
 

 

  

Abstract—In this paper we made a comparison study between 
regression spline, penalized spline, and their Bayesian versions: 
adaptive Bayesian regression spline and Bayesian penalized spline 
with a different number of observations. For this purpose we made a 
simulation study with four different functions with six positions. For 
regression and penalized splines the important problems are the knot 
selection and selection of smoothing parameter. For both techniques 
we used equidistant knot selection as a basis method in regression 
techniques. The purpose of using different number of sampled 
observations is to analyze the behavior of utilized techniques. All 
results are compared with each other by mean value of the MSE 
(mean squared error). The penalized spline showed one of the best 
results between spline techniques and their Bayesian versions.  
 
Keywords—Adaptive Bayesian regression spline, Bayesian P-

spline, P-spline, Regression spline, Simulation. 

I. INTRODUCTION 

HE nonparametric regression techniques become powerful 
tools for analyzing, predicting and forecasting for 

statisticians in recent years. 
There are a lot of methods and techniques in nonparametric 

regression. There exist a various techniques in nonparametric 
statistics, like regression splines [8], smoothing splines [4], B-
splines [16], [17] and P-splines [2], generalized additive 
models. All these techniques aimed in one problem: to make a 
precision prediction. 

In this study we used techniques that are in our studied 
research field, such as regression spline, penalized spline and 
there Bayesian analogues: adaptive Bayesian regression spline 
and Bayesian penalized spline. For regression and penalized 
splines we used the 3rd order basis functions with the second 
order penalties. The selection of proper method to use in 
specific task is an important problem.  

In this study we made the selection of the regression and 
Bayesian techniques. For this purpose, we made a simulation 
study with four different functions with six positions. There 
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become 24 different functions totally when changing positions 
of the functions. For all these functions we sampled n=50, 
n=100, n=200 and n=400 number of observations with 200 
replications. Changing the position of function gives us the 
different scattered dataset. For comparison of these techniques 
we used mean value of MSE for each replication. And we 
showed results graphically with box plot of MSE.  

The main idea of regression splines, penalized splines, 
Bayesian penalized splines and adaptive regression spline has 
described in problem formulation section. The simulation 
study and there result are gathered in problem solution section. 
Finally, conclusion section concludes the paper.  

II. PROBLEM FORMULATION 

Firstly, we can summarize nonparametric regression model. 
Nonparametric regression model including a predictor 

(independent) variable x  and a response variable y  is 

defined as 
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 are normal distributed random errors with zero mean 

and common variance ( )( )2 20,i Nσ ε σ∼ [9]. 

In this section we give short information about the utilized 
techniques. First, it described regression spline function as a 
basis function for regression techniques. Regression spline 
chooses a basis amounts to choosing some basis functions, 

which will be treated as completely known: if 
)(xb j  is a  

thj  

such basis function, then f  is assumed to have a 
representation  
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for some values of the unknown parameters, jβ
.  

The basic aim of the regression spline is to estimate 

unknown function ],[2 baCf ∈  in model (2).  
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where ],[2 baCf ∈  is an unknown smooth function, 

niyi ,...,1, =  are observation values of the response variable 

y , nixi ,...,1, =  are observation values of the predictor 

variable  x   and nii ,...,1, =ε  normal distributed random 

errors with zero mean and common  variance 2σ .  
Here, smoothing spline is one of the nonparametric regression 
methods dealing with how to obtain the unknown function, that 
can be any arbitrary fuction but comes from specific class of 
function, by imposing a roughness penalty to objective 
function [11]. 
Smoothing spline method is one of the most popular methods 
used for the prediction of the nonparametric regression 
models. The aim of this method is to estimate the 
nonparametric function that minimizes penalized least squares 

criterion. A roughness penalty term multiplied by a positive λ  

smoothing parameter is added to the residual sum of squares in 
smoothing spline regression. For this reason, the estimation of 

the unknown function depends on smoothing parameter λ  
whose values is generally obtained from data. Therefore, the 
determination of an optimum smoothing parameter in the 

interval ( )0,∞  has been arisen as an important problem. As 

related with subject in theory, many studies based on the 
different selection methods have been discussed for choosing 
an appropriate smoothing parameter [12].  
Smoothing spline [4] estimate of the function arises as a 
solution to the following minimization problem: Find 

],[2 baCf ∈  that minimizes the penalized residual sum of 

squares 
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for value 0>λ  [10]. The smoothing spline estimate λf̂  for 

data ),...,( 1
′= nyyy   are given by equation ySf λλ = . In 

equation λf̂  is a natural cubic interpolation spline with knots 

at 
nxx ,...,1 , vector ˆ

λf  consist of values of λf̂  for a fixed 

smoothing parameter 0>λ , λS   is a well-known positive-

definite (symmetrical) smoother matrix which depends on  λ  

and the knot points nxx ,...,1 .  

Here, if we want to explain the last paragraph, the solution 
based on smoothing spline for minimum problem in the 
equation (3) is known as a “natural cubic spline” with knots at 

nxx ,...,1 . From this point of view, a special structured spline 

interpolation which depends on a chosen value λ  becomes a 

suitable approach of function f  in model 1.  

Let ))(),...,(( 1 nxfxff =   be the vector of values of 

function f  at the knot points nxx ,...,1 . The smoothing 

spline estimate λf̂ of this vector or the fitted values for data 

),...,( 1
′= nyyy   are given by   
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where λf̂  is a natural cubic spline with knots at  nxx ,...,1  

for a fixed smoothing parameter λ>0 , and  λS   is a well-

known positive-definite (symmetrical) smoother matrix which 

depends on  λ  and the knot points nxx ,...,1  but not on  y .  

The next method that we used in study is P-splines [2]. 
Eilers and Marx make some significant changes in smoothing 
spline technique. They made following two assumptions: First, 
they assume that E(y)=Ba where 

))(),...,(),(( 21 xBxBxBB k=  is an kn×  matrix of B-splines 

and  a   is the vector of regression coefficients; secondly, they 
suppose that the coefficients of adjacent B-splines satisfy 
certain smoothness conditions that can be expressed in terms 

of finite differences of the 
ia s. Thus, from a least-squares 

perspective, the coefficients are chosen to minimize 
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For least squares smoothing we have to minimize S in (4). 

The selection of smoothing parameter is one of the main 
problems in regression technique with penalty. In this study we 
used a well-known generalized cross-validation method for 
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choosing of smoothing parameter.Cross-Validation method 

suppose the following. Let iiS )( λ  be the ith diagonal element 

of λS . For smoothing splines the usual Cross Validation score 

function is  
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Here λ  is chosen to minimize )(λCV . The extension of 

cross-validation is Generalized cross-validation method. The 
basic idea of Generalized cross validation is to replace the 

denominators iiS )(1 λ−  of Cross Validation by their average 

)(1 1
λStrn−− , giving Generalized Cross Validation score 

function 
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In this equation λ  is chosen to minimize )(λGCV .  

   The Bayesian versions of regression and penalized spline 
have a wide implementation in last decades. Among the 
Bayesian spline techniques we used Bayesian penalized spline 
and adaptive Bayesian regression spline.  

Bayesian P-splines [5] approach by Andreas Brezger and 
Stefan Lang for additive models and extensions by replacing 
difference penalties with their stochastic analogues, i.e. 
Gaussian (intrinsic) random walk priors which serve as 
smoothness priors for the unknown regression coefficients. 
Compared to smoothing splines, in a P-splines approach a 
more parsimonious parameterization is possible, which is of 
particular advantage in a Bayesian framework where inference 
is based on MCMC techniques [3].Compared to smoothing 
splines, in a P-splines approach a more parsimonious 
parametrization is possible, which is of particular advantage in 
a Bayesian framework where inference is based on MCMC 
techniques. 

In a Bayesian approach unknown parameters ,jβ  

1,...,j p=  and γ  are considered as random variables and 

have to be supplemented with appropriate prior distributions. 
For the fixed effects parameters γ  it assumed independent 

diffuse priors, i.e. consti ∝γ , qj ....1= . 

Priors for the regression parameters of nonlinear functions 
are defined by replacing the difference penalties by their 
stochastic analogues. First differences correspond to a first 
order random walk and second differences to a second order 
random. Thus, it obtained 

 

jppjjp u+= −1,ββ                        

jppjpjjp u+−= −− 2,1,2 βββ .                                      (5) 

 
The priors can be equivalently written in the form of global 

smoothness priors. 
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with appropriate penalty matrix jK .  

For full Bayesian inference, the unknown variance 

parameters 
2
jτ  are also considered as random and estimated 

simultaneously with the unknown jβ . Therefore, hyperpriors 

are assigned to the variances 
2
jτ  (and the overall variance 

parameter 
2σ ) in a further stage of the hierarchy by highly 

dispersed (but proper) inverse Gamma priors 

),(~)( 2
jjj baIGp τ . 

Adaptive Bayesian regression spline was introduced by [1]. 
He supposed a fully Bayesian approach to regression splines 
with automatic knot selection. As a basis function 
representation of the regression spline he used B-spline basis. 
The reversible jump Markov chain Monte Carlo method 
allows for estimation both of the number of knots and the knot 
placement, together with the unknown basis coefficients 
determining the shape of the spline [1].  

Without CV and GCV, we can show some other smoothing 
parameter selection criterias. These are improved Akaike 

information criterion, Mallows’ pC  criterion and Risk 

estimation using classical pilots. 
 An improved version of a criterion based on the classical 

Akaike information criterion (AIC), AICc criterion, is used for 
choosing the smoothing parameter for nonparametric 
smoothers [15]. This improved criterion is defined as  
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This criterion is easy to apply for choosing of smoothing 

parameter, as can be seen from the equation (7). 

Mallows’ 
pC  criterion is known as unbiased risk estimate 

(UBR) in smoothing spline literature. This type of estimate 
was suggested by Mallows in 1973 in regression case, and 
applied to smoothing spline by Craven and Wahba in 1979. 
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When 
2σ  is known, an unbiased estimate of the residual sum 

of squares is given by pC  criterion: 
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Unless 
2σ  is known, in practice an estimate for 

2σ  is 
estimated by 
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where λ̂  is pre-chosen with any of the CV, GCV or AICc 
criteria [13], [14]. 

In Risk estimation using classical pilots, risk function 
measures the distance between the actual regression function 

( )f  and its estimation ( )f̂λ . Actually, a good estimate must 

contain minimum risk. A direct computation leads to the bias-

variance decomposition for ( )ˆ,R f fλ : 
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It is straightforward to show that 

( ) ( ){ }ˆ, pR f f E Cλ λ= . Because the risk ( )ˆ,R f fλ  is an 

unknown quantity, so-called risk is now estimated by 

computable quantity ( )ˆ ˆ,
p

R f fλ λ .  

The obtained expression for ( )ˆ ˆ,
p

R f fλ λ  is 
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Where 
2ˆ
pλσ  and ˆ

p
fλ  are the appropriate pilot estimates for 

2σ  and f , respectively. The pilot pλ  selected by classical 

methods is used for computation of the pilot estimates [12]. 

III. PROBLEM SOLUTION 

The simulation study that presents in this study was 
conducted to evaluate the performances of the above 
nonparametric techniques. The functions for the simulation 
were devised in a family-wise manner, where for each family a 
different factor was used.  

 
Table 1. Specification of simulation setup 

Factor Generic form 
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The factors are: noise level, design variable, spatial 

variation, variance function. For each function we take n=50, 
n=100, n=200 and n=400 values with 200 replications. The 
results of simulation are compared using mean value of MSE 
of each replication and graphically showed using box-plots.  

The empirical analysis are made by mgcv package [8] of R 
software, BayesX software[5], http://www.stat.uni-
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muenchen.de/~lang/bayesx and for the adaptive Bayesian 
regression spline we used the functions from the 
http://www.stat.uni-muenchen.de/sfb386. This setup originally 
due to Professor Steve Marron, was designed to study the 
effects of varying the noise level, design density, degree of 
spatial variation and noise variation function. Totally four sets 
of numerical experiments are to be performed. Within each set 
of experiments, the factors under consideration are changed 6 
times and there are 24 different configurations. [7] used this 
functions to make a comparison study of regression spline 
techniques. The aim of paper [6] was to make a right selection 
of smoothing parameter using these functions. There is 
information about used functions in Table 1. 

 
Table 2. Performance criteria of used techniques with n=200 

observations 
 

 
Penalized  

spline 
Regression  

spline 
Bayesian 
 P-spline 

Adaptive 
Bayesian  
regression 
spline 

NL 1 0.000345 0.011402 0.000664 0.011428 
NL 2 0.003114 0.0144 0.002367 0.02243 
NL 3 0.028975 0.041538 0.02868 0.032737 
NL 4 0.132932 0.148918 0.123195 0.127094 

NL 5 0.405746 0.427053 0.400678 0.435935 
NL 6 0.999366 1.024137 0.938779 1.023395 
DD 1 0.008734 0.021348 0.009247 0.021346 
DD 2 0.008946 0.021756 0.0088 0.017046 
DD 3 0.008982 0.021512 0.009403 0.025547 
DD 4 0.008862 0.021178 0.008991 0.031536 
DD 5 0.00887 0.021496 0.009291 0.015608 
DD 6 0.008933 0.022689 0.009236 0.023871 
SV 1 0.038036 0.038616 0.032795 0.043144 

SV 2 0.036763 0.041095 0.037599 0.039652 
SV 3 0.045477 0.069119 0.044682 0.059744 
SV 4 0.052796 0.075027 0.051428 0.064938 
SV 5 0.054327 0.076132 0.05751 0.085593 
SV 6 0.052752 0.074574 0.061656 0.057537 
NV 1 0.02257 0.034986 0.024483 0.032333 
NV 2 0.022302 0.034779 0.023689 0.035978 
NV 3 0.0207 0.032758 0.021413 0.037997 

NV 4 0.020484 0.032753 0.017057 0.03045 
NV 5 0.022515 0.03487 0.023706 0.032237 
NV 6 0.026817 0.039535 0.02544 0.039505 
 
From these functions we have sampled a lot of data. As the 

results of the simulation we gathered a lot of information. The 
results of mean values of mean squared consist of 4 tables. The 
comparison of each technique of sampled observations are 
shown using box-plots. For one number of observations, for 
example n=200, we get 24 box-plots. In our study we used 
n=50, n=100, n=200 and n=400. Because of this, there become 
a lot of figures of box-plots. As an example here we have 

showed only results for n=200.  
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Figure 1.  Results of estimation of the Noise level factor 

function 
 
There are results of performance criteria of n=200 
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observations sampled from the functions. The abbreviations in 
first column of the Table means the classification of functions: 
NL – noise level, DD – design density, SV – spatial variation, 
NV – noise variation. The numbers 1 from 6 means the 
position change of functions.  

The mean squared error results in Table 2 shows us that the 
penalized spline and Bayesian penalized spline shows better 
results that the regression and adaptive Bayesian regression 
splines.  

The reason of better result of penalized techniques is that 
they used a penalty term based on divided differences of their 
coefficients. But as you can see from the table, results are 
become closer when the position of functions changes. In 
Figure 1, you can realize this difference. Figure 1, shows us 
the different position of noise function. The observations 
sampled from position 1 to 6 are different scattered. When j=1 
observations are close to each other and shows more smoothed 
function. When j becomes bigger, observations become more 
scattered. For example, when j=6 observations still to far from 
each other.  

 
Table 3. Performance criteria of used techniques with n=50 

observations 
 

 
Penalized 
spline 

Regression 
spline 

Bayesian 
P-spline 

Adaptive 
Bayesian 
regression 
spline 

NL 1 0.000166 0.012815 0.000171 0.014353 
NL 2 0.00194 0.015287 0.001942 0.016968 
NL 3 0.020739 0.038916 0.020762 0.03913 
NL 4 0.111144 0.135153 0.020762 0.03913 
NL 5 0.325331 0.380682 0.325428 0.422558 
NL 6 0.827612 0.934913 0.827968 0.938111 
DD 1 0.006489 0.019144 0.006684 0.021441 
DD 2 0.006449 0.018522 0.006449 0.019324 
DD 3 0.006526 0.018603 0.006527 0.020891 
DD 4 0.006693 0.018878 0.006701 0.018942 
DD 5 0.006497 0.019705 0.006561 0.020142 
DD 6 0.006256 0.020283 0.006277 0.022514 
SV 1 0.032824 0.035179 0.033038 0.0353 
SV 2 0.028291 0.034114 0.028476 0.034232 
SV 3 0.047157 0.061821 0.047465 0.062034 
SV 4 0.049601 0.071452 0.049926 0.071699 
SV 5 0.050501 0.074163 0.050831 0.07442 
SV 6 0.053525 0.075331 0.053875 0.075591 
NV 1 0.017834 0.035957 0.017951 0.036081 
NV 2 0.015467 0.03275 0.015569 0.032863 
NV 3 0.015 0.031669 0.015098 0.031778 
NV 4 0.01521 0.031135 0.015309 0.031242 
NV 5 0.016077 0.033144 0.016182 0.033258 
NV 6 0.019882 0.036777 0.020012 0.036904 
 
From Table 2, we could conclude that when observations 

are close to each other, penalized spline and Bayesian 
penalized spline shows good results. But with scattered 
observations it’s preferable to use the proposed techniques, but 
with revision of the observations. 

Results of simulation study with another number 
observations, i.e. n=50, n=100 and n=400, results differs, but 
not so much. We could conclude from other results that 
Bayesian penalized spline shows good results with a large 
number of observations. The mean values of mean squared 
error are gathered in Tables 3, 4, 5. 

When the numbers of observations are equal to 50, the 
models obtained by penalized spline technique are close to 
sampled values. We can conclude this by observing results 
from the Table 3.  

The next table shows us results of performance criteria of 
used techniques with n=100 observations. When the numbers 
of observations increase, Bayesian penalized spline method 
shows better result comparing to previous table with 50 
observations. 

 
Table 4. Performance criteria of used techniques with n=100 

observations 
 

 
Penalized 
spline 

Regression 
spline 

Bayesian 
P-spline 

Adaptive 
Bayesian 
regression 
spline 

NL 1 0.00028 0.011893 0.000289 0.01204 
NL 2 0.002717 0.014706 0.002716 0.015691 
NL 3 0.026833 0.041373 0.026726 0.044145 
NL 4 0.123872 0.144431 0.124299 0.154108 
NL 5 0.385279 0.410246 0.384608 0.437732 
NL 6 0.926801 0.987671 0.929998 1.053845 
DD 1 0.007989 0.020256 0.008017 0.021613 
DD 2 0.007981 0.020719 0.008008 0.022108 
DD 3 0.007949 0.020937 0.007977 0.022339 
DD 4 0.007949 0.021325 0.007977 0.022754 
DD 5 0.007897 0.020776 0.007924 0.022168 
DD 6 0.007796 0.021915 0.007823 0.023383 
SV 1 0.036157 0.037492 0.036282 0.040004 
SV 2 0.033841 0.038709 0.033957 0.041302 
SV 3 0.044934 0.068767 0.045089 0.073374 
SV 4 0.049033 0.07268 0.049203 0.07755 
SV 5 0.04804 0.071347 0.048206 0.076128 
SV 6 0.047653 0.071625 0.047817 0.076424 
NV 1 0.024115 0.038666 0.024198 0.041257 
NV 2 0.020269 0.034734 0.020339 0.037061 
NV 3 0.018082 0.031393 0.018145 0.033496 
NV 4 0.018421 0.032097 0.018485 0.034247 
NV 5 0.020609 0.034565 0.020681 0.036881 
NV 6 0.023546 0.038501 0.023627 0.041081 
 
By the bold style of some cells in Table 4., it was just shown 

the comparison of penalized spline and its Bayesian version.  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 6, 2012 111



 

 

 
Table 5. Performance criteria of used techniques with n=400 

observations 

 
Penalized 
spline 

Regression 
spline 

Bayesian 
P-spline 

Adaptive 
Bayesian 
regression 
spline 

NL 1 0.00037 0.011237 0.000366 0.011347 

NL 2 0.003339 0.014287 0.003299 0.014427 
NL 3 0.030559 0.042393 0.030692 0.042808 
NL 4 0.137062 0.150939 0.135417 0.152418 
NL 5 0.420344 0.436346 0.4153 0.440622 
NL 6 1.002157 1.025751 0.990131 1.035803 
DD 1 0.009258 0.02137 0.009384 0.021197 
DD 2 0.009268 0.021674 0.009394 0.021498 
DD 3 0.009382 0.021288 0.009308 0.021308 
DD 4 0.009198 0.021373 0.009323 0.021393 
DD 5 0.00943 0.021666 0.009355 0.021686 
DD 6 0.009437 0.021785 0.009363 0.021805 
SV 1 0.039429 0.039725 0.038956 0.039841 
SV 2 0.038 0.041681 0.037544 0.041803 
SV 3 0.048525 0.07001 0.047943 0.070215 
SV 4 0.054663 0.075641 0.054007 0.075863 
SV 5 0.054485 0.07578 0.053831 0.076002 
SV 6 0.054213 0.075172 0.053562 0.075392 
NV 1 0.028689 0.04054 0.028012 0.040633 
NV 2 0.023878 0.035536 0.023315 0.035618 
NV 3 0.021583 0.033069 0.021074 0.033145 
NV 4 0.021658 0.033174 0.021147 0.03325 
NV 5 0.023599 0.035006 0.023042 0.035086 
NV 6 0.028198 0.040135 0.027533 0.040228 
 
From Table 5, we can realize that when number of 

observations become bigger, Bayesian penalized spline 
outperforms other techniques.  

IV. CONCLUSION 

In this study we made a simulation study using various 
nonparametric techniques. The methods that we have used in 
this study are following: regression spline, penalized spline, 
and their Bayesian versions: adaptive Bayesian regression 
spline and Bayesian P-splines. The main goal of our study is to 
compare nonparametric regression techniques and Bayesian 
versions of these techniques. For this purpose we made a 
simulation study with different functions. For each function we 
sampled n = 50, n = 100, n = 200 and n =400 number of 
observations. The purpose of using different number of 
sampled observations is to analyze the behavior of utilized 
techniques. For simulation study we used dataset which 
sampled from the functions in the paper of [7]. The results of 
simulation study are compared with each other using mean 
value of the MSE (mean squared error) and showed results 
graphically by using box plot of MSE. 

In this paper we made a comparison study between 

regression spline, penalized spline, and their Bayesian 
versions: adaptive Bayesian regression spline and Bayesian 
penalized spline with a different number of observations. For 
this purpose we made a simulation study with four different 
functions with six positions. For regression and penalized 
splines the important problems are the knot selection and 
selection of smoothing parameter. For both techniques we used 
equidistant knot selection as a basis method in regression 
techniques. Of course there are a lot of methods for knot 
selection, but we will revised it in further researches. The 
selection of smoothing parameter is made using a well-known 
generalized cross validation method. For Bayesian techniques 
important point is selection parameters for prior and posterior 
distribution. For Bayesian penalized spline was made the 
different hyperparameter selection.  

The best result for Bayesian penalized spline we could find 
when hyperparameters are a=1, b=0.00005.  

The adaptive Bayesian regression spline show the worst 
result among all techniques used in analysis, because of 
position of observations. For more scattered observations this 
technique shows pretty good estimation. 

The penalized spline showed one of the best results between 
spline techniques and their Bayesian versions. But in some 
functions Bayesian penalized spline outperforms penalized 
spline. The results of regression spline are close to adaptive 
Bayesian method. 

We can get better performance from Bayesian penalized 
spline while data size is increasing. For example, when n = 
400, Bayesian penalized spline outperforms penalized spline. 
So, we propose using Bayesian penalized spline for 
observations with big size. 
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