
 

 

 
Abstract— In this article we describe the regional evolution of 

precipitation in Dobrudja, a region situated in the South – East of 
Romania, using the mean annual precipitation collected from 1965 to 
2005, at ten hydro-meteorological stations. Firstly, the statistical 
analyzes of the ten series have been performed. ANOVA followed by 
the Tukey and the Scheffé tests reveal possible grouping of 
homogenous data series. Since Sulina series has a particular 
behaviour, due to its geographical position, models for the 
precipitation evolution have been built using all the series or only 
nine (without Sulina) and comparisons have been done. The 
modelling techniques used were nonparametrics - local linear 
smoothing and smoothing splines. 
 

Keywords — linear model, nonparametric, precipitation 
evolution, smoothing. 

I. INTRODUCTION 

ecent studies on weather variations [4], [8] emphasized an 
increasing precipitation rate of 20 - 40%, in Northern 

Europe and a decreasing one of 10 - 40% in the South of 
continent. It was stated that annual zonal average precipitation 
increased about 7% to 12% for the zones from 30oN to 85oN 
in emerged landmasses in the Northern hemisphere, excepting 
the Far East [13] [19].   

Analyzing patterns, building models and testing their 
validity is a step in understanding and predicting the weather 
evolution. The complexity of the problem of modeling 
meteorological time series derives from the diversity of 
phenomena that generally affect the climate. Such time series 
often show non-linear behavior, their analysis constituting a 
topic of substantial interest in the literature [8] [12] [18]. 
Changes in the environment may trigger shifts in the process 
describing the time series. Classical approaches such as the 
linear model rely on the assumption of a constant data 
generating process. Often they may fail to obtain adequate 
models due to the nonlinear dynamic behavior of time series 
and to the lack of methods adaptation. This makes the problem  
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very well suited for the use other methods, as neural networks, 
genetic algorithms or hybrid approaches [2] [20] [22]. 

Nonparametric methods are statistical techniques that do 
not require a researcher to specify functional forms for objects 
being estimated. Such methods are becoming increasingly 
popular for applied data analysis [20]. They are often 
deployed after the rejection of a parametric model based on 
specification tests.  

To understand the climate variability, a number of studies 
[4][17] reported the results concerning the analysis of 
temperature evolution in the Black Sea region, where 
Romania and particularly Dobrudja is situated. A systematic 
analysis of precipitation evolution in Dobrudja region has also 
been done in [1] [3] [5] [6]. Different methods (neural 
networks, Box – Jenkins techniques, gene expression 
programming and hybrid algorithms) have been used to 
determine models for the individual series. We mention that 
the gene expression programming method gave similar results 
as ARMA models, for the annual series; for longer series, the 
adaptive gene expression programming (AdaGEP) or the 
hybrid model AdaGEP – AR performed better.  

Moving from the local to the regional approach, in this 
article we present the results of modelling the general 
evolution of precipitation in Dobrudja, obtained by 
nonparametric methods [11].  

The paper is organized as follows. Section II summarizes 
the theoretical results used in the modeling. Section III gives 
the methods used for the precipitation modeling and Section 
IV, the models for the precipitation series. The last section is 
the concluding remarks. 

II. DOBRUDJA AND THE DATA BASE 

By its physical and geographical characteristics, Dobrudja 
represents a special unit of Romanian territory, being a 
structural and petrographic mosaic, characterized by an 
accentuated non-uniformity and variety of its active surface. 
The Black Sea and the Danube have a major influence on the 
climatic characteristic of this area.  

The circulation of atmospheric masses influences the 
repartition of annual precipitation quantities, which registered 
small values. The atmospheric masses generally circulate from 
west to east. The big aquatic unities from the West of Danube 
and from the East of the Black Sea have the role of thermic 
barrage. The precipitation decreases from Danube to the Sea, 
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in Dobrudja plateau, and it increases in the Southern part of 
region, on the direction from North - East to South - West. 
The differences in quantities are also due to the relief aspect 
and to the repartition and structure of vegetation.  

The data studied in this article is the annual precipitation 
series (Fig.1), collected in the period 1965-2005 at ten 
meteorological stations from Dobrudja region, whose 
coordinates are given in Table I. 

 

 
 

Fig. 1. Annual data series 
 

Table I. The coordinates of meteorological stations 
 
 Station Lat Long 

Elev. 
(m) 

1965 - 2005 
av. precip.  

(mm) 
1 Adamclisi 44:08  28:00  158 484.54 
2 Cernavoda 44:21  28:03  87.17 487.60 
3 Medgidia 44:15  28:16  69.54 449.92 
4 Harsova 44:41  27:57  37.51 408.82 
5 Corugea 44:44  28:20  219.2 434.67 
6 Tulcea 45:11  28:49  4.36 461.84 
7 Sulina 45:09  29:39  2.08 261.63 
8 Jurilovca 44:46  28:53  37.65 378.39 
9 Constanta 44:13  28:38  12.8 423.04 

10 Mangalia 43:49  28:35  6 427.74 

III. METHODOLOGY 

Before the modelling process, data has been checked for 
accuracy. Different tests (normality, homoscedasticity, 
independence etc.) have been performed on each series [6]. 

Since our aim is to describe the regional evolution of 
precipitation, the model building was preceded by the 
homogeneity analysis of time series. Therefore, the steps in 
our modelling procedure were: 

I. Determining the differences between the precipitation 
data collected at different hydro-meteorological stations. 

For this, Levene test was used to test the null hypothesis 
that the within – group variances are constant across groups 
[16]. 

The null hypothesis is: 
 

H0: ,... 22
2

2
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and its alternative is: 
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where: 

- n is the sample volume (410. in our case), 
- k is the number of groups in which the sample is divided 

(k = 10, in this case), 

- in  is the sample size of each group ( in = 41, in this case), 

- ijX is the element j in the i - th group, 

- .iX is the mean of the i-th group, 

- .iijij XXZ  , 

- .iZ is the mean group of ijZ , 

- ..Z is the overall mean of ijZ . 

The null hypothesis is rejected at the significance level  , 

if knkFW  ,1, , where knkF  ,1,  is the upper critical value 

of the F distribution with k - 1 and n – k degrees of freedom at 
the significance level of  . 

       
II. Performing one-way analysis of variance (ANOVA), to 

compare the means of the ten data series.  
ANOVA tests the null hypothesis that samples in two or 

more groups are drawn from the same population, using the 
Fisher distribution, F. To do this, two estimates of the 
population variance are made, on the assumptions:  

 - Response variable is normally distributed (or 
approximately normally distributed), 

- Samples are independent, 
- Variances of populations are equal, 
- Responses for a given group are independent and 

identically distributed normal random variables. 
If the group means are drawn from the same population, the 

variance between the groups’ means should be lower than the 
variance of the samples. A higher ratio therefore implies that 
the samples were drawn from different populations [14]. 

ANOVA is a relatively robust procedure with respect to 
violation of the normality assumption. 
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If a significant result has been obtained from an overall F – 
test, investigators often wish to undertake further tests (for 
example, Tukey HSD and Sheffe or LSD) to determine which 
particular group means differ [15].  

 
III. Fitting the precipitation evolution by different methods: 
 Mean multi-annual model, 
 Kernel estimation smoothing [10], 
 Local linear smoothing [7], 
 Smoothing splines. 
Nonparametric models can provide accurate methods of 

data analysis because they make minimal assumptions about 
the data - generating process. For example, nonparametric 
regression provides a method to estimate the unknown 
regression curve representing the actual relationship between 
a covariate and the outcome variable, without making 
assumptions that the true curve in the population is linear. 
Therefore, using a nonparametric model to describe the 
evolution a process of phenomena is a good option since there 
are fewer restrictions on the data than in the case of using 
parametric models.  

These methods are nonparametric, since they trace the 
dependence of a response variable ( iy ) on one or several 

predictors without specifying in advance the function that 
relates the response to the predictors:  
 

)()( ii xfyE   

 
where )( iyE is the mean for the ith of n observations.  

Nonparametric regression is therefore distinguished from 
linear regression, in which the function relating the mean of 

iy to the xi is linear in the parameters, 

 

ii xyE )( , 

 
and from traditional nonlinear regression, in which the 
function relating the mean of iy  to the ix , though nonlinear 

in its parameters, is explicitly specified:  
 

),()(  ii xfyE . 

 
      There is a large literature on nonparametric regression 
analysis. For more extensive introduction to the subject see 
[9][10]. 

In the mean multi – annual model, the precipitation 
variation is a described by a polygonal line, with the vertices 

),( ii yt , where iy  is the average of annual mean 

precipitations, registered at all the stations in the year it . The 

iy can be calculated as simple or weighted means, by 

Thiessen’s polygons method [17]. 
A kernel smoother uses a set of weights, defined by a 

kernel, to produce the estimate at each target value. The 
weight given to the j - th point in producing the estimate at 

0y  is defined by ,/ 0
0 



 

xxKc  where K(t) is the kernel,  - 

the window – width (bandwidth), and 0c  is a constant, usually 

chosen so that the weights sum to unity [10]. 
Local polynomial smoothing [9] is a method in which at 

each point in the data set, a low-degree polynomial is fit to a 
subset of the data, with explanatory variable values near the 
point whose response is being estimated. The polynomial is fit 
using weighted least squares, giving more weight to points 
near the point whose response is being estimated and less 
weight to points further away. The value of the regression 
function for the point is then obtained by evaluating the local 
polynomial using the explanatory variable values for that data 
point. 

If the order of the local polynomial is 1, we discuss about a 
local linear fit. 

A cubic smoothing spline is a function )(ts  that minimizes   
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where   is a roughness penalty and )(ts   is the second 

derivative of )(ts . 

IV. RESULTS 

I. The precipitation’ box plot is presented in Fig. 3. A 
number was assigned (Subject_ID) to each station as follows: 
1– Adamclisi, 2 – Cernavodă, 3 – Medgidia, 4 – Hârșova, 5 – 
Corugea, 6 – Tulcea, 7 – Sulina, 8 – Jurilovca, 9 – Constanta, 
10 – Mangalia. 

Analysing the chart we remark that that eight series present 
two or three outliers.  

 

 
 

Fig. 3. Box plot of annual amount of precipitation in mm of 10 
stations in Dobrudja for the period 1965 - 2005 
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The result of Levene’s test (Table II) is consistent with our 
examination of the box plots. We didn’t find enough evidence 
for a departure from the homogeneity assumption since the p -
value, Sig.= 0.49 > 0.05 =  . 

 
Table II. Test of homogeneity of variances 

Levene statistic df1 df2 Sig. 
0.940 9 400 .490 

(df1 = k -1, df2 = n – k are the degrees of freedom and Sig. is 
the p-value.) 

 
II. We can now assess the effect of geographical position of 

stations on precipitation. The one-way ANOVA table, 
including the F-test is shown in Table III.  

We deduce a significant effect of station position on 
precipitation, since 05.0,004.13)400,9(  pF . 

 
Table III. ANOVA table for precipitation data 

 
Sum of  
Squares df 

Mean  
Square F p –val

Between  
Groups 

1519346.3 9 168816.2 13 0.00 

Within 
 Groups 

5192774.1 400 12981.9   

Total 6712120.4 409    

 
Table IV. Results of the Tukey HSD and the Sheffé tests 

Subsets for α = 0.05 
Test ID 

1 2 3 
7 261.63   
8  378.39  
4  408.82 408.82 
9  423.04 423.04 

10  427.74 427.74 
5  434.66 434.66 
6  434.66 434.66 
3  449.92 449.92 
1   484.54 
2   487.59 

Tukey 

Sig. 1.000 0.126 0.058 
7 261.63   
8  378.39  
4  408.82 408.82 
9  423.04 423.04 

10  427.74 427.74 
5  434.66 434.66 
6  434.66 434.66 
3  449.92 449.92 
1   484.54 
2   487.59 

Scheff
é 

Sig. 1.000 0.527 0.370 
 

Performing the Tukey HSD and the Sheffé tests it results 
that there are the following possibilities to group the 
meteorological stations, taking into account the mean annual 
precipitation: 

Group 0: Sulina;  
Group I: Jurilovca, Hârșova, Constanta, Mangalia, Corugea, 

Tulcea, Medgidia;  
Group II: Hârșova, Constanta, Mangalia, Corugea, Tulcea, 

Medgidia, Adamclisi, Cernavodă. 
Both tests give the same grouping possibilities as it can be 

seen in Table IV. 
The results of these tests are consistent to the observation in 

Fig. 3. Also, the fact that Sulina form a distinct group is in 
concordance to its particular position. It is situated 13 km 
offshore, the amount of precipitation is influenced by the 
presence of Danube and the Black Sea.  

Since the aim is to describe the general evolution of 
precipitation in Dobrudja, we can follow the ways: (A) 
considering all the ten series, (B) eliminating at least Sulina 
series and using nine series, (C) considering Group I or (D) 
considering the Group II, to determine the global model.  

In this article we shall present only the first two approaches. 

4.1. Results for integral data series (10 stations) 

In this subsection we discuss the results obtained if we 
work with all ten data series, i.e. in the case (A).  

The curves fit by the annual average, the annual weighted 
average (by Thiessen polygons methods) and the kernel 
smoothing (using the Gaussian kernel, with a bandwidth of 2 
and 3) methods are represented in Fig. 4. 

Analysing the residuals in the first two models (Figs. 5 and 
6) we reject the normality hypothesis (Fig. 7) and we accept 
that of correlation (Fig. 8).  

The corresponding standard deviation was respectively: 
87.35 and 99.18. 
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Fig. 4. Annual average and smoothing kernel models for the 

precipitation evolution in Dobrudja region, using ten data 
series 
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Fig. 5. Residual in the annual average model for the 
precipitation evolution in Dobrudja region, obtained by using 

ten data series     
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Fig. 6. Residual in the annual weighted average model for the 
precipitation evolution in Dobrudja region, obtained by using 

ten data series 
 

 
 

Fig. 7. Histogram of residual in annual average model 
 

 
 

Fig. 8. Autocorrelation function of residual in weighted 
annual average model 

      Kernel smoothing (with a bandwidth of 2 or 3) produces 
Gaussian (Table 5) and correlated residual. 
  

Table 5. Kolmogorov – Smirnov and Shapiro – Wilk 
normality tests [21] 

 Kolmogorov - Smirov Shapiro - Wilk 
 stat df sig stat df sig 
window 2 0.041 400 0.104 0.996 400 0.454 
window 3 0.028 390 0.200 0.998 390 0.957 

 
     In what follows we discuss the results of local linear fit 
(Fig. 9), obtained by locfit package from R software.  
 

 
Fig. 9. Model obtained by local linear fit with optimal 

bandwidth h = 0.6988397 
 

The optimal bandwidth (h = 0.6988397) was chosen by the 
general cross validation principle (GCV) and the residual 
variance estimation was done for the same optimal bandwidth 
(Fig. 10). 
 

 
 

Fig. 10. Residual variance estimation in the model obtained by 
the local linear fit with optimal bandwidth h = 0.6988397 
 
The question which arises is why we didn’t perform a 

parameterized linear regression: 
 

iii btay  , 

 
(with iy - precipitation, ti – time, i residual) instead of the 

local linear fit.  
      In order to perform a parameterized regression, some 
general conditions, must be satisfied, as:  
      i. The model is linear in iy ; 

     ii. The values iy  are observed without errors; 
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     iii. The model’ mean residual is zero; 
      iv. The residuals’ variance is constant; 
     v. The residuals are not correlated; 
     vi. The residuals don’t depend on the explicative variable 
(as is presumed in time series analysis) 
     Let us discuss only iv. and i., in this order.  

 After a calculus, it results that:  
a = 0.1918 and b = 41.1244. 

Firstly, the residuals are not homoscedastic, as it can be 
seen in Fig.11, where they are plotted against the calculated 
values. 
 

 
 

Fig. 11. Residual representation in the parameterized linear 
model 

 
Secondly, the t-tests on the regression coefficients prove 

that they didn’t significantly differ from zero, since the 
probability to accept the hypothesis that the coefficients are 
zero is high:  0.97, respectively 0.72 (Table 6). 
 
Table 6. The results of t - tests on the linear model coefficients 

 Estimate Std. Err. t value Prob. 
slope 411.244 1063.236 0.039 0.97 
intercept    0.1918       0.5356 0.358 0.72 

 
Also, the residual variance is very high (6718850) and the 

model’s adequation (0.00031) is very small, proving that only 
0.031% of variable time acts for explaining the variable 
precipitation. 

Now, we return to the models presented till now. One of the 
comparison criteria for the fit quality is the residual standard 
deviation. In our case, the smallest value, 87.06, was obtained 
for the local linear model. 
 

 
 

Fig. 12. Annual rainfall fit using smoothing splines 
 

The values calculated for the smoothing parameter and the 
number of knots were:  = 0.117317,  K = 34. The residual 
variance estimation is presented in Fig. 13. 

 

 
 

Fig. 13. Residual variance estimation in the model obtained by 
smoothing splines method 

 
The residuals are normally distributed and their variance is 

comparable to that obtained by the previous method. 

3.2. Results for the data series without Sulina 

The calculus was conducted in the same mode as in the 
previous section. The charts of fit curves are presented in 
Fig.14, those of residuals squared values in the case of local 
polynomial smoothing and smoothing splines in Figs. 15 and 
16 and comparisons between the residual standard deviations, 
in Table 7. 
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Fig. 14. Models of precipitation variation 
 

 
 

Fig. 15. Residual variance estimation (without Sulina series) 
in the model obtained by local linear smoothing 
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Fig. 16. Residual variance estimation (without Sulina series) 
in the model obtained by smoothing splines 

 
Table 7. Comparison of residual standard deviations 
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Data 
87.35 99.18 

105.51 
(109.01) 

87.06 87.64 

Data  
without  
Sulina 

67.78 68.39 
96.91 

(110.09) 
67.76 67.93 

 
      It can be seen that in 5 of 6 cases there is an improvement 
in the trend estimation, since there is a decreasing of about 
20% in standard deviations. 

We have to mention that in the second case (data without 
Sulina) the residuals are normally distributed (Fig.17) and the 
best result was obtained by the local linear smoothing method. 

Also, the p-values corresponding to the models designed by  
using the data without Sulina are higher (and higher than 0.46) 
than those in case when Sulina has been considered, 
confirming that the models obtained are better. 
 

 
 

Fig. 17. Q - Q  plot of residual in Window_2 model 

V.  CONCLUSION 

     In this article different nonparametric methods were used 
to determine the trend of precipitation evolution in Dobrudja, 
since the conditions necessary to build a linear parametric 
regression model were not satisfied. Taking into account the 
results of ANOVA and eliminating Sulina series, a better 
model (in terms of residual variance and p-values) for the 
trend was determined. It was expected, since Sulina is the 
single station situated offshore (13 km), in the Danube Delta, 
so the climate is different from those of other meteorological 
stations. The same analysis redone after removing Sulina and 
Jurilovca series leads to a small improvement in residual 
variances.  
      In all the cases, the best result was obtained by local linear 
smoothing method. 
      In another article we shall present the results of principal 
components analysis on the ensemble of precipitations series, 
proving that the influence of Sulina and Jurilovca series in 
explaining the precipitation variability in Dobrudja region is 
very small. 
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