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Abstract— Stochastic differential equations driven by standard
Brownian motion(s) or Lévy processes are by far the most popular
models in mathematical finance, but are also frequently used in
engineering and science. A key feature of the class of models is
that the parameters are easy to interpret for anyone working with
ordinary differential equations, making connections between statistics
and other scientific fields far smoother.

We present an algorithm for computing the (historical probability
measure) maximum likelihood estimate for parameters in diffusions,
jump-diffusions and Lévy processes. This is done by introducing
a simple, yet computationally efficient, Monte Carlo Expectation
Maximization algorithm. The smoothing distribution is computed
using resampling, making the framework very general.

The algorithm is evaluated on diffusions (CIR, Heston), jump-
diffusion (Bates) and Lévy processes (NIG, NIG-CIR) on simulated
data and market data from S & P 500 and VIX, all with satisfactory
results.

Keywords— Bates model, Heston model, Jump-Diffusion, Lévy
process, parameter estimation, Monte Carlo Expectation Maximiza-
tion, NIG, Stochastic differential equation.

I. INTRODUCTION

Stochastic differential equations (SDEs) driven by standard
Brownian motion(s) is an increasingly popular class of models
in diverse scientific fields such as mathematics, [27], biol-
ogy [24], hydrology, engineering, economics, [35], [41] and
finance, [21], [11], [25]. The textbook [34] contains additional
examples and references for this class. A strong argument for
using SDEs is that the parameters are easy to interpret even
for non-experts, contrary to most other non-linear time series
models or neural nets.

Parameter estimation for diffusion processes is an estab-
lished science, where many different strategies are known. The
Euler-Maruyama scheme can be used to compute the maxi-
mum likelihood estimate if the data is sampled frequently, see
[39]. More advanced methods for approximating the transition
kernel are reviewed in [22]. These include series expansions,
numerical solution of the Fokker-Planck equation and Monte
Carlo methods.
◦ Series expansions of the transition kernel was developed

in [1], [2] for diffusion processes. The series expansion
is correcting for deviations from a Gaussian distribution.
Processes must be transformed such that the diffusion term is
independent of the state, which is feasible for all univariate
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models but not for all multivariate models. [3] extends the
framework to non-Gaussian expansions.
◦ Numerical methods for the Fokker-Planck equation was

introduced in [33] and explored further by [28], [38]. This
approach is more general than the series expansion, and is
computationally efficient for low-dimensional systems, cf.
[28]. However, generalizing the approach to jump-diffusions
is rather difficult as the corresponding Fokker-Planck equa-
tion is a Partial Integro-Differential Equation (PIDE) which
is considerably more complicated to solve numerically.
◦ Monte Carlo methods are very general. Early methods, such

as the Pedersen method, [37] are computationally inefficient
but later versions, [13], [18], [29] are several magnitudes
faster. MCMC methods have been proposed by [15], [14],
[19], [42]. Another approach is exact simulation, see [8].
That method use rejection sampling to simulate trajectories
with no systematic bias, but the computational complexity
can be costly for sparsely sampled data and their algorithm
is also less general than the Pedersen method.

However, the recent financial crisis have clearly shown that
diffusion processes may be insufficient, as the continuous path
of the Brownian motion is unable to generate rapid changes.
Recent financial models are routinely including jumps in
addition to the diffusion to account for this, see [11].

The statistical analysis of these models is less well under-
stood as it is difficult to find a closed form expression for
the transition kernel for many relevant models. Models for
which we can approximate the transition kernel have therefore
been popular, but this reminds us of the story of the drunk
looking for his lost keys under the lamp post. How do we know
that we are not missing something important when restricting
ourselves due to primarily computational considerations?

Research on jump-diffusion often assume that the dynamics
can be approximated by the Euler-Maruyama scheme, see e.g.
[16], [23], although some work on asymptotically unbiased
maximum likelihood estimation have been done, [20], [7],
[30]. These methods are quite restrictive in terms of appli-
cability.

The purpose of this paper is to derive a simple, general
and computational efficient algorithm for computing the max-
imum likelihood estimate for parameters in diffusion, jump-
diffusions and Lévy driven stochastic differential equations in
a unified framework, thereby extending the work by [30]. This
extension introduces additional issues as Lévy processes are
far more general than the standard Brownian motion that drives
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diffusions (the Brownian motion is a special case of a Lévy
process, the Poisson process is another).

This is achieved by deriving an EM-algorithm where the
smoothing distribution is computed using resampling of paths
generated by sampling from the naive dynamics. The frame-
work is very general and can be applied to most semi-
martingales. Another approach would be to use importance
sampling to derive the smoothing distribution, but we have
refrained from doing so as it is practically difficult to ensure
that the theoretical support (e.g. the tails of the sampling
distribution must be approximately as heavy as the target) for
importance sampling is valid for Lévy-driven SDEs.

The remainder of the paper is organized as follows: Sec-
tion II introduces the EM-algorithm and explains how re-
sampling can be used to compute the smoothing distribution.
Section III evaluates the derived estimator on simulated and
real data (S&P 500 and VIX) and compares the estimates to
the results in [4]. Finally, Section IV concludes.

II. PARAMETER ESTIMATION
We denote the observations sampled at discrete time points

t1, . . . , tN by yt1 , . . . ,ytN . The maximum likelihood esti-
mates are then defined as

θ̂MLE = arg max log pθ(yt1 , . . . ,ytN ). (1)

The MLE is often the optimal parameter estimator in terms
of variance, cf. the Cramer-Rao inequality. The optimality is
shared by approximate maximum likelihood estimators, cf.
[36] if the approximation fulfils some conditions.

A particularly nice feature of the Pedersen (Monte Carlo)
method, see [37], is that it is very flexible and does not
(contrary to many extensions) impose any implicit assumption
on the dynamics of the model. The only property used is that
the model is a Markov process, which is why we base our
work on the ideas behind that method.

It follows from the law of total probability and the Markov
property that the transition kernel, pθ(ytn+1

|ytn), for any
Markov process can be computed from

pθ(ytn+1
|ytn) =

∫
pθ(ytn+1

|yτ )pθ(yτ |ytn)dyτ (2)

where τ is some time point satisfying tn < τ < tn+1. A (point
wise) Monte Carlo approximation of the transition kernel can
therefore be obtained by sampling u

(k)
τ , k = 1, . . . ,K from

p(yτ |ytn) and computing

p̂θ(ytn+1
|ytn) ≈ 1

K

K∑
k=1

pθ(ytn+1
|u(k)
τ ). (3)

We need to discretize the model to perform the computations
in practice. This is done by introducing a partitioning of
the time scale between two observations into J smaller time
intervals tn = τ(n−1)J < τ(n−1)J+1 < . . . < τnJ = tn+1,
such that the discretization error over a short time interval
|τj+1 − τj | is small (it can be controlled by making the
partitioning finer as the bias typically is a function of the time
interval). The properties of this approximation are well known,
cf. [36], [13], [43]. The bias decreases with finer partitioning
but the variance increases at the same time.

The transition density can also be computed using impor-
tance sampling. Generating samples ũkτ from q(yτ ) leads to

p̂θ(ytn+1
|ytn) ≈ 1

K

K∑
k=1

pθ(ytn+1
|u(k)
τ )

pθ(u
(k)
τ |ytn)

q(u
(k)
τ )

. (4)

A practical problem (apart from the computational issues)
when applying the Pedersen sampler to jump-diffusions is
that the sampler only generates point wise estimates of the
transition kernel. This is not a problem for pure diffusions
as common random numbers can be used, but the number
of jumps in an interval cannot be simulated using common
random numbers. It would then be necessary to combine
the Pedersen method with stochastic approximation to get
reliable parameter estimates, making the method even more
computationally intensive.

A. EM-algorithm

The EM-algorithm is commonly used in statistics when
dealing with latent or missing variables. We use x to denote
any latent variable. The purpose of the EM-algorithm is to find
the maximum likelihood estimate by iteratively applying the
E-step and M-step
◦ E-step: Compute the expectation

Q(θ, θm) = E[log pθ(y,x)|y, θm]. (5)

This is called the intermediate quantity by [9].
◦ M-step: Maximize

θm+1 = arg maxQ(θ, θm). (6)

A feature of the EM-algorithm that is important for our
purpose is that the smoothing distribution is fixed when com-
puting Q(θ, θm). This makes the Q(θ, θm) function continuous
in the θ-parameter, simplifying the optimization problem.

It has been shown under weak conditions that the EM-
algorithm has a monotonic behaviour and that it converges
to a local maximum of the log-likelihood function, see [9].
This does not hold when the expectation is approximated with
a Monte Carlo technique. The Monte Carlo EM (MCEM)
converge if the size of the random sample Km is increasing
sufficiently fast as m→∞, i.e replacing the E-step with

Qm(θ, θm) =
1

Km

Km∑
k=1

log pθ(y,x
(k)). (7)

see [9] for further details.
It is natural to identify the observations y1, . . . ,yN as

y, and the process at all intermediate time points as x =
yτ(n−1)J+1:τnJ−1

, n = 1, . . . , N , cf. [19]. The intermediate
quantity Qm(θ, θm) can then be written as

Qm(θ, θm) =
1

Km

Km∑
k=1

(N−1)J∑
r=1

log pθ(y
(k)
τr+1
|y(k)
τr ). (8)

This is a (non-linear) sum of quadratic terms as pθ(y
(k)
τr+1 |y

(k)
τr )

is approximately Gaussian for diffusions. The expression is
unfortunately more complex when considering Lévy-driven
SDEs.
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1) Computation of the smoothing distribution: We are
interested in the smoothing distribution

pθm(yτ(n−1)J+1:τnJ−1
|ytn ,ytn+1

) (9)

in order to compute expectations. Let φ(·) be a test function.
The expectation of the test function with respect to the
smoothing distribution is given by

Eθm [φ(yτ(n−1)J+1:τnJ−1
)|ytn ,ytn+1

] (10)

=

∫
φ(yτ(n−1)J+1:τnJ−1

)
pθm(ytn+1

|yτnJ−1
)

pθm(ytn+1
|ytn)

(11)

· pθm(yτ(n−1)J+1:τnJ−1
|ytn)dyτ(n−1)J+1:τnJ−1

. (12)

Sampling u(k) ≡ uτ(n−1)J+1:τnJ−1
, k = 1, . . . ,Km from

pθm(yτ(n−1)J+1:τnJ−1
|ytn) and approximating the expectation

leads to

≈ 1

Km

Km∑
k=1

φ(u(k))
pθm(ytn+1

|u(k))∑
i pθm(ytn+1

|u(i))
. (13)

The empirical smoothing distribution is therefore a weighted
version of empirical predictive distribution.

pθm,Km
(u) =

Km∑
k=1

pθm(ytn+1
|u(k))∑

i pθm(ytn+1
|u(i))

δ(u−u(k)) (14)

=

Km∑
k=1

wkδ(u−u(k)) (15)

where δ(u−u(k)) is a delta-Dirac measure centered at u(k)

and
∑
wl = 1. It is straightforward to introduce an importance

sampler. We refer to [13], [29] for more information on these
samplers. However, it should be pointed out that importance
samplers can increase the variance, rather than decrease it, cf.
[26] and that it may be difficult to ensure that the conditions
needed for variance reduction hold in practice.

It is well known from [13] that most of the mass in the
distribution is concentrated to a small number of samples -
this is the reason why the ordinary Pedersen sampler is so
inefficient. We avoid this by resampling from the distribution,
generating a new sample with equal weights with K ′m � Km

elements.

p̃θm,K′m(u) =
1

K ′m

K′m∑
k=1

δ(u− ũ(k)). (16)

It is common within the particle filter community to com-
pute the effective sample size (ESS) as a measure of how many
equally weighted elements the unequally weighted sample
corresponds to. The ESS is defined as

ESS =
(
∑
k wk)2∑
k w

2
k

. (17)

We have used the ESS as a guideline for selecting K ′m, as
there is little to gain from resampling additional elements.

The proposed MCEM-algorithm is presented in Algo-
rithm 1.

Algorithm 1 Pseudo code for the MCEM-algorithm.
Initiate θ1
for m = 1 : (M − 1) do

% E-step
for n = 1 : (N − 1) do

for k = 1 : Km do
u
(k)
τ(n−1)J

= ytn
for j = 1 : (J − 1) do
x
(k)
τ(n−1)J+j

∼ pθm(·|u(k)
τ(n−1)J+j−1

)
end for
Compute w̃k = pθm(ytn+1

|u(k)
τnJ−1)

end for
Compute wk = w̃k∑

l w̃l

% Compute the smoothing distribution
for k = 1 : K ′m do

Sample Ik ∼ P (Ik = j) = wj
Set x̃(k)

τ(n−1)J+1:τnJ−1
= u

(Ik)
τ((n−1)J+1):τnJ−1

end for
end for
% M-step
Compute θm+1 = arg maxQm(θ, θm; ) using Equa-
tion (8) and x̃.

end for

2) Complexity of the algorithm: Let us compare the com-
putational complexity of the algorithm with the computational
complexity of the Pedersen method as they are similar (no
variance reduction etc.). Both algorithms are being applied to
a data set with N observations, with J substeps taken to reduce
the bias of the discretization. The cost for computing a single
estimate of the likelihood function using the Pedersen method
and for computing the smoothing distribution is the same ,see
Table I.

Pedersen Proposed MCEM
Comp. smooth - KNJ
Comp. loss fcn KNJ K′NJ

Optim. cost RPedKNJ M(KNJ+
REMK′NJ)

TABLE I
COMPLEXITY OF THE PEDERSEN METHOD WHEN COMMON RANDOM

NUMBERS CAN BE USED, AND THE PROPOSED MCEM ALGORITHM.

The difference is that the optimization in the MCEM uses
far less samples (K ′ � K) and few iterations (M � RPed).
Additionally, the number of iterations needed during the M-
step, REM , is often quite small (REM � RPed), and it
is possible to compute the estimate in closed form for a
large class of processes when the distributions belong to the
exponential family, cf. [9]. That would lead to REM = 1.

III. SIMULATIONS

We evaluate the proposed estimator on simulated data,
which eliminates the problem of model mis-specification.

We also compare the estimator to the series expansion
estimators in [4] when applicable. That paper use daily returns
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from the S & P 500 from January 2nd, 1990, to September
30th, 2003, and also VIX data from the Chicago Board
of Options Exchange (CBOE) which is a measure of the
volatility computed from option prices for the corresponding
time period. The S & P 500 and VIX data from 1990 to 2011
are presented in Figure 1.

Feb90 Feb96 Feb02 Feb08

500

1000

1500

S
&

P
 5

00

Feb90 Feb96 Feb02 Feb08

20
40
60
80

V
IX

Fig. 1. S & P 500 (top) and VIX (bottom) from January 1990 to April 2011.

A. Diffusions
We have studied the Cox-Ingersoll-Ross (CIR) model (for

which the transition kernel is known, see [12]) and the
Heston model, see [21], which is probably the most popular
continuous time stochastic volatility model.

1) Cox-Ingersoll-Ross: The CIR model, see [12], is defined
by the SDE

dYt = κ(θ −Yt)dt + σ
√

YtdWt. (18)

The model is commonly used to model positive, mean revert-
ing quantities such as interest rates, see [12], energy price,
see [31], [40] and unobserved volatility, see [21]. The need
for time varying volatility is obvious when studying Figure 1.

It is known that the transition kernel for the CIR model is
a non-central χ2 distribution, see [28]. The MCEM algorithm
was compared to the MLE for a large data set, corresponding
to 20 years of daily data. The results are presented in Table II.

Iter. no κ θ σ
Start 4.5 .04 .5

1 6.1037 0.0562 0.4537
2 5.5002 0.0561 0.4292
3 5.1590 0.0561 0.4165
4 5.0126 0.0561 0.4100
5 4.9292 0.0561 0.4066

10 4.8431 0.0561 0.4032
20 4.8057 0.0561 0.4019
30 4.8065 0.0561 0.4022

MLE 4.7969 0.0561 0.4047

TABLE II
CONVERGENCE OF THE MCEM ALGORITHM FOR THE CIR PROCESS. THE

FIRST 15 ITERATIONS USED K = 200, K′ = 30 WHILE THE LAST 15
USED K = 500, K′ = 100.

Convergence to the MLE is rapid, as the difference is
negligible after a few iterations.

2) Heston: We proceeded by applying the estimator to the
Heston model, [21]. The model is given by

dXt =

(
µ− Vt

2

)
dt +

√
VtdW

(S)
t , (19)

dVt = κ(θ − Vt)dt + σV
√

VtdW
(V)
t . (20)

The µ parameter is notoriously difficult to estimate, which is
why it has been set to µ = 0.05 throughout the paper. We
examined the model by simulating 3000 daily observations
(again corresponding to 20 years of daily data), and fitting the
model using the proposed algorithm. The results are presented
in Table III, again showing satisfactory results.

Iter. no κ θ σ ρ
Start 3.5 0.05 .5 -.5

1 11.1297 0.0560 0.3914 -0.5353
2 7.9429 0.0557 0.3261 -0.5789
3 6.3109 0.0555 0.2877 -0.6229
4 5.3994 0.0553 0.2658 -0.6567
5 4.9740 0.0552 0.2543 -0.6778
10 4.5519 0.0550 0.2421 -0.7024
20 4.5211 0.0550 0.2413 -0.7024
25 4.5260 0.0550 0.2413 -0.7026
30 4.5203 0.0550 0.2413 -0.7026

True 4 0.05 .25 -.7

TABLE III
CONVERGENCE OF THE MCEM ALGORITHM FOR THE SIMULATED

HESTON PROCESS. THE FIRST 15 ITERATIONS USED K = 200, K′ = 80

WHILE THE LAST 15 USED K = 1000, K′ = 200.

The parameters were also estimated using data from S
& P 500 and CBOE (VIX), cf. [4]. It is possible to find
approximate parameters by fitting a CIR model to VIX data.
These estimates, along with the estimates for the full model,
are presented in Table IV. These can be compared to the
(AS-K) estimates in [4] that uses the same data but another
approximation to compute the MLE.

Iter. no κ θ σ ρ
CIR 5.69 0.0455 0.407 -
Start 3.5 0.05 .5 -.5

1 3.0017 0.0484 0.3285 -0.5196
2 3.3950 0.0483 0.3499 -0.5365
3 3.6776 0.0482 0.3662 -0.5523
4 3.9303 0.0482 0.3851 -0.5683
5 4.2364 0.0481 0.3997 -0.5826

10 4.8232 0.0483 0.4457 -0.6422
20 5.0307 0.0487 0.4809 -0.7090
30 4.9674 0.0489 0.4921 -0.7337

AS-K 5.07 0.0457 0.48 -0.767

TABLE IV
CONVERGENCE OF THE MCEM ALGORITHM FOR THE S&P 500 AND VIX

DATA. THE FIRST 15 ITERATIONS USED K = 500, K′ = 50 WHILE THE

LAST 15 USED K = 1000, K′ = 200. AS-K ARE THE ESTIMATES FROM

[4].

The estimates from the [4] paper and MCEM are similar,
and both are different from estimating the (κ, θ, σ) parameters
using only the V process, indicating that the CIR estimates
should primarily be considered as starting values for estima-
tion of the full model.
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B. Jump-Diffusion

A popular extension of the Heston model is the Bates model,
see [6]. The model is defined as

dXt =

(
µ− Vt

2

)
dt +

√
VtdW

(S)
t + dLt, (21)

dVt = κ(θ − Vt)dt + σV
√

VtdW
(V)
t (22)

where Lt is a compound Poisson process with jumps arriving
with intensity λ and the jumps are Gaussian with mean µJump
and variance σ2

Jump. We expect the estimates to be similar to
the Heston estimates, but with a smaller latent volatility as the
jump component will capture some of the dynamics.

The parameter estimates, when using the same data as
for the Heston model and computing the median over all
iterations (the estimates are rather noisy), cf. [9], are presented
in Figure 2.
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Fig. 2. Median (computed over iterations) of the estimates for the Bates
model when applied to S&P 500 and VIX.

The parameters are similar to the Heston estimates, but
adjusted for the contribution from the jump component.

C. Levy-driven SDEs

An increasingly popular generalization of diffusion pro-
cesses and jump-diffusions are Levy-driven SDEs, i.e. stochas-
tic differential equations driven by a general white noise
process. These are particularly popular in finance, see [11],
[32]. We start with an exponential Lévy process.

1) NIG: One of the most popular Lévy processes is the
Normal Inverse Gaussian (NIG) process, see [5]. The process
is a subordinated Brownian motion. Formally, let u be a
random variable that follows an inversion Gaussian probability
law

u ∼ IG(δ,
√
α2 + β2). (23)

Furthermore, assume that w conditional on u is normally
distributed with mean µ+ βu and variance u

v|u ∼ N(µ+ βu, u). (24)

It can then be shown that the unconditional density for w is
given by

v ∼ NIG(α, β, µ, δ). (25)

The α parameter controls the tails, the β parameter the
asymmetry, the µ parameter is a location parameter and δ
parameter is a scale parameter. A very convenient property
of the NIG distribution is that it is closed under convolution.
Let v1 ∼ NIG(α, β, µ1, δ1) and v2 ∼ NIG(α, β, µ2, δ2).
It can then be shown the NIG distribution is closed under
convolution, i.e. that v1 + v2 ∼ NIG(α, β, µ1 + µ2, δ1 + δ2).

The NIG process is a generalization of the NIG-distribution,
cf. [5]. The process is used to model stocks as an exponential
NIG process

S(t) = exp(L(t)) (26)

where L(t) is a NIG process.
The parameters governing the NIG process can be estimated

using moment matching, see [17] or Maximum likelihood
estimation. We have compared these methods to Algorithm
1 in a simulation study. The parameters that we used in the
simulation were estimated from the S & P 500 data that were
used in Section III-A and III-B.

We have simulated 10 independent realizations, each con-
sisting of 20 years of weekly data using the MLE from the
S & P 500 data. The results are presented in Figure 3 (the
estimates), Figure 4 (estimates minus the true parameters)
and Figure 5 (estimates minus the MLE). The simulations
were started from the Moment matching estimates and used
Km = 100(1+

√
m)) and K ′m = 20(1+

√
m)) samples when

approximating the expectation in intermediate quantity.

30
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Fig. 3. Parameter estimates for the NIG model when using MLE, Moment
matching (MM) and Monte Carlo EM (MCEM) in this paper.

There is little doubt that MLE or the proposed Monte
Carlo EM algorithm is generating better estimates that the
moment matching estimator. This result is consistent with the

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 647



−10

0

10

MLE MM MCEM

α−α
True

−5

0

5

MLE MM MCEM

β−β
True

−0.1

0

0.1

MLE MM MCEM

µ−µ
True

−0.2

0

0.2

0.4

MLE MM MCEM

δ−δ
True

Fig. 4. Parameter estimates for the NIG model minus the true parameters
when using MLE, Moment matching (MM) and Monte Carlo EM (MCEM).
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Fig. 5. Parameter estimates for the NIG model minus the MLE when using
Moment matching (MM) and Monte Carlo EM (MCEM).

Cramer-Rao inequality. We have also studied the convergence
of the Monte Carlo EM algorithm. The results are presented
in Figure 6.

The estimates from the MCEM algorithm is converging
nicely for all realizations.

2) NIG-CIR: It is by now well known that stochastic
volatility is needed when modelling financial assets, cf. [21],
[11]. A simple extension of the NIG model is the NIG-CIR
model, see [10], that introduces a stochastic time shift to
the model. Let V be a CIR-process independent of the NIG-
process. The model is then defined as

Z(t) = NIG(I(t)) (27)

where I(t) =
∫ t
0
Vsds. That means that the distribution of Z,

conditional on the I process, is a NIG-distributed process. We
will exploit this fact in our algorithm. Furthermore, it follows
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Fig. 6. Convergence of the MCEM parameter estimates minus the MLE for
the NIG model.

that

Z(tn+1)− Z(tn) = NIG(I(tn+1))−NIG(I(tn)) (28)

d
= NIG(I(tn+1)− I(tn)) = NIG

(∫ tn+1

tn

Vsds

)

from the fact that the NIG process is a process having inde-
pendent increments. The V process can easily be recovered
from option prices, cf. [32] while the relationship with the
VIX is more complicated.

The straightforward implementation of the Pedersen sampler
for this model is given by

p
(
Ztn+1

, Vtn+1
|Ztn , Vtn

)
= (29)

=

∫
p
(
Ztn+1

, Vtn+1
, Vτ |Ztn , Vtn

)
dVτ (30)

=

∫
p
(
Ztn+1

|Vtn+1
, Vτ , Vtn , Ztn

)
· (31)

p
(
Vtn+1

|Vτ
)
p (Vτ |Vtn) dVτ

≈
∫
p
(
Ztn+1

|I(tn+1)− I(tn), Ztn
)
· (32)

p
(
Vtn+1

|Vτ
)
p (Vτ |Vtn) dVτ

while a simple extension would be to implement a Durham-
Gallant type importance sampler for the hidden V process (the
process is a diffusion, indicating that the regularity conditions
are likely to hold).

The smoothing distribution can be derived by computing
the expectation of a test function f(Vτ ) with respect to the
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smoothing distribution.

E[f(Vτ )|Vtn , Vtn+1
, Xtn , Xtn+1

] = (33)

=

∫
f(Vτ )p(Vτ |VtnVtn+1

, Xtn , Xtn+1
)dVτ (34)

=

∫
f(Vτ )

p(Xtn+1
, Vtn+1

, Vτ |Vtn , Xtn)

p(Xtn+1
, Vtn+1

|Vtn , Xtn)
dVτ (35)

=

∫
f(Vτ )

p(Xtn+1 |Vtn+1 , Vτ , Vtn , Xtn)

p(Xtn+1
, Vtn+1

|Vtn , Xtn)
· (36)

·
p(Vtn+1 |Vτ )p(Vτ |Vtn)

q(Vτ )
q(Vτ )dVτ

where we introduced an importance sampler for the V process.
The V process is a pure diffusion process with known initial
and final values, implying that the Durham-Gallant sampler
is a good choice of sampler. Evaluating the integral using
samples V (k)

τ from the importance sampler q(Vτ ) results in

E[f(Vτ )|Vtn , Vtn+1
, Xtn , Xtn+1

] ≈
K∑
k=1

f(V (k)
τ )wk (37)

This holds for any function f(V ), including f(V ) = 1. This
is used to derive the self-normalized importance sampling
weights as

w̃k =
p(Xtn+1 |∆I(k), Xtn)p(Vtn+1 |V

(k)
τ )p(V

(k)
τ |Vtn)

Kp(Xtn+1
, Vtn+1

|Vtn , Xtn)q(V
(k)
τ )

, (38)

wk =
w̃k∑
l w̃l

. (39)

where ∆I(k) is an approximation of
∫ tn+1

tn
Vsds using

Vtn+1
, V

(k)
τ and Vtn . The corresponding intermediate quantity

is given by

Qm(θ, θm) =
1

Km

Km∑
k=1

(N−1)J∑
r=1

log pθ(V
(k)
τr+1
|V (k)
τr ) (40)

+

N−1∑
n=1

log pθ(Xtn+1 |Xtn , I(tn+1)− I(tn))

)
.

The connection between the VIX and the time shift process
is rather complex (it depends on both the historical and the
risk neutral measure), it is possible to estimate the hidden time
shift process directly using the sequential calibration method
in [32] but that approach requires observations from several
options at each time point in addition to the returns. We have
therefore used simulated data to evaluate the MCEM estimator
for NIG-CIR model.

The parameters in our simulation study was chosen as a
combination of the parameters estimated in Section III-C.1
and [32]. The parameters used are κ = 10, θ = 0.1, σ =
1, α = 30, β = −7, µ = 1 and δ = 4. The data corresponds
to 10 years of monthly data. The MCEM algorithm was run
using J = 10 subintervals and approximating the expectation
with Km = 100(1 +

√
m) and K ′m = 20(1 +

√
m) samples.

The MCEM algorithm used a Durham-Gallant sampler for the
V process in order to reduce the variance of the approximation
of the intermediate quantity.

We have compared the MCEM estimates to other estimators.
It is possible to compute the MLE for the κ, θ and σ
parameters as the likelihood function is known in closed form.
We refer to this estimator as the exact estimator, in-spite
knowing that it is not based on the full data set and therefore
not maximum likelihood estimator for the full model. The
other comparison we use is the Discrete Maximum Likeli-
hood (DML) estimator, cf [22], approximating the transition
probabilities with a single Euler step. The parameter estimates
for all methods are presented in Figure 7.
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Fig. 7. Parameter estimates generated by the MLE (only CIR parameters),
MCEM and DML methods.

Subtracting the true parameters from the estimates gives an
indication of the quality (unbiased etc) of the estimates. This
is presented in Figure 8.

We can see that some of the DML estimates are biased (e.g.
κ and σ), while the Exact and MCEM are unbiased or nearly
unbiased (we expect to bias in the MCEM to be much smaller
than the DML estimates considering that many intermediate
time steps (J = 10) were used). Another difference between
the MCEM and DML estimator is that the variance of the
MCEM estimates is lower than the variance of the DML
estimates.

IV. CONCLUSION

We have introduced a Monte Carlo EM-algorithm for maxi-
mum likelihood estimation for diffusions, jump-diffusions and
Lévy driven stochastic differential equations. The algorithm
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Fig. 8. Difference between the parameter estimates generated by the
MLE(CIR), MCEM and DML methods and the true parameters used when
generating the data.

is simple, only marginally for complex than the Pedersen
method, [37], general (applicable for scalar and multivari-
ate discretely observed models) and computationally efficient
compared to standard methods, cf. Section II-A.2.

The algorithm can be used to estimate parameters in com-
plex models, beyond what the financial industry is currently
using, and it will be useful when estimating parameters
governing the historical probability needed for financial risk
management.
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