve 

 

Filtered observations were restored by means of 

just matrix H1 of decomposition (1), which was 

determined by means of elaborated method of 

computation of Singular values and vectors. Other 

factors of the decomposition represent high frequencies 

components of initial observations, which were filtered. 

Important to outline that non-stationary time series was 

filtered, without any preliminary transformation and 

specification of a type of trend. The latter shows non-

parametric nature of the method.  

 

b. Periodic signal with white nose additive 

component 

 

Separation of Low frequencies components from 

the High ones is one of the most important problems in 

signal processing and applied time series analysis. 

Among others the most usable methods applied to solve 

the problem are: MUSIC and Pisarenko methods [2]. 

Both are based on estimation of pseudo spectrums of 

analyzed signal. The methods are parametric and 

efficient usage of them requires predetermination of 

main structure of mathematical model.  

We illustrate results of usage of elaborated 

approach by means of  solution of harmonic 

decomposition problem for a time series consisted of 

two periodic and additive noisy components. Time series 

is quite sort: 200 samples (Fig.1).   
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Fig.2. Periodic signal corrupted with white 

noise component . 

 

Note that we took noise component quite strong: 

its magnitude comparable with the magnitude of basic 

signal. According to Singular Spectrum Analysis 

technique and on the base of these 200 samples, we 

designed trajectory matrix X with 20 rows and 10 

columns.  

Following the represented above Low Rank 

Tensorial Approximation approach, trajectory matrix X 

was decomposed according to (1).Total number of 

nonzero singular valus were 10 (it equals to rank of the 

trajectory matrix X). The singular values shown in Table 

6 are as follows  

Table 6 

№ 
Singular 

value 

Relative 

singular 

values 

(Total=8

711.84) 

№ 
Singular 

value 

Relative 

singular 

values 

(Total=8

711.84) 

1 3172.71 36.42% 6 214.2 2.46% 

2 3123.71 35.86% 7 207.21 2.38% 

3 596.5 6.85% 8 206.37 2.37% 

4 572.82 6.58% 9 201.12 2.31% 

5 218.79 2.51% 

1

0 198.41 2.28% 

 

The first two values, which are significantly bigger 

than all others (their cumulative sum equals 72.2%), 

detected two the periodic components whereas all others 

represent random component, but among them the 

highest values of the third and fourth singular values 

connected with also high level of random components 

magnitude (cumulative sum of the first four singular 

values equals to 87% ). Using hankelization procedure 

for: H1 and H2 matrices, two harmonic components were 

restored (fig.2 and fig.3 ) and for sum of matrices H3+H4  

noise component  was restored (fig.4 ) 

 

Fig.3. The first restored Periodic component. 

 

Fig.4.The second restored Periodic component  

 

 
Fig. 5 . Restored White Noise component. 

 

We have to underline two things: 1. high level of 

random components magnitude (its approximately 25 

units)  and 2.  no preliminary Hypothesis were used to 

separate deterministic periodic ad random components.   

 The  latter again confirms  non-parametric nature 

of the method and its universality. 

We compare SSA based approach with Music 

method. Application of the latter gives pseudo spectrum 

of the signal, which is represented in 6. Analyzing the 

Fig.  it is easy to conclude that input signal consists of 

two periodic components because pseudo spectrum 

contains two peak points at frequencies 50 Hz and 100 

Hz.  MUSIC method does not give the shape of 

components of the signals, so one needs to construct 

these components analytically.  

On the contrary elaborated method gives as its 

output all components of the initial signal. They are 

represented graphically below. 
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Fig. 6. Pseudo spectrum of the signal 

 

VI. CONCLUSION 

 

A new method of computation of singular values 

and left and right singular vectors of arbitrary non-

square matrices has been proposed. The method permits 

to avoid solutions of high rank systems of linear 

equations of singular value decomposition problem. On 

the base of Eckart-Young theorem, it was shown that 

each second order r-rank tensor can be represent as a 

sum of the first rank r-order “coordinate” tensors.  

A new system of equations for “coordinate” 

tensor’s generators vectors was obtained. An iterative 

method of solution of the system was elaborated. Results 

of the method were compared with classical methods of 

solutions of singular value decomposition problem.   

The elaborated method can be successfully used as 

a non-parametric universal filter for both stationary and 

non-stationary time series filtration. 
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