
1

Parsing Algorithms for Regulated Grammars
Sherzod Turaev, Alexander Krassovitskiy, Mohamed Othman, Mohd Hasan Selamat

Abstract— Petri nets, introduced by Carl Adam Petri [12] in
1962, provide a powerful mathematical formalism for describing
and analyzing the flow of information and control in concurrent
systems. Petri nets can successfully be used as control mechanisms
for grammars, i.e., the generative devices of formal languages. In
recent papers [4], [5], [9], [16] Petri net controlled grammars have
been introduced and investigated. It was shown that various regulated
grammars such as random context, matrix, vector, valence grammars,
etc., resulted from enriching context-free grammars with additional
mechanisms can be unified into the Petri net formalism, i.e., a
grammar and its control can be represented by a Petri net. This
unification allows approaching the membership (parsing) problem in
formal language theory in the new point of view: instead of a usual
derivation tree, one can use a Petri net derivation tree in which the
control mechanism is also considered as a part of the tree. In this
paper, we show that the parsing problem for regulated grammars can
be solved by means of Petri net derivation trees constructed using
the net unfolding. Moreover, we present a parsing algorithm for the
deterministic restriction of Petri net controlled grammars based on
the well-known Earley parsing algorithm.

Keywords— Formal languages, Regulated grammars, Petri nets,
Petri net controlled grammars, Parsing algorithms

I. INTRODUCTION

It is well-known fact that context-free grammars are not
able to cover all phenomena of natural and programming
languages, and also with respect to other applications of
sequential grammars they cannot describe all aspects. On the
other hand, context-sensitive grammars are powerful enough
but have bad features with respect to decidability problems
which are undecidable or at least very hard. Moreover, such
concepts as a derivation tree, which is an important tool for
the analysis of context-free languages, cannot be transformed
to context-sensitive grammars. Therefore it is a natural idea
to introduce grammars which use context-free rules and have
a device which controls the application of the rules. Since
Abraham first defined matrix grammars, several grammars
with restrictions such as programmed, random context, valence
grammars, etc. have been introduced. The monograph [3] gives
a summary of this approach.

Though regulated grammars preserve many context-free-
like features, one cannot still construct derivation trees in
which the control mechanisms used in the grammars are

Sherzod Turaev is with Faculty of Computer Science and Information
Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia (e-mail: sherzod@fsktm.upm.edu.my).

Alexander Krassovitskiy is with Research Group on Mathematical Lin-
guistics, University Rovira i Virgili, 43002, Tarragona, Spain (e-mail: alexan-
der.krassovitski@estudiants.urv.cat).

Mohamed Othman is with Faculty of Computer Science and Information
Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia (e-mail: mothman@fsktm.upm.edu.my).

Mohd Hasan Selamat is with Faculty of Computer Science and Information
Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor,
Malaysia (e-mail: hasan@fsktm.upm.edu.my).

also expressed by elements of the derivation trees. We can
similarly define derivation trees of regulated grammars as for
those of context-free grammars enriching with some additional
features describing the control mechanisms but it would not
be a natural extension. Another solution for this problem is
to concern the notion of a derivation tree itself from another
point of view: instead of directed graphs, we can consider
other graphs, for instance, bipartite directed graphs – Petri
nets – which can take into consideration the grammar as well
as its control.

Petri nets are graphical and mathematical modeling tools,
which are widely applied to many concurrent, asynchronous,
distributed, parallel, nondeterministic and stochastic systems.
The papers [6], [13], [15] illustrate that Petri nets can be used
in modeling phenomena appearing in different areas.

A context-free grammar and its derivation process can be
described by a Petri net, called a context-free Petri net (a cf
Petri net for short), where places correspond to the termi-
nals and nonterminals, transitions are the counterpart of the
productions, the tokens reflect the occurrences of symbols in
the sentential form, and there is a one-to-one correspondence
between the application of (sequences of) rules and the firing
of (sequence of) transitions (see, [2], [4]). Therefore it is
a natural idea to control the derivations in a context-free
grammar by adding some features to the associated cf Petri
net. In [4], [5], [9] it has been shown that by adding places
and arcs which satisfy some structural requirements one can
generate well-known families of languages as random context
languages, valence languages, vector languages and matrix
languages. Thus the control by Petri nets can be considered
as a unifying approach to different types of control.

On the other hand, Petri nets can be transformed into
occurrence nets, i.e., usually an infinite, tree-like structure
whose nodes have the same labels as those of the places
and transitions of the Petri net preserving the relationship of
adjacency, using unfolding technique introduced in [10] and
given in [7] in detail under the name of branching processes.
Any finite initial part, i.e., prefix of the occurrence net of
a cf Petri net can be considered as a derivation tree for
the corresponding context-free grammar as it has the same
structure as a usual derivation tree, here we can also accept
the rule of reading “leaf”-places with tokens from the left to
the right as in usual derivation trees. We can also generalize
this idea for regulated grammars considering prefixes of the
occurrences nets obtained from cf Petri nets with additional
places.

We should mention that there are also other approaches in
the construction of derivation trees for non-context-free lan-
guages, for instance, [11] illustrates that an extended version
of pushdown automata allows constructing derivation trees for

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 748

2

context-sensitive grammars.

The paper is organized as follows: Sections 2.1 and 2.2
cite some notions and notations from the theories of formal
languages and Petri nets needed in the sequel. Basic definitions
concerning occurrences nets and branching process are given
in Sections 2.3 and 2.4. Section 2.5 defines context-free Petri
nets as a Petri net counterpart of context-free grammars.
In Section 2.6 we briefly cite the definitions of Petri net
controlled grammars, and briefly cite the results concerning to
their computational power. Parsing algorithms are introduced
and analyzed in Section 3: Section 3.1 constructs a general
parsing algorithm while Section 3.2 discusses its computa-
tional drawbacks and gives some examples of restriction to be
imposed on cf Petri nets in order to get a feasible complexity
of the parsing. Section 3.3 considers a particular deterministic
class of extended cf Petri nets elaborating an Earley-based
deterministic parsing algorithm, which has a high practical
interest.

II. PRELIMINARIES

The reader is assumed to be familiar with the basic notions
of the theories of formal languages and Petri nets, for details
refer to [3], [8], [14].

A. Context-free grammars

The set of positive (non-negative) integers is denoted by
N (N0). We denote by Σ∗ the free monoid generated by an
alphabet Σ. A string over Σ is a sequence of symbols from
the alphabet. The empty string is denoted by λ.

A context-free grammar is a quadruple G = (V,Σ, S,R)
where V and Σ are the sets of nonterminal and terminal
symbols, respectively, S ∈ V is the start symbol (the axiom),
and R ∈ V × (V ∪Σ)∗ is the set of rules. A rule of the form
A→ λ is called an erasing rule.

A derivation relation on (V ∪Σ)+×(V ∪Σ)∗ is denoted by
⇒, its reflexive and transitive closure by ⇒∗. The language
generated by G is defined by

L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

B. Petri Nets

A Petri net is a construct (P, T, F, φ) where P and T
are disjoint finite sets of so called places and transitions,
respectively, F ⊆ (P × T) ∪ (T × P) is a flow relation (the
set of directed arcs) and φ : F → N is a weight function.

A Petri net can be represented by a bipartite directed graph
with the node set P ∪ T where places are drawn as circles,
transitions as boxes and arcs as arrows. The arrow representing
an arc (x, y) ∈ F is labeled with φ(x, y); if φ(x, y) = 1, then
the label is omitted.

A mapping µ : P → N0 is called a marking. For each place
p ∈ P , µ(p) gives the number of tokens in p. Graphically,
tokens are drawn as small solid dots inside circles.

•x = {y | (y, x) ∈ F}

and
x• = {y | (x, y) ∈ F}

are called pre- and post-sets of x ∈ P ∪ T , respectively.

A transition t ∈ T is enabled by marking µ if and only if
µ(p) ≥ φ(p, t) for all p ∈ •t. In this case t can occur (fire).
Its occurrence transforms the marking µ into the marking µ′

defined for each place p ∈ P by

µ′(p) = µ(p)− φ(p, t) + φ(t, p).

We write µ t−→ to denote that t may fire in µ, and µ
t−→ µ′

to indicate that the firing of t in µ leads to µ′.

A finite sequence t1t2 · · · tk, ti ∈ T, 1 ≤ i ≤ k, is called an
occurrence sequence enabled at a marking µ and finished at a
marking µ′ if there are markings µ1, µ2, . . . , µk−1 such that

µ
t1−→ µ1

t2−→ . . .
tk−1−−−→ µk−1

tk−→ µ′.

The markings µi, 1 ≤ i ≤ k − 1, and µ′ are called reachable
from marking µ.

A marked Petri net is a construct N = (P, T, F, φ, ι) where
(P, T, F, φ) is a Petri net, ι is the initial marking.

C. Occurrence Nets

The casual, conflict and concurrency relations between
nodes of a net (P, T, F) are defined as follows.
• two nodes x and y are in causal relation, denoted by
x < y, if the net contains a path with at least one arc
leading from x to y.

• x and y are in conflict relation, or just in conflict, denoted
by x#y, if the net contains two paths

st1 . . . x and st2 . . . y

starting at the same place s, and such that t1 6= t2.
• x and y are in concurrency relation, denoted by x co y,

if neither x < y nor y < x nor x#y.
An occurrence net is a net O = (B,E, F ′) where B and E

are finite sets of conditions (places) and events (transitions),
respectively, and F ′ is the flow relation such that
• |•b| ≤ 1 for every b ∈ B;
• O is acyclic, or equivalently, the causal relation is partial

order;
• O is finitely preceded, i.e. for every x ∈ B ∪ E, the set

of elements y ∈ B ∪ E such that y < x is finite;
• no element is in conflict with itself.
It is easy to see that any two nodes of an occurrence net

are either in causal, conflict or concurrency relation. Min(O)
denotes the set of minimal elements of B ∪ E with respect
to the causal relation. A set B′ ⊆ B is called co-set if its
elements are pairwise in concurrency relation.

D. Branching Process

A branching process of a Petri net N = (P, T, F) is a
labeled occurrence net ξ = (O, h) = (B,E, F ′, h) where the
labeling function h satisfies the following properties:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 749

3

• h(B) ⊆ P and h(E) ⊆ T (h preserves the nature of
nodes);

• for every e ∈ E, the restriction of h to •e is a bijection
between •e (in N) and •h(e) (in ξ), and similarly for e•

and h(e)• (h preserves the environment of transitions);
• the restriction of h to Min(O) is bijection between
Min(O) and ι (ξ starts at ι);

• for every e1, e2 ∈ E, if •e1 =• e2 and h(e1) = h(e2)
then e1 = e2 (ξ does not duplicate the transitions of N).

Let ξ′ = (O′, h′) and ξ = (O, h) be two branching
processes of a net system. ξ′ is a prefix of ξ if O′ is a subnet
of O satisfying
• Min(O) belongs to O′;
• if a condition b belongs to O′, then its input event e ∈ •b

in O also belongs to O′;
• if an event e belongs to O′, then its input and output

conditions •e ∪ e• in O also belongs to O′;
• h′ is the restriction of h to O′.

E. Context-free Petri Nets

The definition of the following type of Petri nets is based on
the idea of using similarity between the firing of a transition
and the application of a production rule in a derivation in
which places are symbols (i.e., nonterminals and terminals) of
the grammar, and tokens are separate occurrences of symbols.

Definition 1: A context-free Petri net (in short, a cf Petri
net) with respect to a context-free grammar G = (V,Σ, S,R)
is a construct N = (P, T, F, φ, β, γ, ι) where
• (P, T, F, φ) is a Petri net;
• labeling functions β : P → V ∪ Σ and γ : T → R are

bijections;
• there is an arc from place p to transition t if and only

if γ(t) = A → α and β(p) = A. The weight of the arc
(p, t) is 1;

• there is an arc from transition t to place p if and only
if γ(t) = A → α and β(p) = x where |α|x > 0. The
weight of the arc (t, p) is |α|x;

• the initial marking ι is defined by ι(β−1(S)) = 1 and
ι(p) = 0 for all p ∈ P − {β−1(S)}.

Example 2: Figure 1 illustrates cf Petri net N1 correspond-
ing to the grammar G1 with the rules:

R1 = {r1 : S → aSb, r2 : S → ab}

(the other components of the grammar can be seen from these
rules).

In [4], [5] it was shown that there is a one-to-one correspon-
dence between the application of (sequence of) rules and the
firing of (sequence of) transitions. Thus, it is a very natural
and very easy idea to control the derivations in a context-
free grammar by adding some features (i.e., places, transitions
and arcs) to the associated Petri net. In [16], various Petri net
control mechanisms and associated grammars were defined by
equipping cf Petri nets with new places and arcs. For instance,
it was proven that by adding some places and arcs which
satisfy special requirements, precisely, the new places with

•
S

a b

r1 r2

Fig. 1. a cf Petri net N .

transitions of a cf Petri net form chains and cycles, one can
generate families of vector, matrix and semi-matrix languages.

Thus the control by a Petri net makes possible to unify a
grammar and its control into a Petri net. This approach allows
considering the membership problem for grammars in the new
point of view: instead of a usual derivation tree, we can use
a Petri net derivation tree in which the control mechanism is
also considered as a part of the tree.

F. Petri Net Controlled Grammars

Since a context-free grammar and its derivation process can
also be described by a Petri net, where places correspond to
nonterminals, transitions are the counterpart of the production
rules, and the tokens reflect the occurrences of symbols in
the sentential form, and there is a one-to-one correspondence
between the application of (sequence of) rules and the firing
of (sequence of) transitions, it is a very natural and very easy
idea to control the derivations in a context-free grammar by
adding some features to the associated Petri net. In this section
we construct Petri net control mechanisms from context-free
Petri nets by adding new places and arcs, and define the cor-
responding grammars, called Petri net controlled grammars.
It was shown [16] that by adding some places and arcs which
satisfy special requirements, precisely, the new places with
transitions of a context-free Petri net form chains and cycles,
one can generate families of vector, matrix and semi-matrix
languages.

Let P = {ρ1, ρ2, . . . , ρn} be a set of disjoint chains where
each chain ρi = (Pρi , Tρi , Fρi) ∈ P , 1 ≤ i ≤ n, is defined as

ρ = ti,1pi,1ti,2pi,2 · · · pi,ki−1ti,ki
with the sets of places, transitions and arcs, respectively,

Pρ = {pi,1, pi,2, . . . , pi,ki−1},
Tρ = {ti,1, ti,2, . . . , ti,ki},
Fρ = {(ti,j , pi,j) | 1 ≤ j ≤ ki − 1}

∪ {(pi,j , ti,j+1) | 1 ≤ i ≤ ki − 1}.

Remark 3: If a chain ρ ∈ P consists of a single transitions,
i.e., ρ = t, then the sets of places and arcs of ρ is considered
to be empty, i.e., Pρ = Fρ = ∅.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 750

4

Definition 4: Let G = (V,Σ, S,R) be a context-free gram-
mar with its corresponding context-free Petri net

N = (P, T, F, φ, β, γ, ι).

Let T1, T2, . . . , Tn be a partition of T and

P = {ρ1, ρ2, . . . , ρn}

be the set of disjoint chains such that Tρi = Ti, 1 ≤ i ≤ n,
and ⋃

ρ∈P
Pρ ∩ P = ∅.

An z -Petri net is a system

Nz = (P ∪Q,T, F ∪ E,ϕ, ζ, γ, µ0, τ)

where
Q =

⋃
ρ∈P

Pρ and E =
⋃
ρ∈P

Fρ;

• the weight function ϕ is defined by ϕ(x, y) = φ(x, y) if
(x, y) ∈ F and ϕ(x, y) = 1 if (x, y) ∈ E;

• the labeling function ζ : P ∪Q→ V ∪{λ} is defined by
ζ(p) = β(p) if p ∈ P and ζ(p) = λ if p ∈ Q;

• the initial marking µ0 is defined by µ0(p) = ι(p) if p ∈ P
and µ0(p) = 0 if p ∈ Q;

• τ is the final marking where τ(p) = 0 for all p ∈ P ∪Q.

Example 5: Figure 2 illustrates z -Petri net Nz with respect
to the context-free grammar

G4 = ({S,A,B}, {a, b}, S,R)

where R consists of

r0 : S → AB,
r1 : A→ λ, r2 : B → λ, r3 : A→ aA,
r4 : B → aB, r5 : A→ bA, r6 : B → bB.

•
S

A B

r0

r1 r2

r3 r4

r5 r6

Fig. 2. A z -Petri net Nz

Let P = {ρ1, ρ2, . . . , ρn} be a set of disjoint cycles where
each cycle ρi = (Pρi , Tρi , Fρi) ∈ P , 1 ≤ i ≤ n, is defined as

ρ = pi,1ti,1pi,2ti,2 · · · pi,kiti,kipi,1
with the sets of places, transitions and arcs, respectively,

Pρi = {pi,1, pi,2, . . . , pi,ki},
Tρi = {ti,1, ti,2, . . . , ti,ki},
Fρi = {(ti,j , pi,j) | 1 ≤ j ≤ ki}

∪ {(ti,j , pi,j+1) | 1 ≤ i ≤ ki − 1}
∪ {(ti,ki , pi,1)}.

Definition 6: Let G = (V,Σ, S,R) be a context-free gram-
mar with its corresponding context-free Petri net

N = (P, T, F, φ, β, γ, ι).

Let T1, T2, . . . , Tn be a partition of T and

P = {ρ1, ρ2, . . . , ρn}
be the set of disjoint cycles such that Tρi = Ti, 1 ≤ i ≤ n,
and ⋃

ρ∈P
Pρ ∩ P = ∅.

A c-Petri net is a system

Nc = (P ∪Q,T, F ∪ E,ϕ, ζ, γ, µ0, τ)

where
Q =

⋃
ρ∈P

Pρ and E =
⋃
ρ∈P

Fρ;

• the weight function ϕ is defined by ϕ(x, y) = φ(x, y) if
(x, y) ∈ F and ϕ(x, y) = 1 if (x, y) ∈ E;

• the labeling function ζ : P ∪Q→ V ∪{λ} is defined by
ζ(p) = β(p) if p ∈ P and ζ(p) = λ if p ∈ Q;

• the initial marking µ0 is defined by µ0(p) = ι(p) if p ∈
P , and µ0(pi,1) = 1, µ0(pi,j) = 0 where pi,j ∈ Pi,
1 ≤ i ≤ n, 2 ≤ j ≤ ki;

• τ is the final marking where τ(p) = 0 if p ∈ P , and
τ(pi,1) = 1, τ(pi,j) = 0 where pi,j ∈ Pi, 1 ≤ i ≤ n,
2 ≤ j ≤ ki.

Example 7: Figure 3 illustrates a c-Petri net Nc with re-
spect to the context-free grammar given in Example 5.

Let P = {ρ1, ρ2, . . . , ρn} be a set of cycles such that

Pρ1 ∩ Pρ2 ∩ · · ·Pρn = {p0}
where each cycle ρi = (Pρi , Tρi , Fρi) ∈ P , 1 ≤ i ≤ n, is
defined as

ρ = p0ti,1pi,1ti,2 · · · pi,ki−1ti,kip0
with the sets of places, transitions and arcs, respectively,

Pρi = {p0, pi,1, pi,2, . . . , pi,ki−1},
Tρi = {ti,1, ti,2, . . . , ti,ki},
Fρi = {(pi,j , ti,j+1) | 1 ≤ j ≤ ki − 1}

∪ {(ti,j , pi,j) | 1 ≤ i ≤ ki − 1}
∪ {(p0, ti,1)} ∪ {(ti,ki , p0)}.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 751

•
S

A B

•

•

r0

r1 r2

r3 r4

r5 r6

Fig. 3. A c-Petri net Nc

Definition 8: Let G = (V,Σ, S,R) be a context-free gram-
mar with its corresponding context-free Petri net

N = (P, T, F, φ, β, γ, ι).

Let T1, T2, . . . , Tn be a partition of T . Let

P = {ρ1, ρ2, . . . , ρn}

be the set of cycles such that Tρi = Ti, 1 ≤ i ≤ n,

P1 ∩ P2 ∩ · · · ∩ Pn = {p0}

and ⋃
ρ∈P

Pρ ∩ P = ∅.

An s-Petri net is a system

Ns = (P ∪Q,T, F ∪ E,ϕ, ζ, γ, µ0, τ)

where
Q =

⋃
ρ∈P

Pρ, and E =
⋃
ρ∈P

Fρ;

• the weight function ϕ is defined by ϕ(x, y) = φ(x, y) if
(x, y) ∈ F and ϕ(x, y) = 1 if (x, y) ∈ E;

• the labeling function ζ : P ∪Q→ V ∪{λ} is defined by
ζ(p) = β(p) if p ∈ P and ζ(p) = λ if p ∈ Q;

• µ0 is the initial marking where µ0(p0) = 1 and µ0(p) =
ι(p) if p ∈ (P ∪Q)− {p0};

• τ is the final marking where τ(p0) = 1 and τ(p) = 0 if
p ∈ (P ∪Q)− {p0}.

Example 9: Figure 4 illustrates a s-Petri net Ns with re-
spect to the context-free grammar given in Example 5.

We define grammars controlled by z (c, s)-Petri nets
introduced above.

•
S

A B

•

r0

r1 r2

r3 r4

r5 r6

Fig. 4. An s-Petri net Ns

Definition 10: (i) An x -Petri net controlled grammar is a
quintuple G = (V,Σ, S,R,Nx) where V,Σ, S, and R are
defined as for a context-free grammar and

Nx = (P ∪Q,T, F ∪ E,ϕ, ζ, γ, µ0, τ)

is a x -Petri net with respect to the context-free grammar
(V,Σ, S,R) where x ∈ {z , c, s}.
(ii) The language generated by a x -Petri net controlled gram-
mar G, denoted by L(G), consists of all strings w ∈ Σ∗ such
that there is a derivation S r1r2···rk======⇒ w ∈ Σ∗ and a successful
occurrence sequence of transitions ν = t1t2 · · · tk of Nx such
that r1r2 · · · rk = γ(t1t2 · · · tk).

We denote the families of languages generated by x -Petri
net controlled grammars (with erasing rules) by PNx , (PNλ

x)
where x ∈ {z , c, s}. We denote by MAT[λ], sMAT[λ],
VEC[λ] the families of matrix, semi-matrix and vector lan-
guages, respectively.

Theorem 11 ([16]):

(1) PNs = MAT ⊆ PNz = VEC

⊆ PNλ
z = PNλ

c = PNλ
s ,

(2) MAT ⊆ PNc = sMAT ⊆MATλ.

III. PARSING ALGORITHMS

In this section we formalize the notion of the parsing for
context-free Petri nets, and present parsing algorithms, partic-
ularly for the deterministic restriction of Petri net controlled
grammars based on the well-known Earley parsing algorithm.
We also discuss the complexity problems of the introduced
algorithms.

A. Generalized Parsing

Let N = (P, T, F, φ, ι, β, γ) be the context-free Petri net
associated with a context-free grammar G = (V,Σ, S,R). Let

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 752

6

w = x1x2 · · ·xn, xi ∈ Σ, 1 ≤ i ≤ n, be an input string over
Σ. The parsing problem is to determine whether w is derivable
by N . If yes, then provide an occurrence net (a derivation net)
yielding w in a final marking.

The next algorithm for cf Petri nets tracks down a sentential
form starting from the input string w until the axiom S of
the grammar G has been reached. Here a sentential form is
defined as a string over terminal and nonterminal symbols of
the underlying context-free grammar to specify the ordered set
of places. These places are initially marked with symbols of
the input string w. As the corresponding marking is simply
a vector of places, we keep it as a string over terminal and
nonterminal alphabets.
Algorithm 1. General nondeterministic parsing algorithm.
Input: N is a context-free Petri net and w = x1x2 · · ·xn ∈ Σ∗.
Output: Occurrence net ON of w, if w can be yielded by the
cf Petri net N .

// Initialization
Let β : P → V ∪ Σ be a net labeling function:
β : (N.P laces)→ (G.Term ∪G.NonTerm).
Let SF be a sentential form over G.Term∪G.NonTerm.
Let a function ψ : N.P laces × N.Trans → N.P laces ×
N.Trans return a copy of a place or a transition with the
same label.
ON.P laces← {pi| β(pi) = xi, i ∈ [n]}
ON.Trans← ∅
ON.F low ← ∅
repeat

// Nondeterministic generation of occurrence net
select r ∈ N.Trans
Let R ⊆ ON.P laces s.t. r• = R and •R = ∅ and
preserve order in R
// i.e., it finds a set of places R yielded by transition r
r′ ← ψ(r) // copy transition
PIn← ψ(•r) // copy incoming places
ON.Trans← ON.Trans ∪ r′
ON.P laces← ON.P laces ∪ PIn
ON.F low ← ON.F low ∪ (r′, R) ∪ {(p′, r′)|p′ ∈ PIn}
//updating flow relation
SF ← (SF −β(•r))∪β(PIn′) // symbolic replacement
of rewritten symbols in SF (in proper positions)
if ON.P laces are NOT ordered properly within SF then

return FAILURE
end if

until β−1(S) ∈ ON or R can not be computed
// do output ON
if β−1(S) ∈ OC then

return ON
else

return FAILURE
end if
Figure 5 shows the branching process of the cf Petri net N1

illustrated in Fig. 1.
Our algorithm constructs an occurrence net in the down-up

way. In the algorithm we use the selection procedure which
chooses the transition to be added into occurrence net. Due
to the procedure per each cycle takes arbitrary transition r ∈

•
S

a S b a b

a S b a b

1r1 2 r2

3r1 4 r2

Fig. 5. The unfolding of the cf Petri net N1.

N.Trans, the algorithm is nondeterministic. In fact, without
any restriction on the cf Petri net N , this algorithm may even
not terminate. On the other side, for the net N , if grammar
G has terminal and/or λ-productions, the algorithm always
terminates. But the algorithm is still not effective for this type
of a Petri net, because the performance time for the algorithm,
if it being transformed into a deterministic computation device,
is exponential regarding to both the length of the input string
and the size of N .

By the algorithm the construction of the reversed net is de-
fined inexplicitly. The problem is how to handle the recursive
growth of the number of possible occurrence sequences of the
Petri net (the net branching). If derivation is blocked with an
incompatible word (the places of ON are not properly ordered
according to SF) then it rolls back and restores previous
sentential form.

B. Complexity vs. Restrictions

In this section we analyze the complexity problem of
parsing algorithms for cf Petri nets with some restrictions.
Our aim is to define subclasses of cf Petri nets such that the
parsing problem can be solved efficiently.

In the previous section we have discussed that several
language classes can be resulted by extending cf Petri nets with
additional features. For instance, the extension with chains and
cycles allows generating all vector and matrix languages (for
details, see [16]). Since the membership (parsing) problem for
matrix languages is NP -hard, this problem for the language
families generated by grammars controlled by extended cf
Petri nets are also NP -hard. On the other hand, restrictions
imposed on matrix grammars, for example, the right-hand side
of each rule of a grammar has the unique prefixes (suffixes),
makes possible to construct the effective parsing algorithms

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 753

7

for some subclasses of matrix languages. Thus, we also need
to define such subclasses of (extended) cf Petri nets that the
parsing problem is solved efficiently.

Further, we consider two restrictions imposed on extended
cf Petri nets such that, first, any Petri net derivation can only
have left-to-right control chains, which excludes permutations
of derived (terminal) symbols; second, in any Petri net deriva-
tion, the leftmost nonterminal symbol to be rewritten by the
chain controls. These restrictions determinate the processing
of an extended cf Petri net applied to syntactical form. Mean-
while, the choice of chain controls remain (at each derivation
step) nondeterministic. Unfortunately, the word acceptance
problem for this type of “deterministic” extended cf Petri nets
is still NP -complete, which can be proved by reduction from
3-SAT problem.

Another way to restrict the complexity is realized by simpli-
fying controls in such a way that it excludes high nondetermin-
ism while generating occurrence net. For instance, if procedure
select in the algorithm nondeterministically chooses a “wrong”
computation, then it must abort very quickly. We call this
notion an effective branching. Alternatively, it is advisable to
have a decisive procedure which can select “good” branches
to be first proceeded. Unfortunately, it may strongly depend
on concrete instance of the modeled problem.

C. Deterministic Extended CF Petri Nets

We define the class of deterministic extended cf Petri net
controlled (ECFPNC) grammars for which Petri net controls
can be unfolded to occurrences nets unambiguously. We call
an extended cf Petri net controlled G is k-deterministic if the
application of Petri net controls is determined by k looka-
head symbols of the input string being rear right-to-left. The
family of (k-)deterministic ECFPNC languages consists of all
languages generated by (k-)deterministic ECFPNC grammars.

We should mention that since deterministic restriction is
applied only to Petri net controls, context free rules do not
suffer from this restriction. Hence the family of context-
free languages is included in the family of (k-)deterministic
ECFPNC languages.

The derivation (unfolding process) of such grammars is
constructed as follows. Suppose first l symbols of a string
x1x2 · · ·xlxl+1 · · ·xn have been already mapped into occur-
rence net (ON), i.e., the ON contains nonterminal and control
places and l terminal places marked with x1, x2, . . . , xl. Then
a new place marked with xl+1 (together with the correspond-
ing nonterminal and control places, arcs) can be added to
the ON by observing xl+1xl+2 · · ·xl+k look-ahead symbols.
The corresponding family of languages can be considered
as a family of k-step predictable (windowed) languages.
By definition, the family of deterministic ECFPNC’s can be
handled uniquely, for example, by the following algorithm.
Algorithm 2.

// Initialization
Let ON be a variable of occurrence net to be generated
ON ← initiate ON(x1x2 · · ·xk)
for all l ∈ [n− k]

if update ON(xlxl+1xl+2 · · ·xl+k) 6= ∅ then
ON ← ON] update ON(ON, xlxl+1xl+2 · · ·xl+k)

else
return FAILURE

end if
// Do output ON
return ON

Both functions

initiate ON : Σk → PN

and

update ON : PN × Σk → PN

provide the encapsulation for invocations to the occurrence
net. Binary operator] is used to denote joining of two
nets. Unfortunately, because the definition is too general it
has a lack of a clear complexity issues and an elementary
net application. To handle these problems, we can follow
two possible ways (at least). The first way is to extend the
definition of a complexity class restriction, i.e., a portion of
ON including a single terminal place (with corresponding
nonterminal places and transitions) can be added within a
number of computational steps not exceeding C · n · k,
where k is the number of look-ahead symbols, n is the size
of ECFPNC. Such complexity class, intuitively, is for the
algorithms that can proceed explicitly a singular net review
for each input symbol to be read. The second way to deal
with deterministic ECFPNC’s is to restrict net controls by
requiring that the nondeterministic choice of ECFPNC must
be eliminated. It specifies a mapping

AC : Σk × V → (T × P) ∪ (P × T)

in explicit form1. It can be realized by requiring that control
net elements can be used only if special markers in input string
are being accessed while processing k next input symbols.

In the next algorithm, we use Early-like technique to
construct an occurrence net corresponding to input. During
the process markings (token distribution) preserve the net
controls dynamically, i.e., transitions fire the net on-fly. Hence,
lexical order of symbols of the context productions is essential,
we preserve this order unexpectedly using lists to store net
elements. We define function SentForm : ON → (Σ ∪ V)∗

to read “sentential” form of the occurrence net. SentForm
collects leaf labels in the “natural” order of reading the tree-
like occurrence net. It skips empty leaf places and concatenates
labels of nonempty leaf places in the left-to right way. We
denote ∪ to be union operation over places and transitions
which preserves the tree ordering.

1This mapping defines Petri net control via single controlling place. It
is valid only for unordered vector grammars. For other types of regulated
grammars the mapping of Petri net controls can be done analogously

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 754

8

Algorithm 3. An Early-like deterministic ECFPNC parsing.
Input: N ∈ ECFPN , w = x1x2 · · ·xn ∈ Σ∗,
AC : Σk × V → T × P × T .
Output: Corresponding occurrence net ON .

// Initialization
Let β be a net labeling function
β : (N.P laces)→ (G.Term ∪G.NonTerm)
Let a function ψ : N.P laces × N.Trans → N.P laces ×
N.Trans returns a copy of place or a transition with the
same label.
PTemp← ψ(p) s.t., p ∈ N.P laces and β(p) = S
ON ← ({PTemp}, ∅, ∅);
Mark ← (p) //a dynamical list corresponding to the current
net marking
Controls← [] // a queue to proceed net controls has type
T × P ∪ P × T
i← 1
Config ← λ // a stack structure to store a string of labels
of the net configurations
// Config0 refers to the head symbol
while there is no p ∈ ON.P laces s.t. β(p) ∈ G.NonTerm
do
Available Controls← AC(xi+1, xi+2, . . . , xi+k)
PsTemp← {ψ(PTemp•)}
TsTemp← {PsTemp•}
ON.Trans← ON.Trans∪PsTemp
ON.P laces← ON.P laces∪TsTemp
ON.F low ← ON.F low ∪ {(p, t) ∈ PsTemp ×
TsTemp|N.F low(p, t)}∪

{(t, p) ∈
TsTemp× PsTemp|N.F low(t, p)}∪
{(p′, t) ∈ P ×TsTemp| p′ ∈ ON.P laces is marked and
(p′, t) ∈ Controls}
Controls ← Controls ∪ {(t, p′) ∈ TsTemp ×
PsTemp} ∩Available Controls
Let TTemp ∈ TsTemp ∩ Available Controls and
TTemp is enabled
Config

put← β(TTemp) // adds the current transition to
the stack
Fire Transition(TTemp,ON)
Let pr SentForm(ON) computes the maximal prefix
of SentForm(ON) over terminals Σ
while pr SentForm(ON) is NOT a prefix of w do
TTemp

extract← Config0
Fire Transition−1(TTemp,ON) // to do the re-
versed firing of TTemp

end while
Let PTemp be a place labeled with the next non-
unfolded branch in Config
if Config = λ and there is no branches to unfold then

return FAILURE // the algorithm is blocked
exit

end if
i← |pr SentForm(ON)|

end while
return ON

The realization of the algorithm is deterministic, if AC is

deterministic. The algorithm always terminates, if there is no
chain and λ-productions in G. The algorithms continues the
computation while ON contains marked places labeled with
nonterminals. It unfolds places labeled with nonterminals. The
main cycle uses Available Controls ← AC(x1, x2, . . . , xk)
to explicitly identify the set of the net controls available
by the context x1, x2, . . . , xk, k < n. The built occurrence
net resolves conflicts of the nondeterministic choice of the
grammar by selecting them in a sequel. Since the algorithm
utilizes the Early-based parsing technique, the worst case
complexity will differ only on a constant factor from that of
Earley(O(|N |2 · n3)). The trick here is in predefined function
AC being aware of available controls.

IV. CONCLUSION

In this paper we attempt to define a handful formalism
working efficiently with languages slightly more powerful than
context-free languages. The introduced deterministic extended
cf Petri nets can be applied in the modeling of signal pro-
cessing systems. With general assumptions we may say that
its alphabet contains special systems intended to control the
input processing. e.g., it may switch the controlling device or
computation pipes. Hence, if an input string can be recognized
by some ECFPNC by using the control of input symbols then
the parsing algorithm can be applied efficiently. Our further
goal is to realize the parsing algorithm and then to test on real
examples.

There are still many interesting topics regarding ECFPNC
parsing. One may try to follow divide and conquer strategy
by splitting input string by independent portion or try to
preprocess the grammar first.

ACKNOWLEDGEMENTS

The first author has been supported by University Putra
Malaysia via RUGS 05-01-10-0896RU/F1 while the second
and third authors have been supported by Fundamental Re-
search Grant Scheme FRGS/1/11/SG/UPM/01/1.

REFERENCES

[1] S. Abraham, Some qeustions of phrase-structure grammars, Comput.
Linguistics 4, 1965, pp. 61–70.

[2] S. Crespi-Reghizzi and D. Mandrioli, Petri nets and commutative
grammars, Internal Report 74–85, Laboratorio di Calcolatori, IEEPM
1974.

[3] J. Dassow and Gh. Pǎun, Regulated rewriting in formal language theory,
Springer–Verlag, Berlin, 1989.

[4] J. Dassow and S. Turaev, Petri net controlled grammars with a bounded
number of additional places, Acta Cybernetica 19, 2010, pp. 609–634.

[5] J. Dassow and S. Turaev, k-Petri net controlled grammars. In: C. Martı́n-
Vide, F. Otto and H. Fernau, (eds.) LNCS 5196, 2008, pp. 209–220.
Springer–Verlag, Berlin.

[6] M.A. Drighiciu, A. Petrisor, M. Popescu, A Petri Nets approach for
hybrid systems modeling, International Journal of Circuits, Systems and
Signal Processing, 2(3), 2009, pp. 55–64.

[7] J. Engelfriet, Branching processes of Petri nets, Acta Informatica 28,
1991, pp. 575–591.

[8] J.E. Hopcroft and J.D. Ullman, Introduction to automata theory,
languages, and computation, Addison-Wesley Longman Publishing Co.,
Inc., 1990.

[9] V. Marek and M. Češka, Petri nets and random-context grammars, In: the
35th Spring Conference: Modelling and Simulation of Systems, MARQ
Ostrava, Hardec nad Moravicı́, 2001, pp.145–152.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 755

9

[10] K.L. McMillan, A Technique of a State Space Search Based on Unfold-
ing, Formal Methods in System Design 6(1), 1995, pp. 45–65.

[11] B. Nagy. Leftmost derivation and shadow-pushdown automata for
context-sensitive languages, In: the 10th WSEAS International Confer-
ence on Computers, Vouliagmeni, Athens, Greece, 2006, pp. 962–967.

[12] C.A. Petri, Kommunication mit Automaten, PhD Thesis. University of
Bonn, 1962.

[13] A.A. Pouyan, A.H.Beigi, M.Kadkhoda, An agent-based model for virtual
tourism using object Petri nets, In: the 5th WSEAS International Con-
ference on Circuits, Systems, Electronics, Control & Signal Processing,
Dallas, Texas, USA, 2006, pp. 149–154.

[14] W. Reisig and G. Rozenberg G, (eds.) Lectures on Petri nets I: Basic
models, LNCS 1491, Springer–Verlag, 1998.

[15] A.S. Staines, Supporting Requirements Engineering with Different Petri
Net Classes, International Journal of Computers, 4(4), 2010, pp. 215–
222.

[16] S. Turaev, Petri net controlled grammars, PhD Thesis. In: Tesis Doctor-
als en Xarxa. University Rovira i Virgili, 2010.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 756

