
  
Abstract— In this paper we propose the procedure for 
horizontal fragmentation of data warehouse tables and 
show how it affects data warehouse’s data quality, 
namely, completeness and timeliness data quality 
dimensions. Horizontal fragmentation is suitable when 
data from multiple, more or less independent, 
organizational units are stored in the same fact table. In 
such cases, proposed procedure enables horizontal data 
separation based on the configured attributes thus 
isolating one institution’s data quality problems from 
another. The proposed procedure relies on metadata and 
is generic and applicable to any data warehouse.     
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I. INTRODUCTION 

T is common to describe and evaluate the quality of the 
data delivered to users in terms of quality attributes [1]. 

These attributes are called the data quality dimensions. 
Each dimension covers a specific aspect of quality. Data 
quality dimensions may relate to the value of the data or 
its purpose. Both, the data value quality and data schemes 
quality affect the quality of business processes. E.g., 
unnormalized schema of a table in relational data model 
results in redundancy and anomalies when inserting, 
updating and deleting data. 

Data quality dimensions are usually defined from the 
qualitative aspect, referring to the general properties of 
the data values and data schemas without prescribing the 
way in which the quantitative values are assigned to 
dimensions. Despite the recognized importance of the 
quality of data schemes (both conceptual and logical), 
today, the focus is on the quality of data values [2]. For 
quantitative evaluation of quality dimensions it is 
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necessary to define metrics and measurement methods. 
The importance of this issue has been recognized and 
number of scientific papers (some of which are [1] [3] [4] 
[5]) deal with methods of measuring and quantifying the 
dimensions of data quality. There is no common position 
or accepted standard with regards to data quality 
dimensions classification or even data quality 
dimensions’ definition. Thus, often for essentially the 
same data quality definition different terms are used, and 
vice versa, the same term has a different meaning in 
works by different authors. 

Data quality in a data warehouse is affected not only 
by the quality of source data, but also by the quality of 
ETL process. For example, it is possible for an accurate 
and complete record from a data source to not be 
transferred to the data warehouse (or not timely 
transferred) due to faulty internal logic, inappropriate 
data warehouse refreshment policy or just plain errors in 
the ETL process. In other words, the data warehouse data 
quality dimensions depend on the quality of ETL 
processes. 

The process of determining the quality of a data 
warehouse starts by assessing the quality of an individual 
attribute. The quality of a tuple is calculated by 
aggregating the quality of its attribute values. 
Analogously, the quality of table is determined via its 
tuples and, ultimately, with that information, the quality 
of the entire data warehouse is calculated. 
In this paper we focus on two data quality dimensions: 
completeness and timeliness [6]. In order to achieve the 
improvement of those data quality dimensions, we 
propose and describe modifications to the data 
warehouse’s ETL process. 

II. HORIZONTAL FRAGMENTATION OF THE DATA 

WAREHOUSE TABLES 

In this paper, we consider a generalized data 
warehousing architecture (Figure 1) consisting of three 
subsystems: data sources, staging area and data 
warehouse. Data warehouse systems that employ 
incremental [7] [8] or real-time [9] [10] refresh strategies 
must comprise a subsystem that is used to track changes 
in data sources in order to distinguish the new data 
needed to efficiently update the data warehouse. These 
subsystems are usually referred to as CDC (Change Data 
Capture) systems. Whether using CDC subsystem or not 
(for instance, on initial load), data is loaded into the 
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staging area, where it is transformed and subsequently 
loaded into the data warehouse in respect with the data 
warehouse schema. We assume that data warehouse 
employs relational or dimensional model, or both. In 
addition to metadata, the targeted data warehouse 

contains transformed data in non-aggregated form 
(usually a relational database) and also more or less 
aggregated data (usually on OLAP server). 
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Figure 1 Data Warehouse System architecture

Data warehouses often integrate data of the same 
structure (schema) from several departments of a 
company, or a number of companies within a corporation, 
or a number of state institutions of a country, etc. An 
example of such environment is a data warehouse that 
integrates data from multiple higher education institutions 
such as the one described in [11]. The quality of the data 
belonging to a particular department, company or 
institution should primarily be a reflection of the effort 
that was put into the process. It is not unusual for one 
department to be more devoted to proper data 
administration than the other. Errors in the semantic 
integrity of the data belonging to one or several 
organizational units should not affect the others. The ETL 
process should be modeled and implemented with this in 
mind. 

 
Figure 2 Errors in one fragment stop data of fragments 

 
For instance, Figure 2 depicts update of fExam fact table 
of the data warehouse integrating data from 90 higher 
educational institutions (HEI 1 – HEI 90) in the Republic 
of Croatia [12] [13]. In this project, we had to employ an 
all-or-nothing refreshment policy; since it was of the 
upmost importance to have complete data (e.g. data 
warehouse is used to produce scholarship listings). 
Suppose that during the ETL process some integrity 
errors (e.g. foreign key violation) have been detected in 
records belonging to higher education institution HEI 89. 

Due to the detected errors, the content of the fact table 
fExam has not been updated but was kept at the state 
from the previous update cycle (31.01.2012). Although 
there were no errors in the other institution’s data on 
01.02.2012, errors in HEI 89’s data caused other 
institutions’ correct data not to be transferred. In other 
words, an institution is affected by the poor data quality 
belonging to other institution.  

 
Figure 3 Errors in one fragment don’t stop data of 

fragments that contain no errors 
 

Figure 3 illustrates a better solution employing the 
following improvements: 

- fExam table is logically divided to horizontal 
fragments, each fragment belonging to a particular higher 
education institution 

- ETL process is modified as to be capable to find error 
free fragments in the staging area, and accordingly 
refresh corresponding fExam fragments. Fragments that 
exceed the error threshold (maximal allowed number of 
incorrect tuples) are not updated, i.e. remain as they were 
after on the last successful refreshment cycle.  

This is much more robust and customizable approach. 
Each higher education institution is allowed to define the 
number of errors that it is willing to tolerate. If the 
defined threshold for a particular institution is exceeded, 
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the associated fragment of the fact table will not be 
updated. That fragment retains the state in which the 
number of errors was within the predefined threshold. 
Such strategy can lead to the state in which the different 
fragments of fact and dimension tables are updated in 
different update cycles. Tables become unions of 
approved (above threshold) fragments, with each 
fragment having its own timestamp. Diligent institutions 
(departments, etc.) are no more affected by others and are 
more likely to have up-to-date data in the data warehouse. 
On the other hand, if one wants to ignore errors in favor 
of timeliness, one should only set high enough threshold. 
Note that by setting the threshold to infinity, errors are 
simply ignored and DW tables are always updated with 
newly arrived data. 

A. The Fragmentation Schema 

The first step in the process of horizontal 
fragmentation is to model the fragmentation scheme. 
Fragmentation scheme consists of the definition of a set 
of fragments that include all the attributes and tuples 
from the data warehouse. Horizontal fragmentation 
divides table into subsets of tuples. To be generic, the 
process of horizontal fragmentation must allow 
fragmentation per arbitrary filter. It should be 
implemented without changing the semantics of data 
warehouse and the resulting fragments must be disjoint. 

According to [14] fragmentation is considered correct 
if it satisfies the following three rules: 

(R1) Completeness: each tuple contained in the 
relation r, that is being decomposed into horizontal 
fragments r1, r2,...,rn, can be found in one or more 
fragments ri. 

(R2) Reconstruction: for relation r that is being 
decomposed into horizontal fragments r1, r2,...,rn, must be 
possible to define relational operator ∇ such that r = ∇ ri, 
(i =1,..., n). The rule assures the reconstruction of relation 
without loss of information. The ∇ operator is usually the 
union operator: r = r2 ∪ r2∪… ∪ rn. 

(R3) Disjointness: horizontal fragments r1, r2,..., rn of 
relation r are said to be disjoint if ri ∩ rj = ∅, ∀i, j ∈ {1, 
..., n}, i≠j.  

Horizontal fragments are being defined using formula 
F. 
Definition 1 Let r be the relation with schema R and let 
A and B be an attributes A, B ∈ R. Let θ be the relational 
operator from the set { =, ≠, <, ≤, >, ≥ } and let c be the 
constant from the domain of the attribute A. Formula F is 
defined by the following recursive expression: 

1. A θ B, A θ c, c θ A are formulas. These formulas are 
called simple formulas. 

2. If F1 and F2 are formulas, then F1∧ F2, F1∨ F2, ¬ F1, 
¬ F2 are formulas too. 

3. Nothing else is a formula. 
Definition 1 includes formulas applicable over domains 
with total order defined. In domains with no total order 
defined, only operators = or ≠ can be used for θ.  

Definition 2: Let {F1, F2, ..., Fn} be the set of formulas 
defined on schema R of the relation r. Let for ∀i, j ∈ {1, 
..., n} and each tuple t ∈ r be satisfied Fi (t) ∧ Fj (t) = ⊥ 
and F1∨F2∨ ... Fn (t) = Τ.  
Horizontal fragmentation transforms relation r with 
schema R into set of relations (fragments) f1, f2, ..., fn 
with schema R, such that fi = σFi(r), (i = 1, ..., n). 

Such fragmentation meets each of the conditions: 
completeness, reconstruction and disjointness. Operator 
∇ in this case is the union operator:  r = ∪ fi, (i = 1, ..., n). 

With Definition 2, the so called primary horizontal 
fragmentation is defined. It is called primary because 
formulas that define horizontal fragments include only 
attributes from relations being fragmented. Derived 
horizontal fragmentation is carried out for relations 
associated with other fragmented (primary or derived) 
relations by means of foreign key.  

B. ETL process with horizontal fragmentation 

ETL process starts with the extraction phase of the 
source data (Figure 1), followed by the transformation 
and loading phase. In addition to metadata required for 
automated implementation of these phases of the ETL 
process, the data staging area contains a copy table for 
each source table as well as for each dimension and fact 
table of the data warehouse. Copies of the source tables 
are being loaded with source data in the extraction phase, 
while the remaining copies of the tables are being used in 
transformation and loading phases of the ETL process. 
They enable back-end testing and loading of data that, 
after integrity constraints have been checked, can be 
quickly copied to the dimension and fact tables in the 
data warehouse. These duplicate tables form a parallel set 
of tables with exactly the same schema as the schema of 
original tables in sources or in the data warehouse. They 
also have identical integrity constraints - for example if 
the fact table having scheme F (a, b, c) references 
dimensional table d having schema D (b, d, e) via 
attribute b, that means that in the data staging area exists 
tables f’ and d’ with schemas F'(a, b, c) and D' (b, d, e) 
such as F' references D' via an attribute b. In addition to 
the above tables, each data warehouse fact and dimension 
table in data staging area has its error-table used to store 
erroneous tuples. In addition to attributes from 
correspondent original table schema, the schemes of these 
error-tables include a timestamp attribute (the time when 
the tuple was forwarded to the error table) and a textual 
attribute comment (indicates the integrity rule violated 
for a particular tuple).  

Figure 4 shows a sequence of activities taking place in 
the loading phase of the ETL process with horizontal 
fragmentation implemented. Besides a lifeline for the 
entire loading phase of the ETL process, separate lifelines 
are shown for the phases of ETL process related to 
dimension and fact tables in the data staging area (SA) 
and in the data warehouse (DW): "Dimensional Tables in 
SA", "Fact tables in SA", "Dimensional tables in DW" 
and "Fact tables in the DW". It can be seen from the 
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diagram that prior to transferring the data into the data 
warehouse all the necessary preparatory work is carried 
out in the data staging area. Activities taking place can be 
divided into several categories: 

• dropping constraints 
• loading data into tables 
• determining horizontal fragments 
• (re) creating constraints 

Procedures with the DropConstraints or 
CreateConstraints prefix serve to drop or create integrity 
constraints (primary keys, foreign keys, unique and non-
unique indexes). These procedures are performed in each 

ETL process cycle, among other things, to speed up the 
loading phase in the data staging area as well as in the 
data warehouse (since it is faster to drop and recreate 
indexes than to adjust B+-trees on every single insert). 
Upon completion of the loading phase, integrity 
constraints and the indices are recreated. To facilitate the 
development and maintenance of ETL processes,  these 
integrity constraints and indexes should be dropped and 
recreated programmatically. To be able to do so, it is 
necessary to store their definitions in the metadata 
repository. 

  Figure 4 Activity sequence in loading phase of ETL process with horizontal fragmentation 
 
After the constraints are dropped and data is loaded 

into the dimension and fact tables in the data staging area, 
we engage the procedure for finding tuples that do not 
meet the specific integrity constraint. Such tuples, if 
found, are forwarded (together with additional 
information about the error type and possible cause of 
errors) to corresponding error tables. It is possible that a 
certain source tuples in the extraction phase will not be 
copied from the sources to data staging area because they 
violate e.g. domain integrity or some other integrity rules. 
The absence of those erroneous tuples in data staging 
area may cause malfunction of other tuples that would 
otherwise be completely semantically correct. For 
example, due to violation of the domain integrity (e.g. 
BirthDate “1.1.1076” cannot be inserted into any SQL 
Server database), the tuple describing the student entity 
was not copied into the data staging area. On the other 
hand, tuples representing examinations of that student 
were successfully copied. However, missing student tuple 
causes reference integrity violation of the exam tuples. 

Therefore those exam tuples cannot be loaded into the 
data warehouse. Finding and marking invalid tuples is an 
integral part of the cleansing and transformation phase of 
ETL process. Tuples marked as semantically incorrect 
will not be transferred into the data warehouse but 
forwarded to the appropriate error tables (and deleted 
from the originating tables). The process of finding and 
marking invalid tuples is carried out in data staging area 
only, prior to recreation of integrity constraints. After this 
procedure, each copy of dimensional and fact table in 
data staging area contains only valid tuples, while 
corresponding error tables hold the incorrect tuples. 

Now, when all that is done, production fact and 
dimension tables can be loaded. During that process, the 
data warehouse will be unavailable to the users, so this 
must be done as quickly as possible.  The proposed ETL 
process is designed with that in mind. The role of 
duplicate tables in the SA is primarily to reduce that time 
interval. 

Again, loading is performed in three phases: 
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• constraints are dropped  
• horizontal fragments are loaded 
• constraints are recreated 

The decision whether the horizontal fragment of the 
dimension or fact table in the data warehouse will be 
replaced with the corresponding horizontal fragment from 
the data staging area is based on a defined threshold.  For 
example, suppose that there are two tuples in the exam 
table with the wrong examination date (e.g., set to the 
date ten years in the future) for the institution HEI89 
from examples in Figure 2 and Figure 3. These two tuples 
will be detected by the ETL process and copied into the 
corresponding error table - errFExam. If the HEI89 
institution defined the threshold for the fExam table to a 
value less than 2, that horizontal fragment will not be 
refreshed in that refresh cycle. 

III.  METADATA FOR THE HORIZONTAL FRAGMENTATION 

PROCESS 

In order to be generic and easy to implement in the 
existing systems, horizontal fragmentation procedure is 

designed and implemented with the help of the metadata. 
Metadata is stored in the extended data dictionary and 
used by generic ETL procedures. This way, to implement 
horizontal fragmentation, it is only required to populate 
metadata tables and to insert ETL procedure calls at the 
appropriate point in the existing ETL process.  

Figure 5 shows the relational model of the metadata. 
Certain information must be entered manually (e.g., 
whether a table is a fact table or a dimension table - 
metaTableType and metaTable.tableTypeID). 

However, most of the information is already available 
in the DBMS data dictionary: tables, attributes, primary 
keys, foreign keys and indexes. This information can be 
copied automatically (different scripts have to be written 
for various DBMSs) to our metadata tables (metaTable, 
metaColumn, metaPKColumns, metaFK, 
metaFKColumns, metaIDX, metaIDXColumns). This 
information is used by the procedures (that generate and 
execute dynamic SQL) to drop and recreate integrity 
rules (foreign and primary keys) and indexes before and 
after data loading, and thus speed things up. 

 
Figure 5 Metadata for the horizontal fragmentation process 
 
The metaDataBase table is used for storing the data 

describing sub-systems of data warehousing system 
(source databases, staging area and data warehouse).  For 
each fact and dimension table we introduce a matching 
“prime table” [1]. Prime tables form a parallel set of 
tables  to  the  production  tables  having  the  same 
structure  and  analogous  constraints;  e.g.  if a  fact table 
F(a, b, c) references dimension table D(b, d, e) via 
attribute b, then F'(a, b, c) references D'(b, d, e) via 
attribute b. In short, prime tables are used to prepare and 
test data, and when ready, prime table data is quickly 
copied to the production tables. Data describing relations 
between each data warehouse table 
(metaTablePair.tableId) with its prime table 
(metaTablePair._tableId) is stored in the metaTablePair 
table. For such pair, fragmentation attribute (or multiple 
attributes) is defined (metaTablePairFilterDef). 
HorFragFilterAttribute is usually the id of the 

department, institution, etc.  The metaETLHorFrag table 
holds data about allowable number of incorrect tuples 
(threshold) for different fragments. We designed 
horFragFilterAttributeVal attribute as a char field so that 
any data type values (or multiple values) could be stored 
in there. To reduce the number of tuples (thresholds) that 
user has to define, we adopt a convention that the 
threshold for the missing values (e.g. department) is 
default (in our case, zero). The metaETLHorFrag table is, 
on procedure completion, updated with the outcome 
attributes (isOK, errCount, lastCorrectDate). 

IV.  IMPROVING THE COMPLETENESS AND TIMELINESS 

In the context of horizontal fragmentation of the data 
warehouse tables, we do not consider the problems of 
data quality between the real world and the source data, 
but the data quality problems that arise from the 
extraction, transformation and loading of data from a 
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relational source into the data warehouse environment. 
Accordingly, the relational data source is considered 
complete and timely and incompleteness and timeliness 
appear in the data warehouse when it does not represent 
the exact image of the source data. 

A. Completeness 

The data warehouse is complete as much as the data 
which should be extracted from the data source, is, in 
fact, extracted, transformed and loaded into the data 
warehouse.  
Let � be the source table comprising of M tuples with 
schema � comprising of N attributes. Let � be the data 
warehouse �� table having � as a source table. Let 
���(�) be the referent table for � consisting of all 

semantic correct tuples of the �, 		
��������� 	≤
		
����. The completeness of the table � is defined 
with the following expression: 

��������� =
����(�)

����(�	
(�)) 
Completeness of the table defined with above expression 
takes value from the interval [0, 1]. Completeness of the 
data warehouse �� comprising of K tables, according to 
[4] is defined by the completeness of the consisting 
tables: 

���������� = 	
� ������ .���� ∗ 	�

�

��	

∑ 	�
�
��	

 

gk ∈[0,1], in the above expression, represents the relative 
importance of the table rk in the data warehouse ��, and 
provides the opportunity that the completeness of table, 
that is estimated more important, affects the completeness 
of the entire data warehouse more. The possible approach 

[15] to determine the weight factor gk of the rk table takes 
into account the number of attributes of a relational 
schema (Nk) and the number of tuples in a table (Mk): 

	� = 	
�� ∗ ��

∑ �� ∗ ��

��	

 

An example from the Figure 6 and Figure 7 shows how 
the horizontal fragmentation process improves the 
completeness of the data warehouse table and 
consequently the completeness of the entire data 
warehouse. Consider an isolated segment of a data 
warehouse that integrates data from more higher 
education institutions. The observed segment consists of 
one dimension (dStudent) and one fact table (fExam). In 
the source tables (student and exam) data from number of 
higher education institutions are stored as well. The 
numbers in cells are number of tuples for particular 
fragment and table. The data from three higher education 
institutions (HEI 1, HEI 2 and HEI 3) are taken into 
account in the example. Two consecutive cycles of data 
warehouse refreshment ci and ci-1 are observed. In the ci 
cycle there was no erroneous tuples in the source and the 
warehouse is updated with all the source data. Upon 
completion of the ci cycle completeness of the data 
warehouse is maximal and equals 1. In the ci+1 cycle, for 
the higher education institution HEI 3, one erroneous 
tuple appears in the student table and two erroneous 
tuples in the fExam table. The ETL process without 
horizontal fragmentation implemented, due to erroneous 
tuples, will not refresh the content of dStudent nor the 
content of fExam table. The content of dStudent and 
fExam after the ci+1 cycle will be the same as after the ci 

cycle completion. 

 

 
Figure 6 Completeness – data warehouse loading without horizontal fragmentation 
 
 

Completeness of the dStudent and fExam table is calculated 
with the following expressions: 

�����������	��� =
���������	���

������	
����	���� 

= 	 4000 + 2000 + 1000

4400 + 2200 + (1100 − 1)
=

7000

7699
= 0,9092 

�������
����� =
�����
�����

������	
�	����� 

= 	 80000 + 40000 + 20000

84000 + 42000 + (21000 − 2)
=

140000

146998
= 0,9523 

Completeness of the data warehouse segment is calculated 
based on the completeness of the tables contained in 
observed segment. Assuming that each table affects data 
warehouse completeness with an equal weight, weighting 
factor �� equals to 1 for both tables. 

 
����������
= 	�����������	��� ∗ �� + ������.�
����� ∗ ��

1 + 1

=
0,9092 ∗ 1	+ 0,9523 ∗ 1

2
= 0,9307 

illustrates refreshment of the data warehouse segment using 
an ETL process with implemented horizontal fragmentation. 
A natural criterion for the fragmentation in this example is 
the identifier of the higher education institutions. Assuming 
that the tolerated number of erroneous records 
(metaETLHorFrag.treshold) is set to 0 for each institution 
and each table, the associated fragment of the dStudent and 
fExam for the HEI 3 in the ci+1 cycle will not be refreshed, 
while the fragments associated to the remaining higher 
education institutions having no errors will be refreshed. 

 cycle ci cycle ci+1 
source DW source DW 

HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 
student/dStudent 4000 2000 1000 4000 2000 1000 4400 2200 1100 4000 2000 1000 
exam/fExam 80000 40000 20000 80000 40000 20000 84000 42000 21000 80000 40000 20000 

1 erroneous  tuple in student 
2 erroneous  tuples in exam 
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The completeness of dStudent and fExam tables and the 
entire data warehouse, with horizontal fragmentation 
implemented, amounts to: 
 
�����������	��� = 

	 4400 + 2200 + 1000

4400 + 2200 + (1100 − 1)
=

7600

7699
= 0,9871 

�������
����� = 
84000 + 42000 + 20000

84000 + 42000 + (21000 − 2)
=

146000

146998
= 0, 9932 

���������� =
0,9871 ∗ 1	+ 0,9923 ∗ 1

2
= 0,9901 

 

 cycle ci cycle ci+1 
source DW source DW 

HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 
student/dStudent 4000 2000 1000 4000 2000 1000 4400 2200 1100 4400 2200 1000 

exam/fExam 80000 40000 20000 80000 40000 20000 84000 42000 21000 84000 42000 20000 
 
Figure 7 Completeness – data warehouse loading with horizontal fragmentation 
 

B. Timeliness 

The data arrive into the data warehouse timely if it is 
updated (copied) within the first possible data warehouse 
refresh cycle. 
Expression proposed in [15] [16] is used to define timeliness 
on the attribute value level: 
��	�
 �����	 .���� 	= 		��(−�	����	��� ∗ 	��		(��(�	 .��))) 
��	�
 �����	 .���� denotes the probability that the attribute 

value is still valid. ����	 .��� is the observed and recorded 
value of the attribute �� of the tuple ��. 
The ��	����	(�) is the decline rate indicating how many 
values of the attribute considered become out of date on 
average within one period of time The 
��	(��(�� .��)) 
denotes the age of the attribute value ��(�� .��) which is 
computed by means of two factors: the instant when 

attribute value timeliness is quantified and the instant of 
attribute value acquisition. 
Assuming that the data warehouse is being refreshed once a 
day, decline and age of an attribute value are calculated with 
a day as the time unit. The example illustrated with Figure 8 
and Figure 9 shows the improvement of the timeliness of 
attribute values, tuple, table, and the entire data warehouse 
accomplished with the horizontal fragmentation.  
Analyzing changes in source tables for the HEIS [1] for 
regarded warehouse segment, we found that, on average, 2 
‰ tuples change in one day in the student table and 0.6 ‰ 
in the exam table. For a precise calculation of the timeliness 
dimension the decline of each relevant attribute should be 
assessed. However, that is not in the focus of this paper and 
so we consider here that the variability of all attributes is the 
same. 

 cycle ci cycle ci+1 
source DW source DW 
HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 

student/dStudent 4000 2000 1000 4000 2000 1000 4000 2000 1000 4000 2000 1000 
#of updated tuples       200 100 50 200 100 50 
 
exam/fExam 80000 40000 20000 80000 40000 20000 80000 40000 20000 80000 40000 20000 
#of updated tuples       400 200 100 400 200 100 
 
Figure 8 Timeliness- data warehouse loading without horizontal fragmentation 
 
 
The timeliness of an arbitrary attribute of the student table 
with age of one and two days amounts to: 
��	�
���(�	.��)� 	= 	���−0,002 ∗ 1� = 0, 9977 
��	�
���(�	.��)� = 	���−0,002 ∗ 2� = 0, 9959 
Similarly, the timeliness of an arbitrary attribute of the exam 
table amounts to: 
��	�
���(�	.��)� 	= 	���−0,0006 ∗ 	1� = 0, 9993 

��	�
 �����	 .���� = 	���−0,0006 ∗ 	2� = 0, 9987 

If an attribute value fails to update (due to an error) at the 
very first cycle its age increases and timeliness decreases. 
The timeliness of the tuple is determined based on the 
timeliness of its attribute values. With the simplification that 
all attributes are equally important and have an equal decline 
rate and age, timeliness of tuple will be equal to the 
timeliness of the single attribute value. The timeliness of the 
� table comprising of the 	
��(�) tuples is determined by 
the timeliness of the its tuples: 

��	�
��� = 	
� ��	�
����

���(�)

���
����(�)  

The timeliness of the data warehouse �� is determined by 
the timeliness of its tables: 

��	�
���� =
∑ ��	�
���� ∗ ������

∑ ������
 

In the Figure 8 and Figure 9, the row titled “#of updated 
tuples” shows the number of tuples updated between two 
consecutive cycles ci and ci+1. 
If the changes that had happened in the dStudent and fExam 
tables are successfully conducted in the ci+1 cycle, the 
timeliness of the tables and the data warehouse will be 
maximal. Suppose that the age of all tuples in the tables 
dStudent and fExam after the ci cycle is one day. After the 
ci+1 cycle the age of altered (200 +100 +50 in dStudent and 
400 +200 +100 in fExam) tuples is equal to one day and of 
all other tuples it is two days. However, in the presence of 
erroneous tuples, those changes will not reflect on dStudent 
and fExam in the ci+1 cycle if the strategy for the data 

1 erroneous  tuple in student 
2 erroneous  tuples in exam 
 

1 erroneous  touple in student 
2 erroneous  touples in exam 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 640



 

 

warehouse refreshment without horizontal fragmentation is 
employed. 
The timeliness of dStudent and fExam after the ci+1 cycle is 
equal to: 

��	�
�����	��� = 	
� ���������

���	(	
��	��)

���

���(�����
��)  = 
������	����
����∗�.���

�����	����
���
= 0,9959  

��	�
�
�����= 
�������������	�����∗�.����

������������	����
= 0,9987 

The data warehouse timeliness is equal to: 

�������� = ���������������∗� �	������������∗�!

�


	 = 
�,���∗
��.����∗



�

 =0,9973 

With implemented horizontal fragmentation changes (Figure 
9) in the tuples belonging to the horizontal segments of HEI 
1 and HEI 2 will be carried out successfully. After ci+1 cycle 
the age of modified tuples will be one, and of all other tuples 
two days. 
The timeliness of dStudent and fExam and of the observed 
data warehouse segment amounts to: 
��	�
�����	��� =
	"#$$$%�$$&�$$$%�$$&�$$$'∗$.(()(&"�$$&�$$'∗$.((**#$$$&�$$$&�$$$ = 0,99597  
��	�
�
����� =	 = 
"+$$$$%#$$$&#$$$$%�$$$&�$$$$'∗$.((+*&"#$$$&�$$$'∗$.(((,

+$$$$&#$$$$&�$$$$ =

0,99873 

��	�
���� = 0,99597∗1+0.99873∗1

1+1
 =0,99735 

 
 cycle ci cycle ci+1 

source DW source DW 
HEI 1 HEI 2 HEI 

3 
HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 HEI 1 HEI 2 HEI 3 

student/dStudent 4000 2000 1000 4000 2000 1000 4000 2000 1000 4000 2000 1000 
#of updated tuples       200 100 50 200 100 50 
 
exam/fExam 80000 40000 20000 80000 40000 20000 80000 40000 20000 80000 40000 20000 
#of updated tuples       4000 2000 1000 4000 2000 1000 

 
Figure 9 Timeliness- data warehouse loading with horizontal fragmentation 

 
For determining timeliness exponential function (with 
negative exponent) with extremely slowly decreasing value 
is used. Hence, it is understandable that the differences in 
the timeliness of one day are not drastic – they are expressed 
in per mils. Never the less, the fact is that the process of 
horizontal fragmentation improves the timeliness of data in 
a given time interval. 

In conclusion, the timeliness of the data warehouse 
refreshed employing ETL process without horizontal 
fragmentation will be the same as the timeliness of the same 
data warehouse refreshed employing ETL process with 
horizontal fragmentation when all the correct data are 
successfully updated. The benefit from horizontal 
fragmentation is in improving the timeliness in the 
occasions when, due to errors, correct data isn’t updated. 

V. CONCLUSION 

In this paper we’ve discussed a generic procedure for 
horizontal fragmentation of the data warehouse. Proposed 
procedure is suitable when there are multiple somewhat 
independent departments (institutions, ...) that are generating 
data of the same structure (i.e. belonging to the same 
business process). For instance, different higher education 
institutions are generating students’ exam records. In order 
to be generic, the procedure relies on metadata, which is 
presented and discussed. The criterion for the fragmentation 
of the table is arbitrary (e.g. institutionID). Using metadata, 
horizontal fragmentation can be customized to be more or 
less forgiving to errors. For instance, with high enough 
threshold values, algorithm recedes to a special case when 
all errors are ignored and data warehouse always gets 
updated with the new valid tuples (which is also a legit and 
popular approach).   
We show that employing horizontal fragmentation improves 
data warehouse quality, namely, the completeness and 
timeliness data quality dimensions. Improvement is 
achieved in the cases when the ETL process without 

horizontal fragmentation would not update correct data due 
to errors. The applicability of the proposed procedure has 
been tested in the real world project: data warehousing 
system integrating data from 90 higher educational 
institutions in the Republic of Croatia. Erroneous data 
detected in the process is logged and ultimately shown 
relevant users of the data warehousing system. Having 
ability to examine errors on-line, users are motivated to 
eliminate them and consequently raise the quality of data in 
the data warehouse, which presents a nice side benefit. 
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