
 

 

  

Abstract—The objective of research is to find DBH prediction 
models that: use variables derived from remote sensing, field 
mensuration and previous forest inventory data; can be used in STRS 
methods; are suitable for Latvian forest conditions. In paper different 
tree DBH predicting models from field and remote sensing data were 
researched. The study site is a forest in middle of Latvia at Jelgava 
district (56º39’ N, 23º47’ E). The area consists of mixed coniferous 
and deciduous forest with different age, high density, complex 
structure, various components, composition and soil conditions. 
Aerial photography camera (ADS 40) and laser scanner (ALS 50 II) 
was used to capture the data. LiDAR resolution is 9p/m2 (500 m 
altitude). The image data is RGB, NIR and PAN spectrum with 20 
cm pixel resolution. Image processing was made using Fourier 
transform, frequency filtering and reverse Fourier transform. LiDAR 
data processing methods was based on canopy height model, 
Gaussian mask and local maxima. Field measurements are tree 
coordinates, species, height, diameter at breast height, crown width. 
Totally seven different linear models were developed, using data 
collected. General linear model that predicts DBH includes a tree 
height, effective crown area, soil type and age factors. It showed 
strongest relationship between predicted and measured DBH (R2 = 
0,872). Summary results show that the models predict DBH 
reasonably well and factors included in all models are significant. 
Using combined LiDAR and optical imagery data is able to detect at 
least 63 % of all trees and about 85% of the dominant trees. Not 
identified trees at 82% of cases diameter at breast height was less 
than 20 cm and 88% of cases height was less than 20 m.  
Relationship between the Lidar detected height and observed total 
height shows showed strong relationship (R2 = 0,986), also between 
Lidar and aerial photography detected and observed tree crown is 
strong relationship (R2 = 0,869). 
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I. INTRODUCTION 

IAMETER at breast height (DBH) and tree height are 
important tree characteristics used to determine accurate 

prediction of tree stem volume. Tree volume usually is 
calculated using volume models or equations, where 
information of DBH is required.  

Today traditional forest inventory often is replaced with 
remote sensing method, which is usually less time-consuming 
and less expensive. Optimal forest inventory method often 
consists of a variety of data sources that are combined with 
various methods [1], [2]. Airborne laser scanning (ALS) and 
optical imagery is the most common remote sensing methods 
used in forest inventory. Single tree remote sensing (STRS) 
methods are intended to replace field measurements such as 
position, species, height, DBH and volume. The method’s 
vision is to create it without field visits and measurements [3]. 
However, data calibration is necessary. Field data collection 
will need for determination of the diversity, which cannot be 
measured from the air.  

In studies STRS methods, one of the main problems that the 
authors mentioned is tree species and tree location accurate 
determination [4], especially in Middle Europe [5], since there 
is a mixture of different deciduous and coniferous trees. As a 
result, the indication is much harder.  The main conclusion is   
that the usage of LIDAR method to determine forest inventory 
parameters will never be one hundred per cent correct [6], [4] 
especially applying automated tracking methods [7]. However, 
compared with traditional inventory methods, laser-based 
method is faster, more cost efficient, and the results are 
reliable, but with certain restrictions [8]. 

In Scandinavian countries studies of STRS forest inventory 
show good results. For example Korpelas research shows that, 
10% of all trees were not identified and 12% of the total stock 
of wood is inaccurate, species identification accuracy - 93.7%, 
only 4.7% error in the determination of the tree height [9]. 
Also, Nicholas Coop research results show that there is a close 
correlation between the STRS data and field measurement data 
of canopy parameters. As a result, it is possible to successfully 
obtain quality information on forest indicators [9]. In 
Peuhkurinena survey traditional forest inventory data and 
STRS data were compared with harvester data obtained from 
22 spruce stands. STRS method showed a 17% higher 
precision of trees DBH [10]. Practically for all researchers so 
far it has been difficult to determine the species in mixed forest 
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stands. Automated identification of species with the individual 
tree method is still problematic, even in cases where access to 
different types of data [11] is available.  

In view of the complexity caused by irregularities and 
diversity of forest stands STRS methods require necessity to 
adopt the semi-automatic approach [12],[9] and use auxiliary 
information [12], [13] to make STRS solvable. Most often, 
this auxiliary information is obtained through allometry. 

Tree allometry establishes quantitative relations between 
some key characteristic dimensions of trees (usually fairly easy 
to measure) and other properties (often more difficult to 
assess).  

Allometric relationships for estimating tree-level and stand-
level parameters are very important for managing any forest 
resources [14], [15], [16], [17]. Allometry varies between tree 
species [18] and within a stand as trees adapt to the intra and 
interspecific competition [19], also characteristics such as 
stand density, stand silvicultural history, genetic factors of tree 
seed, tree position in a stand, site fertility, height above sea 
level, distance from sea, mineral soil and stand development 
class [20], [21], [22] affect variables. These variables are 
usually measured in the field but can also be predicted by 
regression models [23].  

Direct measurements of forest structure are taken on 
intensively sampled, relatively small field plots, and these data 
are used to create allometric models that predict forest 
parameters from easily measured tree attributes. DBH is 
commonly used as predictors of stem volume and other tree 
metrics in a wide variety of allometric equations.  

There have been numerous studies of this approach. DBH 
prediction models have been studied by using field measured 
trees [24] or aerial photographs [25], [26]. More recent efforts 
have focused on measuring individual tree heights using 
airborne laser scanning (ALS) data [10], [27], [28] or crown 
widths from high resolution aerial [29], [30] and satellite 
imagery [31], then using the modeled DBH to estimate single 
tree volume, stand volume, total-tree biomass and carbon. 

Canopy leaf surface area, tree height, DBH, volume and 
structural properties are the main tree characteristics that affect 
each other, but STRS methods can provide direct 
measurements only for canopy crown and tree height. Tree 
height using airborne laser scanning can be determined with 
high precision. Well-known relationship between the DBH and 
tree height can be used in DBH prediction models. Second 
parameter is crown size, which has received increasing 
attention as a means to estimate tree growth [32]. 
Measurement of tree crown width is difficult and time 
consuming if they are taken from the ground, but conversely if 
taken from STRS data. Crown width is used in tree and crown 
level growth-modeling systems [33], [34]. Equations for 
predicting the tree dimensions have many applications 
including estimations of crown surface area and volume in 
order to asses forest health [35], tree-crown profiles and 
canopy architecture [33], [36], forest canopy cover [32] and 
the aboveground biomass. Modeling DBH as a simple linear 

model between crown width and crown diameter is often 
adequate [33], [36]. 

In Latvia, the first attempts to use the STRS methods in 
forestry started in 2007. Technology comes from the 
Scandinavian countries. With a large number of research and 
perseverance they are developed and adapted itself suitable 
data collection and processing methodology, which is capable 
of providing high quality data acquisition. Unfortunately, one 
of the biggest problems is that the data collection and 
processing methods in Latvian conditions work differently, 
and those methods cannot provide forest inventory data quality 
requirements. This is mainly due to the large number of tree 
species and forest diversity in growing conditions, as well as 
STRS specifics. Regardless of tree species identification and 
determination one of the problems is correctly DBH prediction 
models. 

The objective of research is to find DBH prediction models 
that: 

• use variables derived from remote sensing, field 
mensuration and previous forest inventory data; 

• can be used in STRS methods; 
• are suitable for Latvian forest conditions. 
In paper different tree DBH predicting models from tree 

height, tree crown dimensions, soil type and age were 
researched. 
 

II. MATERIALS AND METHODS 

A. Site description 

The study site was a forest (3 165 ha) in the middle of 
Latvia in Jelgava District (56º39’ N, 23º47’ E) and (56.64’ N, 
24.33’ E). The research object consists of two forest 
complexes. Location of study area in Latvia map is shown in 
Fig.1. 

 
Fig. 1 Location of study area 

 
The area consists of mixed coniferous and deciduous forest 

with different age, high density, complex structure, various 
components, composition and soil conditions. Represented 
species are Scots pine (Pinus sylvestris L.), Norway spruce 
(Picea abies (L.) H.Karst), silver birch (Betula péndula Roth), 
black alder (Alnus glutinos L.), and European aspen (Populus 
trémula L.). 
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Sample plots were selected in study site using information 
about previously forest inventory (information about stand age, 
dominate species and soil conditions were taken from year 
2009). Totally 350 stands were selected in order to include all 
interested species, age groups (five age groups) and growing 
conditions (five soil type groups). Database processing and 
plot selection model is presented Fig. 2. 

 

 
 
Fig. 2 Database processing and plot selection model 
 
Totally 350 sample plots (0.045 ha) were established during 

summer 2010. Plot location in the study area shown in Fig. 3. 
 

 
 

Fig. 3 Plot location in the study area 
 
Differentially corrected Global Positioning System 

measurements were used to determine the position of the 
center of each plot. Accuracy of the positioning was 
approximately 1 meter. 

B. Field measurements 

All trees with a diameter at breast height DBH of more than 
5 cm were measured and for each tree coordinates, species, 
height, DBH, age and crown width was recorded. Field data 
acquisition process model is presented in Fig.3. 

 

 
 

Fig. 3 Field data acquisition process model 
 

Altogether there were measures of 6154 trees in the data. 
The main characteristics of all trees are presented in Table 1. 

 

Table 1. Characterization of data set. Where DBH  is the 
diameter at breast height (cm), H - tree height (m), VP – crown 
width (m), A - age (years) and St.ch. – statistical 
characteristics, N - number of trees. 

 

Specie St.ch. DBH H VP A N 

Pine Mean 26.8 23.3 5.3 76,3 1617 
Min. 5.0 2.5 0.9 6,0 
Max. 83.8 37.1 12.3 164,0 

Spruce Mean 17.3 15.4 4.8 70,4 2365 
Min. 5.0 2.2 0.5 7,0 
Max. 77.8 39.3 13.5 152,0 

Birch Mean 17.8 19.1 5.4 60,8 1057 
Min. 5.0 4.9 1.1 5,0 
Max. 54.6 39.9 18.9 114,0 

Alder Mean 21.9 21.3 6.1 58,0 1016 
Min. 5.4 4.3 1.2 5,0 
Max. 58.3 36.8 16.4 102,0 

Aspen Mean 27.35 25.8 6.1 57,0 99 
Min. 6.5 6.7 1.3 13,0 
Max. 53.5 35.8 13.2 81,0 

 
The tree crown width was measured by projecting the edges 

of the crown to the ground and by measuring the length along 
one axis from edge to edge through the crown center. The 
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diameters of any two axes at 90 degrees to each other were 
selected and averaged by using arithmetic mean. Tree 
locations within a plot were measured using center as the 
origin for determining tree azimuth and distance to the center.  

Effective crown area (the area that does not overlap with 
another tree crown) for each tree (first and second storey trees 
equally) was calculated using information about its location 
within a plot and the width of its crown. The foliage was 
projected on the ground and generally known area calculation 
formulas were used for calculations of effective crown area. 
Two more reasons for using effective crown area instead of the 
simple one are as follows - it acquires more sunlight than the 
rest of its share and in the process of tree identification by 
using remote sensing data usually only effective leaf area can 
be detected. Further data analyzes showed that by using it, 
instead of simple tree crown, considerable increase of the 
regression model accuracy can be achieved.   

 

C. Remote sensing data 

Data were obtained using a specialized aircraft Pilatus PC-6, 
which is equipped with a positioning and Geomatics 
technology company Leica Geosystems equipment - a large 
format digital aerial photography camera (ADS 40) and laser 
scanner (ALS 50 II). The study area was flown over by plane 
and measured. Data were estimated from leaf-on data from 
May, 2010 having 9 (p/m2) at 500 m altitude. The image data 
is RGB (Red, Green, and Blue), NIR (Near Infrared) and PAN 
(Panchromatic) spectrum with 20 cm pixel resolution. 

Individual tree detection from LIDAR data is based on 
canopy height model. The model was smoothed using a 
Gaussian mask and the degree of smoothing is defined by the 
height of pixel. Subsequently, local maxima on the smoothed 
canopy height model were considered as tree locations. Noisy 
data was masked (suppressed) using Gaussian mask.  

In literature Several methods have been developed to 
delineate individual trees using LIDAR data processing 
techniques including the multiple scale segmentation [20], 
template matching [15], watershed segmentation (Schardt et 
al., 2002), local maximum filtering [7] and wavelet analysis 
[12]. In those methods the tree crown must be visually 
recognizable as a discrete object. 

Tree detection from aerial photography data is based on 
Fourier transform, frequency filtering and reverse Fourier 
transform. It was performed to each image from the previously 
prepared data sets. After this process texture of image was 
obtained (was filtered noise and disturbance that further 
processing may be falsely considered as local maxima). 

To estimate tree crown with we use aerial photography. 
Every image was performed segmentation process, which aims 
to find all the pixels that belong to the same tree. Segmentation 
of the study included a modified region growing algorithm. 

Tree height was calculated as the difference between tree 
highest points of the earth's surface. Highest point of the tree 
was searched from actual LIDAR data in 3 meter radius from 
tree center.  

Information on tree species in all models was taken from 
field data. 

D. Analytical Work 

The analysis of covariance was used to evaluate if certain 
factors have an effect on the outcome variable. Multiple linear 
regressions consider more than one independent variable, and 
it was used to develop models to predict DBH (cm) of 
individual tree in SPSS for Windows using untransformed data 
(for age, soil type and species) and transformed data (for 
DBH, tree height, crown width and effective crown area). 
Power function was used of the form: 
 

 i + Xip  p+…+ Xi22 + Xi11 + 0 = Yi εββββ ⋅⋅⋅      (1) 

 
where Yi is the ith observation of the dependent variable 
(DBH), Xij is ith observation of the jth independent variable 
(collected data in sample plots), j = 1, 2, ..., p. The values βj 
represent parameters to be estimated, and εi is the ith 
independent identically distributed normal error. 

The following seven general linear models were developed, 
by using data collected in Latvia, Jelgava District: 
 

1. 
iεβ

βββ

  S  3 

 AAT  2A   1  0 = Ln(DBH)i

+⋅

+⋅+⋅+                 (2) 

  

2. 
iε

βββ

 

 S  2 Ln(H)i  1  0 = Ln(DBH)i +⋅+⋅+         (3) 

 

3. 
iεββ

βββ

+++⋅

+⋅+⋅+

 S  4  AAT  3 

A   2 Ln(H)i  1  0 = Ln(DBH)i       (4) 

 

4. 
iεβ

βββ

+⋅+

⋅+⋅+

 S  3

 Ln(VP)i  2 Ln(H)i  1  0 = Ln(DBH)i     (5) 

 

5. 
iεβ

βββ

+⋅+

⋅+⋅+

 S  3

 Ln(VPE)i  2 Ln(H)i  1  0 = Ln(DBH)i  (6) 

 

6. 
iεβββ

βββ

+⋅+⋅+⋅

+⋅+⋅+

S  5  AAT 4A   3 

 Ln(VP)i  2 Ln(H)i  1  0 = Ln(DBH)i   (7) 

 

7. 
iεβββ

βββ

+⋅+⋅+⋅+

⋅+⋅+

S  5  AAT 4A   3 

 Ln(VPE)i  2 Ln(H)i  1  0 = Ln(DBH)i  (8) 

 
Where DBH  is the diameter at breast height (cm), H - tree 

height (m), VP – crown width (m), VPE - effective crown area 
(m2), A - age (years) and S - species dummy variable, but 
AAT - soil type dummy variable for the districts.  

All models were extended also to include the factors 
interaction effects. The intercept was tested to determine if 
they were statistically different from zero (P < 0.05).  

Root mean square error of the estimate (RMSE) and the 
coefficient of determination (R2) were used to evaluate 
goodness of fit. 
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III. RESULTS 

A. Tree identification results 

The accuracy of tree detection was satisfactorily when we 
use combined LiDAR and optical imagery data. In Fig. 4 we 
can see identified tree centers and tree crown area 
determination results. 

 

 
 
Fig. 4 Tree top recognition and tree crown area 

determination results. 
 
Results of tree detection using combined LiDAR and aerial 

photographic method show that 63 % of all trees were 
unambiguously found, but 37 % of tree were not identified 
(Table 2.).  

Table. 2. Descriptive statistics of tree detection result and 
tree characterizing parameters (combined LiDAR and optical 
imagery data) 

 

Result of tree 
detection 

Age DBH 
Tree 

Height 
Crown 
Width 

Trees 
identified 

Mean 68.73 25.85 23.65 5.89 

N 3857 3857 3857 3857 

Std. Dev. 34.30 10.12 6.316 2.02 

Min. 5 2.9 3.5 1.13 

Max. 164 83.8 39.9 18.93 

% of Total  62.7 62.7 62.7 62.7 

Trees not 
identified 

Mean 68.74 14.26 13.61 4.39 

N 2297 2297 2297 2297 

Std. Dev. 35.09 7.230 5.68 1.5 

Min. 5 1.6 1.9 0.50 

Max. 164 54.6 37.3 13.31 

% of Total  37.3 37.3 37.3 37.3 

 
If we look at not identified trees, then 82% of cases were 

trees with diameter at breast height (DBH) less than 20 cm and 
88% of cases trees with height less than 20 m. This means that 
only about 15 % of first storey trees were not identified 
correctly. Analysis of identified trees shows that 20% of cases 
Norway spruce, 5% of cases Scots pine, 7% of case Silver 

birch, 4% of case Black alder and just 1% of cases European 
aspen were not identified. Identified trees in species level 
shows that only 45% of cases Norway spruce, 80% of cases 
Scots pine, 78% of case Silver birch, 77% of case Black alder 
and 98% of cases European aspen were identified. 

B. Tree height estimates results 

Figure 5 demonstrates the closeness of fit between the Lidar 
detected height and ground measured total height of the 
sample trees. It can be observed that the bias of height 
estimates ranges from -1.72 m to 0.26 m, and the average and 
standard deviation of the absolute bias are -0.75 m and 0.51m.  
 

 
Fig. 5 Relationship between the Lidar detected height and 

observed total height of the sample trees. 
 

C. Tree crown with estimates results 

Figure 6 shows the closeness of fit between the LiDAR and 
aerial photography.  

 

 
Fig. 6 Relationship between the Lidar and aerial 

photography detected and observed tree crown of the sample 
trees. 
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In this figure, a linear model is fitted with a R2 value of 0.86 
which indicates a strong correlation. In this study, the crown 
width had a bias ranging from -2.35 m to 1.92 m. The average 
and standard deviation of crown width estimation bias was -
0,15 m and 0,79 m respectively. 

 

D. DBH estimation models results 

One of the main tasks was to find out what data is required 
in order to, as closely as possible, determine DBH. The basis 
for nearly all models is well-known relationship between the 
diameter and height of a tree. In Fig.2 are shown relationships 
between LnDBH and LnH in the study area. There is a linear 
relationship between LnDBH and LnH, but depending on the 
species linear regression growth rate is different. 

 

 
Fig. 5 Relationships between LnDBH and LnH in the study 

area of main species. 
 
There is a linear relationship between LnDBH and LnH, but 

depending on the species linear regression growth rate is 
different.  

Model (model no. 2. in Table 3.) that uses measurement of a 
tree height as a predictor variable can be expected to produce a 
reasonably accurate estimate of DBH (r2=0,792), but often it 
is not enough. Model (model no.1. in Table 3.) that includes 
only information about species, age, soil type and factors 
interaction effects showed poor results (Table 4). It proved 
that a tree height is the most important factor in all models.  

Models with different combination of factors were tested 
and the best results were obtained by using one that included 5 
factors - tree height, effective crown area, age, tree species and 
soil type. Using this general linear model, the following results 
were obtained (Table 5.), where all 5 factors- tree height 
(p=0,01), effective crown area (p=0,000), age (p=0,068), 
species (p=0,000) and soil type (p=0,000), as well factors 
interaction effects, are significant at different level on 
significance. 
 

 

Table. 3. Overview of statistical indicators of all models 
 

Model, (Factors) RMSE F Sig. R2 

1. (A;AAT;S) 9,2 50,6 0,000 0,409 

2. (H;S) 165,7 2602,3 0,000 0,792 

3. (H;A;AAT;S) 12,1 218,8 0,000 0,822 

4. (H;VP;S) 114,2 2471,7 0,000 0,849 

5. (H,VPE,S) 114,4 2500,6 0,000 0,851 

6. (H,VP,A,AAT,S) 9,6 237,1 0,000 0,871 

7. (H,VPE,A,AAT,S) 9,6 239,2 0,000 0,872 
 
Table 4.  Overview of model no.1 (A;AAT;S) factor 
interaction effects. 
 

Model (A;AAT;S) RMSE F Sig. 

S 0,4 2,6 0,033 

AAT  2,7 14,8 0,000 

A 13,2 72,1 0,000 

S * A 0,6 3,4 0,007 

S * AAT 1,9 10,3 0,000 

S * AAT * A 1,8 10,3 0,000 

AAT * A 1,3 7,2 0,000 

 

Table 5.  Overview of model no.7 (H,VPE,A,AAT, S) factor 
interaction effects. 
 

Model 
(H,VPE,A,AAT,S) RMSE F Sig. 
S 0,32 7,96 0,000 
AAT 0,14 3,51 0,000 
A 0,13 3,32 0,068 
LnH 0,41 10,35 0,001 
LnVPE 0,61 15,27 0,000 
S * AAT 0,15 3,74 0,000 
S * AAT 0,07 1,84 0,117 
S * LnH 0,07 1,79 0,126 
S * LnVPE 0,07 1,82 0,120 
AAT* A 0,03 0,79 0,647 
AAT * LnH 0,16 4,17 0,000 
AAT * LnVPE 0,09 2,23 0,006 
S* AAT *A 0,08 2,17 0,001 
S * AAT * LnH 0,15 3,86 0,000 
S * AAT * LnVPE 0,07 1,95 0,003 

 
This model gave the best performance according to values 

of statistics used to compare models in the fitting phase. 
Consequently, this model was accepted.  

Results of DBH estimation model accuracy show a strong 
relationship between predicted and measured DBH (shown in 
Fig. 6). 
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Fig. 6 Predicted and measured DBH 
 

IV. CONCLUSIONS 

Results of this study show that the developed model can be 
used in LIDAR-based single tree remote sensing methods to 
predict DBH if information about soil type and age is 
available.  

Models that use field or remotely-sensed measurement of a 
tree height as a predictor variable can be expected to produce a 
reasonably accurate estimate of DBH (R2=0,792) in Latvian 
forests, but when the model uses crown dimension 
measurements and information about age and soil type, the 
accuracy of DBH increases (R2=0,872).   

Interaction effects between factors included in models must 
be considered, and statistical analysis shows that they are 
significant at different level on significance.  

A number of studies have also investigated the relationship 
between DBH and crown dimensions for different tree species 
and a strong relationship was noted. 

Relationship between the Lidar detected height and 
observed total height shows showed strong relationship (R2 = 
0,986), also between Lidar and aerial photography detected 
and observed tree crown is strong relationship (R2 = 0,869). 

Simple leaf area calculation must be replaced with one that 
considers tree concurrency, because it better suits to be used in 
systems for processing remote sensing data. 

It should be possible to improve DBH estimation accuracy 
if information of tree foliage density, foliage mass or crown 
length were available. Developed models can be used in 
LIDAR-based single tree remote sensing methods to predict 
DBH. 

Using combined LiDAR and optical imagery data is able to 

detect at least 63 % of all trees and about 85% of the dominant 
trees. This is explained by the fact that trees vary in crown 
size, shape and optical properties, crowns are often interlaced. 
These factors affect the treetop positioning and make the 
identification difficult. The problem is with the small trees and 
close existing trees identification, as well as high density 
hardwood stands with homogeneous crown. 

Analysis of identified trees shows that 20% of cases Norway 
spruce were not identified and 55% in species level trees were 
not identified. This is explained by the fact that the spruce 
crown geometry is triangular and consequently, the LIDAR 
transmitted pulses often miss the highest tree point. Pine and 
birch crown geometry is a little flatter, the measurements are 
more accurate. 

It should be possible to improve DBH estimation accuracy 
by using more precise measurements of foliage density, foliage 
mass or crown length. The parameter that could cause most 
problems when this model is used in practice is tree species, 
because methods that are capable to determine its value from 
remote sensing data are still being developed and those that are 
used in practice usually are able to distinct three or four 
species.  

Latvian forest conditions are difficult for single tree 
remote sensing methods mainly of mixed deciduous and 
coniferous spaces with high level of the second storey trees in 
one stand. Mostly trees are close together with high density 
and homogeneous crown. It is one of the main reasons for a 
large number of trees that are omitted. 

To improve the recognized number of trees one way is to 
perform laser scanning in spring when the forest is less dense, 
the first storey trees are more transparent and the smaller 
dimension trees can be recognized. Also can use tree crown 
shape analyze from LIDAR data, and it means that there is a 
need for LIDAR data with a higher level of point density per 
square meter. 
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