

Abstract— In this paper we propose the procedure for
horizontal fragmentation of data warehouse tables and
show how it affects data warehouse’s data quality,
namely, completeness and timeliness data quality
dimensions. Horizontal fragmentation is suitable when
data from multiple, more or less independent,
organizational units are stored in the same fact table. In
such cases, proposed procedure enables horizontal data
separation based on the configured attributes thus
isolating one institution’s data quality problems from
another. The proposed procedure relies on metadata and
is generic and applicable to any data warehouse.

Keywords—Completeness, Data Warehouse, ETL,
Horizontal fragmentation, Timeliness

I. INTRODUCTION

T is common to describe and evaluate the quality of the
data delivered to users in terms of quality attributes [1].

These attributes are called the data quality dimensions.
Each dimension covers a specific aspect of quality. Data
quality dimensions may relate to the value of the data or
its purpose. Both, the data value quality and data schemes
quality affect the quality of business processes. E.g.,
unnormalized schema of a table in relational data model
results in redundancy and anomalies when inserting,
updating and deleting data.

Data quality dimensions are usually defined from the
qualitative aspect, referring to the general properties of
the data values and data schemas without prescribing the
way in which the quantitative values are assigned to
dimensions. Despite the recognized importance of the
quality of data schemes (both conceptual and logical),
today, the focus is on the quality of data values [2]. For
quantitative evaluation of quality dimensions it is

Manuscript received May 3, 2012.
This work was supported in part by the Ministry of Science,

Education and Sports, Republic of Croatia under the project „Semantic
integration of Heterogeneous Data Sources“

Lj. Brkić is with the Department of Applied Computing, Faculty of
Electrical Engineering and Computing, University of Zagreb, Croatia

(e-mail: ljiljana.brkic@fer.hr).
I. Mekterović is with the Department of Applied Computing, Faculty

of Electrical Engineering and Computing, University of Zagreb, Croatia
(e-mail: igor.mekterovic@fer.hr).
S. Zakošek is with the Department of Applied Computing, Faculty of

Electrical Engineering and Computing, University of Zagreb, Croatia
(e-mail: slaven.zakosek@fer.hr).

necessary to define metrics and measurement methods.
The importance of this issue has been recognized and
number of scientific papers (some of which are [1] [3] [4]
[5]) deal with methods of measuring and quantifying the
dimensions of data quality. There is no common position
or accepted standard with regards to data quality
dimensions classification or even data quality
dimensions’ definition. Thus, often for essentially the
same data quality definition different terms are used, and
vice versa, the same term has a different meaning in
works by different authors.

Data quality in a data warehouse is affected not only
by the quality of source data, but also by the quality of
ETL process. For example, it is possible for an accurate
and complete record from a data source to not be
transferred to the data warehouse (or not timely
transferred) due to faulty internal logic, inappropriate
data warehouse refreshment policy or just plain errors in
the ETL process. In other words, the data warehouse data
quality dimensions depend on the quality of ETL
processes.

The process of determining the quality of a data
warehouse starts by assessing the quality of an individual
attribute. The quality of a tuple is calculated by
aggregating the quality of its attribute values.
Analogously, the quality of table is determined via its
tuples and, ultimately, with that information, the quality
of the entire data warehouse is calculated.
In this paper we focus on two data quality dimensions:
completeness and timeliness [6]. In order to achieve the
improvement of those data quality dimensions, we
propose and describe modifications to the data
warehouse’s ETL process.

II. HORIZONTAL FRAGMENTATION OF THE DATA

WAREHOUSE TABLES

In this paper, we consider a generalized data
warehousing architecture (Figure 1) consisting of three
subsystems: data sources, staging area and data
warehouse. Data warehouse systems that employ
incremental [7] [8] or real-time [9] [10] refresh strategies
must comprise a subsystem that is used to track changes
in data sources in order to distinguish the new data
needed to efficiently update the data warehouse. These
subsystems are usually referred to as CDC (Change Data
Capture) systems. Whether using CDC subsystem or not
(for instance, on initial load), data is loaded into the

Data Quality Improvement through Horizontal
Fragmentation in Data Warehouses

Ljiljana Brkić, Igor Mekterović and Slaven Zakošek

I

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 634

staging area, where it is transformed and subsequently
loaded into the data warehouse in respect with the data
warehouse schema. We assume that data warehouse
employs relational or dimensional model, or both. In
addition to metadata, the targeted data warehouse

contains transformed data in non-aggregated form
(usually a relational database) and also more or less
aggregated data (usually on OLAP server).

Operational
System

Data sources Data staging area Data warehouse

Change data
capture
(CDC)

ERP

Change data
capture
(CDC)

CRM

Change data
capture
(CDC)

Analysis and Reporting

full/

Incremental/

real-time

refresh

OLAP Cubes

agregated
data

Non
agregated

data

meta
data

Reports, Charts, Dashboards

Figure 1 Data Warehouse System architecture

Data warehouses often integrate data of the same
structure (schema) from several departments of a
company, or a number of companies within a corporation,
or a number of state institutions of a country, etc. An
example of such environment is a data warehouse that
integrates data from multiple higher education institutions
such as the one described in [11]. The quality of the data
belonging to a particular department, company or
institution should primarily be a reflection of the effort
that was put into the process. It is not unusual for one
department to be more devoted to proper data
administration than the other. Errors in the semantic
integrity of the data belonging to one or several
organizational units should not affect the others. The ETL
process should be modeled and implemented with this in
mind.

Figure 2 Errors in one fragment stop data of fragments

For instance, Figure 2 depicts update of fExam fact table
of the data warehouse integrating data from 90 higher
educational institutions (HEI 1 – HEI 90) in the Republic
of Croatia [12] [13]. In this project, we had to employ an
all-or-nothing refreshment policy; since it was of the
upmost importance to have complete data (e.g. data
warehouse is used to produce scholarship listings).
Suppose that during the ETL process some integrity
errors (e.g. foreign key violation) have been detected in
records belonging to higher education institution HEI 89.

Due to the detected errors, the content of the fact table
fExam has not been updated but was kept at the state
from the previous update cycle (31.01.2012). Although
there were no errors in the other institution’s data on
01.02.2012, errors in HEI 89’s data caused other
institutions’ correct data not to be transferred. In other
words, an institution is affected by the poor data quality
belonging to other institution.

Figure 3 Errors in one fragment don’t stop data of

fragments that contain no errors

Figure 3 illustrates a better solution employing the
following improvements:

- fExam table is logically divided to horizontal
fragments, each fragment belonging to a particular higher
education institution

- ETL process is modified as to be capable to find error
free fragments in the staging area, and accordingly
refresh corresponding fExam fragments. Fragments that
exceed the error threshold (maximal allowed number of
incorrect tuples) are not updated, i.e. remain as they were
after on the last successful refreshment cycle.

This is much more robust and customizable approach.
Each higher education institution is allowed to define the
number of errors that it is willing to tolerate. If the
defined threshold for a particular institution is exceeded,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 635

the associated fragment of the fact table will not be
updated. That fragment retains the state in which the
number of errors was within the predefined threshold.
Such strategy can lead to the state in which the different
fragments of fact and dimension tables are updated in
different update cycles. Tables become unions of
approved (above threshold) fragments, with each
fragment having its own timestamp. Diligent institutions
(departments, etc.) are no more affected by others and are
more likely to have up-to-date data in the data warehouse.
On the other hand, if one wants to ignore errors in favor
of timeliness, one should only set high enough threshold.
Note that by setting the threshold to infinity, errors are
simply ignored and DW tables are always updated with
newly arrived data.

A. The Fragmentation Schema

The first step in the process of horizontal
fragmentation is to model the fragmentation scheme.
Fragmentation scheme consists of the definition of a set
of fragments that include all the attributes and tuples
from the data warehouse. Horizontal fragmentation
divides table into subsets of tuples. To be generic, the
process of horizontal fragmentation must allow
fragmentation per arbitrary filter. It should be
implemented without changing the semantics of data
warehouse and the resulting fragments must be disjoint.

According to [14] fragmentation is considered correct
if it satisfies the following three rules:

(R1) Completeness: each tuple contained in the
relation r, that is being decomposed into horizontal
fragments r1, r2,...,rn, can be found in one or more
fragments ri.

(R2) Reconstruction: for relation r that is being
decomposed into horizontal fragments r1, r2,...,rn, must be
possible to define relational operator ∇ such that r = ∇ ri,
(i =1,..., n). The rule assures the reconstruction of relation
without loss of information. The ∇ operator is usually the
union operator: r = r2 ∪ r2∪… ∪ rn.

(R3) Disjointness: horizontal fragments r1, r2,..., rn of
relation r are said to be disjoint if ri ∩ rj = ∅, ∀i, j ∈ {1,
..., n}, i≠j.

Horizontal fragments are being defined using formula
F.
Definition 1 Let r be the relation with schema R and let
A and B be an attributes A, B ∈ R. Let θ be the relational
operator from the set { =, ≠, <, ≤, >, ≥ } and let c be the
constant from the domain of the attribute A. Formula F is
defined by the following recursive expression:

1. A θ B, A θ c, c θ A are formulas. These formulas are
called simple formulas.

2. If F1 and F2 are formulas, then F1∧ F2, F1∨ F2, ¬ F1,
¬ F2 are formulas too.

3. Nothing else is a formula.
Definition 1 includes formulas applicable over domains
with total order defined. In domains with no total order
defined, only operators = or ≠ can be used for θ.

Definition 2: Let {F1, F2, ..., Fn} be the set of formulas
defined on schema R of the relation r. Let for ∀i, j ∈ {1,
..., n} and each tuple t ∈ r be satisfied Fi (t) ∧ Fj (t) = ⊥
and F1∨F2∨ ... Fn (t) = Τ.
Horizontal fragmentation transforms relation r with
schema R into set of relations (fragments) f1, f2, ..., fn
with schema R, such that fi = σFi(r), (i = 1, ..., n).

Such fragmentation meets each of the conditions:
completeness, reconstruction and disjointness. Operator
∇ in this case is the union operator: r = ∪ fi, (i = 1, ..., n).

With Definition 2, the so called primary horizontal
fragmentation is defined. It is called primary because
formulas that define horizontal fragments include only
attributes from relations being fragmented. Derived
horizontal fragmentation is carried out for relations
associated with other fragmented (primary or derived)
relations by means of foreign key.

B. ETL process with horizontal fragmentation

ETL process starts with the extraction phase of the
source data (Figure 1), followed by the transformation
and loading phase. In addition to metadata required for
automated implementation of these phases of the ETL
process, the data staging area contains a copy table for
each source table as well as for each dimension and fact
table of the data warehouse. Copies of the source tables
are being loaded with source data in the extraction phase,
while the remaining copies of the tables are being used in
transformation and loading phases of the ETL process.
They enable back-end testing and loading of data that,
after integrity constraints have been checked, can be
quickly copied to the dimension and fact tables in the
data warehouse. These duplicate tables form a parallel set
of tables with exactly the same schema as the schema of
original tables in sources or in the data warehouse. They
also have identical integrity constraints - for example if
the fact table having scheme F (a, b, c) references
dimensional table d having schema D (b, d, e) via
attribute b, that means that in the data staging area exists
tables f’ and d’ with schemas F'(a, b, c) and D' (b, d, e)
such as F' references D' via an attribute b. In addition to
the above tables, each data warehouse fact and dimension
table in data staging area has its error-table used to store
erroneous tuples. In addition to attributes from
correspondent original table schema, the schemes of these
error-tables include a timestamp attribute (the time when
the tuple was forwarded to the error table) and a textual
attribute comment (indicates the integrity rule violated
for a particular tuple).

Figure 4 shows a sequence of activities taking place in
the loading phase of the ETL process with horizontal
fragmentation implemented. Besides a lifeline for the
entire loading phase of the ETL process, separate lifelines
are shown for the phases of ETL process related to
dimension and fact tables in the data staging area (SA)
and in the data warehouse (DW): "Dimensional Tables in
SA", "Fact tables in SA", "Dimensional tables in DW"
and "Fact tables in the DW". It can be seen from the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 636

diagram that prior to transferring the data into the data
warehouse all the necessary preparatory work is carried
out in the data staging area. Activities taking place can be
divided into several categories:

• dropping constraints
• loading data into tables
• determining horizontal fragments
• (re) creating constraints

Procedures with the DropConstraints or
CreateConstraints prefix serve to drop or create integrity
constraints (primary keys, foreign keys, unique and non-
unique indexes). These procedures are performed in each

ETL process cycle, among other things, to speed up the
loading phase in the data staging area as well as in the
data warehouse (since it is faster to drop and recreate
indexes than to adjust B+-trees on every single insert).
Upon completion of the loading phase, integrity
constraints and the indices are recreated. To facilitate the
development and maintenance of ETL processes, these
integrity constraints and indexes should be dropped and
recreated programmatically. To be able to do so, it is
necessary to store their definitions in the metadata
repository.

 Figure 4 Activity sequence in loading phase of ETL process with horizontal fragmentation

After the constraints are dropped and data is loaded

into the dimension and fact tables in the data staging area,
we engage the procedure for finding tuples that do not
meet the specific integrity constraint. Such tuples, if
found, are forwarded (together with additional
information about the error type and possible cause of
errors) to corresponding error tables. It is possible that a
certain source tuples in the extraction phase will not be
copied from the sources to data staging area because they
violate e.g. domain integrity or some other integrity rules.
The absence of those erroneous tuples in data staging
area may cause malfunction of other tuples that would
otherwise be completely semantically correct. For
example, due to violation of the domain integrity (e.g.
BirthDate “1.1.1076” cannot be inserted into any SQL
Server database), the tuple describing the student entity
was not copied into the data staging area. On the other
hand, tuples representing examinations of that student
were successfully copied. However, missing student tuple
causes reference integrity violation of the exam tuples.

Therefore those exam tuples cannot be loaded into the
data warehouse. Finding and marking invalid tuples is an
integral part of the cleansing and transformation phase of
ETL process. Tuples marked as semantically incorrect
will not be transferred into the data warehouse but
forwarded to the appropriate error tables (and deleted
from the originating tables). The process of finding and
marking invalid tuples is carried out in data staging area
only, prior to recreation of integrity constraints. After this
procedure, each copy of dimensional and fact table in
data staging area contains only valid tuples, while
corresponding error tables hold the incorrect tuples.

Now, when all that is done, production fact and
dimension tables can be loaded. During that process, the
data warehouse will be unavailable to the users, so this
must be done as quickly as possible. The proposed ETL
process is designed with that in mind. The role of
duplicate tables in the SA is primarily to reduce that time
interval.

Again, loading is performed in three phases:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 637

• constraints are dropped
• horizontal fragments are loaded
• constraints are recreated

The decision whether the horizontal fragment of the
dimension or fact table in the data warehouse will be
replaced with the corresponding horizontal fragment from
the data staging area is based on a defined threshold. For
example, suppose that there are two tuples in the exam
table with the wrong examination date (e.g., set to the
date ten years in the future) for the institution HEI89
from examples in Figure 2 and Figure 3. These two tuples
will be detected by the ETL process and copied into the
corresponding error table - errFExam. If the HEI89
institution defined the threshold for the fExam table to a
value less than 2, that horizontal fragment will not be
refreshed in that refresh cycle.

III. METADATA FOR THE HORIZONTAL FRAGMENTATION

PROCESS

In order to be generic and easy to implement in the
existing systems, horizontal fragmentation procedure is

designed and implemented with the help of the metadata.
Metadata is stored in the extended data dictionary and
used by generic ETL procedures. This way, to implement
horizontal fragmentation, it is only required to populate
metadata tables and to insert ETL procedure calls at the
appropriate point in the existing ETL process.

Figure 5 shows the relational model of the metadata.
Certain information must be entered manually (e.g.,
whether a table is a fact table or a dimension table -
metaTableType and metaTable.tableTypeID).

However, most of the information is already available
in the DBMS data dictionary: tables, attributes, primary
keys, foreign keys and indexes. This information can be
copied automatically (different scripts have to be written
for various DBMSs) to our metadata tables (metaTable,
metaColumn, metaPKColumns, metaFK,
metaFKColumns, metaIDX, metaIDXColumns). This
information is used by the procedures (that generate and
execute dynamic SQL) to drop and recreate integrity
rules (foreign and primary keys) and indexes before and
after data loading, and thus speed things up.

Figure 5 Metadata for the horizontal fragmentation process

The metaDataBase table is used for storing the data

describing sub-systems of data warehousing system
(source databases, staging area and data warehouse). For
each fact and dimension table we introduce a matching
“prime table” [1]. Prime tables form a parallel set of
tables to the production tables having the same
structure and analogous constraints; e.g. if a fact table
F(a, b, c) references dimension table D(b, d, e) via
attribute b, then F'(a, b, c) references D'(b, d, e) via
attribute b. In short, prime tables are used to prepare and
test data, and when ready, prime table data is quickly
copied to the production tables. Data describing relations
between each data warehouse table
(metaTablePair.tableId) with its prime table
(metaTablePair._tableId) is stored in the metaTablePair
table. For such pair, fragmentation attribute (or multiple
attributes) is defined (metaTablePairFilterDef).
HorFragFilterAttribute is usually the id of the

department, institution, etc. The metaETLHorFrag table
holds data about allowable number of incorrect tuples
(threshold) for different fragments. We designed
horFragFilterAttributeVal attribute as a char field so that
any data type values (or multiple values) could be stored
in there. To reduce the number of tuples (thresholds) that
user has to define, we adopt a convention that the
threshold for the missing values (e.g. department) is
default (in our case, zero). The metaETLHorFrag table is,
on procedure completion, updated with the outcome
attributes (isOK, errCount, lastCorrectDate).

IV. IMPROVING THE COMPLETENESS AND TIMELINESS

In the context of horizontal fragmentation of the data
warehouse tables, we do not consider the problems of
data quality between the real world and the source data,
but the data quality problems that arise from the
extraction, transformation and loading of data from a

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 638

relational source into the data warehouse environment.
Accordingly, the relational data source is considered
complete and timely and incompleteness and timeliness
appear in the data warehouse when it does not represent
the exact image of the source data.

A. Completeness

The data warehouse is complete as much as the data
which should be extracted from the data source, is, in
fact, extracted, transformed and loaded into the data
warehouse.
Let � be the source table comprising of M tuples with
schema � comprising of N attributes. Let � be the data
warehouse �� table having � as a source table. Let
���(�) be the referent table for � consisting of all

semantic correct tuples of the �, 		
��������� 	≤
		
����. The completeness of the table � is defined
with the following expression:

��������� =
����(�)

����(�	
(�))
Completeness of the table defined with above expression
takes value from the interval [0, 1]. Completeness of the
data warehouse �� comprising of K tables, according to
[4] is defined by the completeness of the consisting
tables:

���������� = 	
� ������ .���� ∗ 	�

�

��	

∑ 	�
�
��	

gk ∈[0,1], in the above expression, represents the relative
importance of the table rk in the data warehouse ��, and
provides the opportunity that the completeness of table,
that is estimated more important, affects the completeness
of the entire data warehouse more. The possible approach

[15] to determine the weight factor gk of the rk table takes
into account the number of attributes of a relational
schema (Nk) and the number of tuples in a table (Mk):

	� = 	
�� ∗ ��

∑ �� ∗ ��

��	

An example from the Figure 6 and Figure 7 shows how
the horizontal fragmentation process improves the
completeness of the data warehouse table and
consequently the completeness of the entire data
warehouse. Consider an isolated segment of a data
warehouse that integrates data from more higher
education institutions. The observed segment consists of
one dimension (dStudent) and one fact table (fExam). In
the source tables (student and exam) data from number of
higher education institutions are stored as well. The
numbers in cells are number of tuples for particular
fragment and table. The data from three higher education
institutions (HEI 1, HEI 2 and HEI 3) are taken into
account in the example. Two consecutive cycles of data
warehouse refreshment ci and ci-1 are observed. In the ci
cycle there was no erroneous tuples in the source and the
warehouse is updated with all the source data. Upon
completion of the ci cycle completeness of the data
warehouse is maximal and equals 1. In the ci+1 cycle, for
the higher education institution HEI 3, one erroneous
tuple appears in the student table and two erroneous
tuples in the fExam table. The ETL process without
horizontal fragmentation implemented, due to erroneous
tuples, will not refresh the content of dStudent nor the
content of fExam table. The content of dStudent and
fExam after the ci+1 cycle will be the same as after the ci

cycle completion.

Figure 6 Completeness – data warehouse loading without horizontal fragmentation

Completeness of the dStudent and fExam table is calculated
with the following expressions:

�����������	��� =
���������	���

������	
����	����

= 	 4000 + 2000 + 1000

4400 + 2200 + (1100 − 1)
=

7000

7699
= 0,9092

�������
����� =
�����
�����

������	
�	�����

= 	 80000 + 40000 + 20000

84000 + 42000 + (21000 − 2)
=

140000

146998
= 0,9523

Completeness of the data warehouse segment is calculated
based on the completeness of the tables contained in
observed segment. Assuming that each table affects data
warehouse completeness with an equal weight, weighting
factor �� equals to 1 for both tables.

����������
= 	�����������	��� ∗ �� + ������.�
����� ∗ ��

1 + 1

=
0,9092 ∗ 1	+ 0,9523 ∗ 1

2
= 0,9307

illustrates refreshment of the data warehouse segment using
an ETL process with implemented horizontal fragmentation.
A natural criterion for the fragmentation in this example is
the identifier of the higher education institutions. Assuming
that the tolerated number of erroneous records
(metaETLHorFrag.treshold) is set to 0 for each institution
and each table, the associated fragment of the dStudent and
fExam for the HEI 3 in the ci+1 cycle will not be refreshed,
while the fragments associated to the remaining higher
education institutions having no errors will be refreshed.

 cycle ci cycle ci+1
source DW source DW

HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3
student/dStudent 4000 2000 1000 4000 2000 1000 4400 2200 1100 4000 2000 1000
exam/fExam 80000 40000 20000 80000 40000 20000 84000 42000 21000 80000 40000 20000

1 erroneous tuple in student
2 erroneous tuples in exam

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 639

The completeness of dStudent and fExam tables and the
entire data warehouse, with horizontal fragmentation
implemented, amounts to:

�����������	��� =

	 4400 + 2200 + 1000

4400 + 2200 + (1100 − 1)
=

7600

7699
= 0,9871

�������
����� =
84000 + 42000 + 20000

84000 + 42000 + (21000 − 2)
=

146000

146998
= 0, 9932

���������� =
0,9871 ∗ 1	+ 0,9923 ∗ 1

2
= 0,9901

 cycle ci cycle ci+1
source DW source DW

HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3
student/dStudent 4000 2000 1000 4000 2000 1000 4400 2200 1100 4400 2200 1000

exam/fExam 80000 40000 20000 80000 40000 20000 84000 42000 21000 84000 42000 20000

Figure 7 Completeness – data warehouse loading with horizontal fragmentation

B. Timeliness

The data arrive into the data warehouse timely if it is
updated (copied) within the first possible data warehouse
refresh cycle.
Expression proposed in [15] [16] is used to define timeliness
on the attribute value level:
��	�
 �����	 .���� 	= 		��(−�	����	��� ∗ 	��		(��(�	 .��)))
��	�
 �����	 .���� denotes the probability that the attribute

value is still valid. ����	 .��� is the observed and recorded
value of the attribute �� of the tuple ��.
The ��	����	(�) is the decline rate indicating how many
values of the attribute considered become out of date on
average within one period of time The
��	(��(�� .��))
denotes the age of the attribute value ��(�� .��) which is
computed by means of two factors: the instant when

attribute value timeliness is quantified and the instant of
attribute value acquisition.
Assuming that the data warehouse is being refreshed once a
day, decline and age of an attribute value are calculated with
a day as the time unit. The example illustrated with Figure 8
and Figure 9 shows the improvement of the timeliness of
attribute values, tuple, table, and the entire data warehouse
accomplished with the horizontal fragmentation.
Analyzing changes in source tables for the HEIS [1] for
regarded warehouse segment, we found that, on average, 2
‰ tuples change in one day in the student table and 0.6 ‰
in the exam table. For a precise calculation of the timeliness
dimension the decline of each relevant attribute should be
assessed. However, that is not in the focus of this paper and
so we consider here that the variability of all attributes is the
same.

 cycle ci cycle ci+1
source DW source DW
HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3

student/dStudent 4000 2000 1000 4000 2000 1000 4000 2000 1000 4000 2000 1000
#of updated tuples 200 100 50 200 100 50

exam/fExam 80000 40000 20000 80000 40000 20000 80000 40000 20000 80000 40000 20000
#of updated tuples 400 200 100 400 200 100

Figure 8 Timeliness- data warehouse loading without horizontal fragmentation

The timeliness of an arbitrary attribute of the student table
with age of one and two days amounts to:
��	�
���(�	.��)� 	= 	���−0,002 ∗ 1� = 0, 9977
��	�
���(�	.��)� = 	���−0,002 ∗ 2� = 0, 9959
Similarly, the timeliness of an arbitrary attribute of the exam
table amounts to:
��	�
���(�	.��)� 	= 	���−0,0006 ∗ 	1� = 0, 9993

��	�
 �����	 .���� = 	���−0,0006 ∗ 	2� = 0, 9987

If an attribute value fails to update (due to an error) at the
very first cycle its age increases and timeliness decreases.
The timeliness of the tuple is determined based on the
timeliness of its attribute values. With the simplification that
all attributes are equally important and have an equal decline
rate and age, timeliness of tuple will be equal to the
timeliness of the single attribute value. The timeliness of the
� table comprising of the 	
��(�) tuples is determined by
the timeliness of the its tuples:

��	�
��� = 	
� ��	�
����

���(�)

���
����(�)

The timeliness of the data warehouse �� is determined by
the timeliness of its tables:

��	�
���� =
∑ ��	�
���� ∗ ������

∑ ������

In the Figure 8 and Figure 9, the row titled “#of updated
tuples” shows the number of tuples updated between two
consecutive cycles ci and ci+1.
If the changes that had happened in the dStudent and fExam
tables are successfully conducted in the ci+1 cycle, the
timeliness of the tables and the data warehouse will be
maximal. Suppose that the age of all tuples in the tables
dStudent and fExam after the ci cycle is one day. After the
ci+1 cycle the age of altered (200 +100 +50 in dStudent and
400 +200 +100 in fExam) tuples is equal to one day and of
all other tuples it is two days. However, in the presence of
erroneous tuples, those changes will not reflect on dStudent
and fExam in the ci+1 cycle if the strategy for the data

1 erroneous tuple in student
2 erroneous tuples in exam

1 erroneous touple in student
2 erroneous touples in exam

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 640

warehouse refreshment without horizontal fragmentation is
employed.
The timeliness of dStudent and fExam after the ci+1 cycle is
equal to:

��	�
�����	��� = 	
� ���������

���	(
��	��)

���

���(�����
��) =
������	����
����∗�.���

�����	����
���
= 0,9959

��	�
�
�����=
�������������	�����∗�.����

������������	����
= 0,9987

The data warehouse timeliness is equal to:

�������� = ���������������∗� �	������������∗�!

�

	 =
�,���∗
��.����∗

�

 =0,9973

With implemented horizontal fragmentation changes (Figure
9) in the tuples belonging to the horizontal segments of HEI
1 and HEI 2 will be carried out successfully. After ci+1 cycle
the age of modified tuples will be one, and of all other tuples
two days.
The timeliness of dStudent and fExam and of the observed
data warehouse segment amounts to:
��	�
�����	��� =
	"#$$$%�$$&�$$$%�$$&�$$$'∗$.(()(&"�$$&�$$'∗$.((**#$$$&�$$$&�$$$ = 0,99597
��	�
�
����� =	 =
"+$$$$%#$$$&#$$$$%�$$$&�$$$$'∗$.((+*&"#$$$&�$$$'∗$.(((,

+$$$$&#$$$$&�$$$$ =

0,99873

��	�
���� = 0,99597∗1+0.99873∗1

1+1
 =0,99735

 cycle ci cycle ci+1

source DW source DW
HEI 1 HEI 2 HEI

3
HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3

student/dStudent 4000 2000 1000 4000 2000 1000 4000 2000 1000 4000 2000 1000
#of updated tuples 200 100 50 200 100 50

exam/fExam 80000 40000 20000 80000 40000 20000 80000 40000 20000 80000 40000 20000
#of updated tuples 4000 2000 1000 4000 2000 1000

Figure 9 Timeliness- data warehouse loading with horizontal fragmentation

For determining timeliness exponential function (with
negative exponent) with extremely slowly decreasing value
is used. Hence, it is understandable that the differences in
the timeliness of one day are not drastic – they are expressed
in per mils. Never the less, the fact is that the process of
horizontal fragmentation improves the timeliness of data in
a given time interval.

In conclusion, the timeliness of the data warehouse
refreshed employing ETL process without horizontal
fragmentation will be the same as the timeliness of the same
data warehouse refreshed employing ETL process with
horizontal fragmentation when all the correct data are
successfully updated. The benefit from horizontal
fragmentation is in improving the timeliness in the
occasions when, due to errors, correct data isn’t updated.

V. CONCLUSION

In this paper we’ve discussed a generic procedure for
horizontal fragmentation of the data warehouse. Proposed
procedure is suitable when there are multiple somewhat
independent departments (institutions, ...) that are generating
data of the same structure (i.e. belonging to the same
business process). For instance, different higher education
institutions are generating students’ exam records. In order
to be generic, the procedure relies on metadata, which is
presented and discussed. The criterion for the fragmentation
of the table is arbitrary (e.g. institutionID). Using metadata,
horizontal fragmentation can be customized to be more or
less forgiving to errors. For instance, with high enough
threshold values, algorithm recedes to a special case when
all errors are ignored and data warehouse always gets
updated with the new valid tuples (which is also a legit and
popular approach).
We show that employing horizontal fragmentation improves
data warehouse quality, namely, the completeness and
timeliness data quality dimensions. Improvement is
achieved in the cases when the ETL process without

horizontal fragmentation would not update correct data due
to errors. The applicability of the proposed procedure has
been tested in the real world project: data warehousing
system integrating data from 90 higher educational
institutions in the Republic of Croatia. Erroneous data
detected in the process is logged and ultimately shown
relevant users of the data warehousing system. Having
ability to examine errors on-line, users are motivated to
eliminate them and consequently raise the quality of data in
the data warehouse, which presents a nice side benefit.

REFERENCES

[1] R. Y. Wang, M. Reddy and H. B. Kon, “Toward quality data: An

attribute-based approach,” Decision Support Systems , pp. 349-372,
1995.

[2] C. Batini and M. Scannapieca, Data Quality Concepts, Methodologies
and Techniques, Heidelberg: Springer-Verlag Berlin, 2006.

[3] L. Pipino, Y. W. Lee and R. Y. Wang, “Data Quality Assessment,”
Communications of the ACM, vol. 45, no. 4, 2002.

[4] B. Heinrich, M. Kaiser and M. Klier, "Does the EU Insurance
Mediation Directive help to improve Data Quality? - A metric-based
analysis," in Proc. of the 16th European Conference on Information
Systems (ECIS), 2008.

[5] M. Kaiser, “A Conceptional Approach to Unify Completeness,
Consistency and Accuracy as Quality Dimensions of Data Values,” in
European and Mediterranean Conference on Information Systems,
2010.

[6] L. Brkić, M. Baranović and I. Mekterović, “Improving the
Completeness and Timeliness by Horizontal Fragmentation of Data
Warehouse Tables,” in Proceedings of the 11th WSEAS International
Conference on TELECOMMUNICATIONS and INFORMATICS
(TELE-INFO '12), San Malo, 2012.

[7] T. Jörg and S. Dessloch, “Formalizing ETL Jobs for Incremental
Loading of Data Warehouses,” in Proceedings der 13. GI-Fachtagung
f¨ur Datenbanksysteme in Business, Technologie und Web, Lecture
Notes in Informatics, Münster, Germany, 2009.

[8] A. Behrend and T. Jörg, “Optimized Incremental ETL Jobs for
Maintaining Data Warehouses,” in Proceedings of the Fourteenth
International Database Engineering & Applications Symposium,

1 erroneous touple in student
2 erroneous touples in exam

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 641

2010.

[9] P. Vassiliadis and A. Simitsts, “Near Real Time ETL,” in New Trends
in Data Warehousing and Data Analysis, Annals of Information
Systems, R. W. S. Kozielski, Ed., Springer, 2008, pp. 19-49.

[10] J. Guerra and D. A. Andrews, “Creating a Real Time Data
Warehouse,” Andrews Consulting Group, Inc., 2011.

[11] C. Dell'Aquila, F. Di Tria, E. Lefons and F. Tangorra, "An Academic
Data Warehouse," in Proceedings of the 7th WSEAS International
Conference on Applied Informatics and Communications, Athens,
Greece, 2009.

[12] I. Mekterović, L. Brkić and M. Baranović, "Improving the ETL
process of Higher Education Information System Data Warehouse," in
Proceedings of the 9th WSEAS International Conference on APPLIED
INFORMATICS AND COMMUNICATIONS (AIC '09) , 2009.

[13] I. Mekterović, L. Brkić and M. Baranović, “Improving the ETL
process and maintenance of Higher Education Information System
Data Warehouse,” WSEAS transactions on computers, vol. 8, no. 10,
pp. 1681-1690, 2009.

[14] M. Özsu and P. Valduriez, Principles of distributed database systems,
2nd ed., Upper Saddle River, New Jersey: Prentice-Hall International,
Inc. , 1999.

[15] M. Kaiser, B. Klier and B. Heinrich, "How to Measure Data Quality?-
A Metric-Based Approach," in International Conference on
Information Systems (ICIS), 2007.

[16] B. Heinrich, “A Novel Data Quality Metric for Timeliness
Considering Supplemental Data,” in 17th European Conference on

Information Systems (ECIS), Verona, 2009.

Ljiljana Brki ć received her B.Sc, M.Sc and Ph.D. degree in Computer
Science from the Faculty of Electrical Engineering and Computing
University of Zagreb in 1992, 2004 and 2011 respectively. She has been
affiliated with Faculty of Electrical Engineering and Computing as a
research engineer from 1993 and as a research assistant at the Department
of Applied Computing from 2006. Her research interests include data bases,
data warehouses, business intelligence, information systems and
programming paradigms.

Igor Mekterovi ć received his B.Sc., M.Sc. and Ph.D. degree in Computer
Science from the Faculty of Electrical Engineering and Computing,
University of Zagreb in 1999, 2004 and 2008, respectively. Since 1999. he
has been affiliated with Faculty of Electrical Engineering and Computing as
a research assistant at the Department of Applied Computing. His research
interests include databases, business intelligence and peer to peer systems.

Slaven Zakošek received his B.Sc., M.Sc. and Ph.D. degree in Computer
Science from the University of Zagreb, Faculty of Electrical Engineering
and Computing in 1987, 1992 and 2004 respectively. He has been affiliated
with Faculty of Electrical Engineering and Computing as a research
engineer, research assistant and assistant professor at the Department of
Applied Computing. His research interests include data base systems and
information systems.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 642

