
 

 

  

 

 

 

Abstract — The Ordinary Least Squares (OLS) method is often 

used to estimate the parameters of a second-order polynomial 
response surface methodology (RSM) model whereby a face-centered 

composite design of experiment is considered. The parameters of the 

model are usually estimated using the OLS technique. Nevertheless, 

the classical OLS suffers a huge set back in the presence of a typical 

observations that we often call outliers. In this situation, the optimum 

response estimator is not reliable as it is based on the OLS which is 

not resistant to outliers. As an alternative, we propose using a robust 

MM-estimator to estimate   the   parameters   of   the   RSM   and 

subsequently the optimum response is determined.  A numerical 

example   and   simulation   study are presented to assess the 

performance of the optimum response-MM based, denoted as 

Optimum-MM. The numerical results signify that the Optimum-MM 

is more efficient than the Optimum-OLS. 

 

 Keywords — Response Surface Model (RSM), Ordinary Least 

Squares (OLS), Outliers, MM-estimator. 

 

I. INTRODUCTION 

 

esponse Surface Methodology (RSM) is a well known 

tool in process and product development using design of 

an experiment. The RSM consists of statistical and 

mathematical techniques developed in 1950s for the purpose 

of determining optimization that are used to improve existing 

product in an industry. It is designed with a product of process 

involving functional relationship between the values of some 

measurable response variables, y and a set of experimental 

factors (input variables) denoted by
k

xxx ,...,
2

,
1

. The RSM 

has wide applications in a variety of real problems from 

diversified areas such as engineering, food manufacturing, 

biological sciences, chemical sciences, etc.  

The optimum response y is determined after a model that  
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relate between the set of independent variables and the 

response variable is established.  

In general, such a relationship is unknown but can be 

approximated by a low-degree polynomial model of the form  

 

εβ +′= )(xfy                   (1) 

 

where )(,),...,
2

,
1

( xf
k

xxxx ′=  is a vector function of p 

elements,  β is a vector of constant coefficients, and ε is an 

error term. Khuri and Mukhopadhyay (2010) stated that model 

(1) provides an adequate representation of the response. 

In most RSM problem, two important models are 

commonly used either a first-order or a second-order model. 

The regression coefficients of the model are often estimated 

using the method of Ordinary Least Squares (OLS). The OLS 

method gives good parameter estimates when the responses 

are normally distributed and no outliers in the data set. 

Nonetheless, in real practice, many distributions of the 

response variable is (considerably) not normal which is due to 

the presence of outlier. Outliers occur very frequently in real 

data, and they often go unnoticed because nowadays much 

data is processed by computer without careful inspection or 

screening. Yohai (1987) stated that a small fraction of outlier 

or even one outlier may have significant effect on the OLS 

estimates. Subsequently, the determination of the optimum 

response is not reliable as it is based on the OLS which is not 

resistant to outliers [5, 8]. 

Robust regression methods are recommended to be used, to 

remedy this problem (Maronna, 2006, Rousseeuw & Leroy, 

1987). Furthermore, Montgomomery et al. (2001) shown that 

robust regression methods can help the practitioners to 

identify possible outliers. 

The aim of this paper is to investigate the effect of outliers 

on the optimum yield response. Since the OLS is not outliers 

resistant, the alternative robust technique called MM-estimator 

(Maronna, 2006) which has a very high breakdown point is 

used to estimate the model parameters and subsequently 

obtain the optimum response. The performances of the 

Optimum-MM and Optimum-OLS techniques are assessed 

based on numerical examples and simulations study.  

 

II. USING A CENTRAL COMPOSITE DESIGN IN                  

SECOND-ORDER MODEL 
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In general, the model (1) is used to describe the response 

surface f.  

A polynomial model is usually a sufficient approximation in 

a small region of the response surface. Therefore, depending 

on the approximation of vector function f, either first-order or 

second-order models are used. Furthermore, a second-order 

model is useful in approximating a portion of the true response 

surface with parabolic curvature. The second-order includes 

all linear terms, plus all quadratic terms and all cross-product 

terms are given as  

 

ijiii xxx

k
i ji j

x
i

x
iji

x
i

y

εβββ

εβββ
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                                                                              (2) 

 

where ( ) εββββ ,,...,
2

,
1

,),...,
2

,
1

( ′=′=
kk

xxxx  is a random 

error and assumed to be independent with 




 2

,0 σN .   

The number of parameters in model (2) must contain at 

least p = 1 + 2k + ½k(k-1) distinct design point,  where k is a 

number of control variables. In addition, Myers et al. (2009) 

stated that the design must involve at least three levels of each 

design variable to estimate the pure quadratic terms. The 

design setting are usually coded of each factor in each 

experiment so that zero represents the center point, and +1 and 

-1 represent the upper and lower of the factor, respectively. 

For the ith factor, such coded levels  are obtained as  

 

                        
( )

ξ

ξξ

∆

−
= i

i
x           (3) 

 

where  is the coded unit,  
i

ξ is the natural value of the ith  

independent variable, and ξ is the mean of the natural unit. 

 The coded values were calculated according to the 

following equation: 

 

           
( )

( ) 2/level lowlevelhigh 

2/level lowlevelhigh 

+

+−
= i

i
x

ξ
                  (4) 

 

There are many designs available for fitting a second-order 

model.  The central composite design (CCD) is the most 

frequently used design for fitting a second-order response 

surface. It was first introduced by Box and Wilson (1951). It 

consists of factorial points, axial points, and central points. In 

the construction of CCD, Khuri and Mukhopadhyay (2010) 

pointed out that this design consists of the following three 

features: 

i. A complete (or a fraction of)  factorial design whose 

factors’ levels are coded as  -1, 1. This is called the 

factorial portion.  

ii. An axial portion consisting of 2k points arranged so 

that two points are chosen on the axis of each control 

variable at a distance of α from the design centre 

(chosen as the point at the origin of the coordinates 

system).  

iii. A chosen number, 0n of center points. 

III. OPTIMIZATION OF A SECOND-ORDER           

MODEL 

 

Consider a second-order response surface equation model 

as  

 

                      Bxxxy ′+′+= *0
ˆ ββ                            (5) 

 

where ( ) ,,...,
2

,
1

,),...,
2

,
1

( ′=′=
kk

xxxx ββββ and B is a 

symmetric matrix of order k x k whose ith diagonal element is 

iiβ (i = 1,2, … , k) and its (i,j)th off-diagonal element is 

ijβ
2

1
(i,j = 1, 2, … , k; i ≠ j).  

The stationary point is determined by first differentiating 

ŷ with respect to x as follows: 

 

             xBb
x

y ˆ2
ˆ

+=
∂

∂
                                                    (6) 

 

and, set the derivative to be equals to 0, the stationary point 

( )0x can be obtained  
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where; 
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b is a (q x 1) vector of the first-order regression coefficients 

and B is a (q x q) symmetric matrix. 

 In result, the predicted response value at stationary point 

can be calculated as 

 

                         ( ) Bxxxxy ′+′+= *0ˆ ββ                        (8) 

 

IV. REGRESSION ESTIMATOR BASED ON MM-

ESTIMATION 

 

The Ordinary Least Squares (OLS) method is often used to 

estimate the parameters of the model. However, it can be 

adversely affected by outliers [2, 16]. As an alternative, MM-
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estimator which has a very high breakdown point is used to 

estimate the parameters of the model. The MM-estimator is 

one of the robust regression techniques tend to dampen the 

effect of the outliers. The MM-estimator was originally 

proposed by Yohai in 1987. Yohai (1987) defined the MM-

estimator as a three-stage procedure: 

i. an initial regression estimate is computed which is 

consistent robust and with high breakdown point but 

not necessarily efficient. 

ii. an M-estimate of the errors scale is computed using 

residuals based on the initial estimate. 

iii. an M-estimate of the regression parameters based on a 

proper redescending psi-function, ρ  is computed. 

 

For a given ψ function equals to ρ ′ , the MM parameter 

estimates are defined as any solution of; 

 

                    0
ˆ

1

1

=






 ′−
∑

=

t

n

t s

tt X
XY

n σ

β
ψ                   (11) 

 

where tY  be the response variable and tX  the p-vector of 

covariates observed for t = 1,2,…,n.   

In the following, a step-by-step procedure for optimum-MM 

and optimum-OLS are presented based on RSM: 

Step 1: Building an appropriate second-order response 

surface model for each response and compute the regression 

coefficients of the second-order model (2) using the RSM 

based on OLS and RSM based on MM-estimator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2:  Next, the adequacy of the second-order model is 

tested, which can be assessed from the analysis of variance 

(ANOVA) table.   

Step 3: Perform the canonical analysis. The canonical 

analysis is performed to determine the location and the nature 

of the stationary point of the second-order model. The 

stationary point is then be referred as the center point of the 

new region of interest.  

 

V. NUMERICAL EXAMPLES  

 

 In this section, a numerical example is presented to 

investigate the performance of the proposed optimum-MM. 

The optimization of xanthan gum production by X. campestric 

in 18 batches of experiments was obtained from an experiment 

conducted by Psomas et al. (2007).  

There are two response variables observed in his 

experiment which are xanthan gum ( ) and biomass ( ) 

production while the predictor variables or input factors are 

agitation rate ( ), temperature ( ), and time of cultivation 

( ), using a face centered composite design of experiments. 

In this article, we only focus on xanthan gum production (y) as 

a response variable. 

To see the effect of outliers on the optimum-OLS and the 

optimum-MM, we purposely modify (contaminated) the 

xanthan dataset in this experiment.  The objective of this 

experiment is to search for an optimal setting and optimal 

yield (response) that can achieve the target with maximum 

optimum of xanthan gum production with and without 

contaminated data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run Agitation 

rate ( ) 

Temperature 

( ) 

Time 

( ) 
   y 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

100 

600 

100 

600 

100 

600 

100 

600 

100 

600 

350 

350 

350 

350 

350 

350 

350 

350 

25 

25 

35 

35 

25 

25 

35 

35 

30 

30 

25 

35 

30 

30 

30 

30 

30 

30 

24 

24 

24 

24 

72 

72 

72 

72 

48 

48 

48 

48 

24 

72 

48 

48 

48 

48 

-1 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

1 

1 

-1 

-1 

1 

1 

0 

0 

-1 

1 

0 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

1 

1 

1 

1 

0 

0 

0 

0 

-1 

1 

0 

0 

0 

0 

          0.278 (27.8) 

0.375 

0.141 

0.333 

0.315 

0.692 

0.279 

           0.699 (69.9) 

0.215 

          0.486 (48.6) 

0.583 

0.569 

           0.348 (34.8) 

0.511 

           0.503 (50.3) 

0.467 

0.453 

           0.475 (47.5) 

Table 1: The Xanthan Gum Production Data 
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Table 1 presents the data set taken from Psomas et al. 

(2007) experiments which contains three independent 

variables in coded and uncoded form according to the 

experimental design and the response (xanthan gum 

production) for all experiments. 

The coded values of independent factors were calculated as 

follows; 

Agitation rate:         

 

Temperature:         

 

 Time:                     

 
 In this article, the second order response surface models 

(OLS and MM-estimator) are fitted using S-Plus 6.2 

Professional software. 

 

A. The Estimated Coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A second order polynomial model was fitted to the 

production of xanthan gum data. Table 2 presents the 

estimated regression coefficients, interactive terms, quadratic 

terms and probability values (p-values) based on the OLS and 

the MM-estimator. The analysis was done using the coded 

values. Psomas et al. (2007) stated that when the regression 

model is determined with coded values of the variables, the 

size of each coefficient gives a direct measurement of the 

importance of each effect. 

Thus, the second-order model is appropriate for xanthan 

dataset. Coefficients with p-values larger than 0.05 are 

considered not significant and are not included in the model. It 

is important to point out that when a higher order (square and 

interaction factor) was significant, the linear factor must 

follow the later (Montgomery et al, 2001). 

The results of Table 2 show that at α = 0.05, all coefficients 

based on OLS are significant. Two interaction factors of MM-

estimator are not significant. But, after the deletion of factor 

*  and *  and recomputed the estimates for the 

second time, all the coefficients are significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Term Coefficient SE coefficient t-value p-value 

 

(A)  OLS estimator 

     Constant 

      

     

      

      *  

     *  

      *  

      *  

      *  

     *  

 

(B) MM-estimator 

    Constant 

      

     

      

      *  

     *  

      *  

      *  

      *  

     *  

 

 

 

0.4779 

0.1357 

-0.0222 

0.1021 

-0.1309 

0.0946 

-0.0519 

0.0173 

0.0635 

0.0188 

 

 

 

0.4776 

0.1356 

-0.0222 

0.1024 

-0.1302 

0.0948 

-0.0523 

0.0172 

0.0635 

0.0187 

 

 

 

0.0081 

0.0065 

0.0065 

0.0065 

0.0126 

0.0126 

0.0126 

0.0073 

0.0073 

0.0073 

 

 

 

0.0073 

0.0071 

0.0080 

0.0080 

0.0112 

0.0112 

0.0112 

0.0082 

0.0082 

0.0094 

 

 

 

58.6629 

20.7211 

-3.3899 

15.5904 

-10.4013 

7.5228 

-4.1219 

2.3560 

8.6726 

2.5608 

 

 

 

65.0315 

19.1892 

-2.7930 

12.8637 

-11.5877 

8.4367 

-4.6584 

2.0897 

7.7117 

1.9864 

 

 

 

0.0000 

0.0000 

0.0095 

0.0000 

0.0000 

0.0001 

0.0033 

0.0462 

0.0000 

0.0336 

 

 

 

0.0000 

0.0000 

0.0234 

0.0000 

0.0000 

0.0000 

0.0016 

0.0700 

0.0001 

0.0822 

 

Table 2: Estimated coefficient for Xanthan  data using OLS (A) and MM (B) 
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(a) Contour Plot 

 

 

 

 

 

 

 
 

(a) Contour Plot 

 

 

 

 

 

 
 

(a) Contour Plot 

 

 

 

 

 
 

(b) Response Surface 

 

 

 

 

 

 

 
 

(b) Response Surface 

 

 

 

 

 

 
 

(b) Response Surface 

 

 

 

 

 

 

 

 

Figure 1: The effect on Agitation Rate versus Temperature and Their Mutual effect on the 

Xanthan Dataset 

 

Figure 2: The effect on Agitation Rate versus Time and Their Mutual effect on the 

Xanthan Dataset 

 

Figure 3: The effect on Temperature versus Time and Their Mutual effect on the 

Xanthan Dataset 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 6, Volume 6, 2012 761



 

 

The geometric nature of the second-order function is 

displayed in figs. 1-3. The response surfaces of figure 1 shows 

that an increase of agitation rate and temperature 

simultaneously yields in a minimax production of xanthan 

gum production for both estimators. On the other hand, the 

effect of agitation rate and time in figure 2 indicates that the 

maximum yields production of xanthan. Furthermore, the 

increase of temperature and time shows that the contour of 

response surface is a minimax effect of xanthan production. 

These indications for both the RSM based OLS and the RSM 

based MM-estimator supported by the numerical results in the 

table 4. 

Table 3 summarizes the corresponding analysis of variance 

results. Of some concern was the size of the F statistics for the 

lack of fit test. When using the RSM based on OLS, all the 

contribution of factors are significant and there is no 

indication of lack-of- fit, evidenced by large p values for the 

lack-of-fit test, which equals to 0.555.  

 Similar to the OLS method, the RSM based on MM-

estimator also suggesting no evidence of lack-of-fit in the  

model. 

 

Table 3: Analysis of variance for xanthan production using 

OLS (A) and MM (B) 

 

Source df SS MS F p 

(A) OLS 

estimator            

  Regression          9 0.4073 0.0453 105.51 0.000 

  Residual error    8 0.0034 0.0004 
 

  

     Lack-of-fit      5 0.0021 0.0004 0.95 0.555 

     Pure error        3 0.0013 0.0004 
 

  

  Total                17 0.4107 
  

  

    

(B) MM-

estimator    

Regression            9 0.4062 0.0451 80.6 0.000 

  Residual error     8 0.0045 0.0006 
 

  

     Lack-of-fit        5 0.0032 0.0006 1.42   

     Pure error          3 0.0013 0.0004 
 

  

 Total                     17 0.4107       

 

The optimum response based on MM and OLS are then 

computed and the results are exhibited in Table 4. The results 

of Table 4 shows that when there is no outlier, the OLS 

method leads to the optimal setting  = (0.8744,-

0.1115, 1.4983), which results in optimum yields equals to 

0.615. In this situation, the performance of the MM estimator 

is fairly closed to the OLS, with optimal setting  = 

(0.8914,0.1171,1.5201) and optimal yield equals to 0.6146. 

 

 

 

 

Table 4: The optimum response for xanthan data 

 

 

B. Analysis on modified (contaminated) xanthan dataset 

 

To see the effect of outliers on the Optimum-MM and 

Optimum-OLS, we purposely modify (contaminated) the 

response of xanthan gum production data. Three design points 

(factorial point, axial point, and central point) each with two 

contaminated point (in parenthesis and bold) are shown in 

Table 1. The variables 
3

,and  ,
2

,
1

xxx are centred and 

rescaled similar to the earlier data. As mentioned in section A, 

coefficients with p-values larger than 0.05 are considered not 

significant and are not included in the model. Thus, for 

contaminated data, all the coefficients using the RSM based 

on OLS are not significant. However, the coefficients using 

the RSM based on MM are significant. 

 The RSM based on OLS and the RSM based on MM-

estimator were then applied to the data and the results of the 

optimum responses are exhibited in Table 5.  

 It can be observed from Table 5 that in the presence of 

outliers in the data set, the OLS based method failed to 

determine the optimal settings and optimal response due to the 

insignificant of all variables in the model. In the event that the 

optimal response is obtained, the result is very misleading. 

However, using MM-estimator, the results are closed to the 

results as in the clean dataset. It is interesting to note that the 

MM based method is only slightly affected by the outliers. 

Other results’ examples are consistent and not reported here 

due to space constraint. 

 

VI. SIMULATION STUDIES 

 

 In this section, a series of Monte Carlo simulation study 

are performed for comparison of the Optimum-MM and the 

Optimum-OLS with and without contaminated data using a 

face-centered composite design of experiment. A second-order 

polynomial model was fitted and the optimum conditions were 

estimated. 

The responses are randomly generated based on the 

following function 

 

Factor Optimum-OLS 

setting 

Optimum-MM 

setting 

 

  (Agitation rate) 

 (Temperature) 

  (Time) 

 

Optimum Response 

 

0.8744 

-0.1115 

1.4983 

 

0.6150 

 

0.8914 

0.1171 

1.5201 

 

0.6146 
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To generate the Y values, first we fixed the values of 

variables 
3

,and  ,
2

,
1

xxx are centred and rescaled from the 

natural variables so that [ ]1,1−∈ix  and the parameter 

coefficient, β equal to 1.  The errors, tε  are generated from a 

normal distribution with mean zero and variance 0.3. In this 

regards, 1000 simulated values were generated for each model 

with 18 design points.  

In order to check how the presence of contaminated data 

affects the estimators, two contaminated data ( )ii YY ,10,4 ,  were 

observed. The 4th and 10th data points are replaced with their 

corresponding y values increased by 100 units. 

The optimum responses for xanthan gum production data 

with and without contamination are shown in Table 6 and 

Table 7. As can be expected, for clean data, the results (Table 

6) clearly indicate that the RSM based on OLS method 

performed better than the RSM based on MM-estimator since 

it has  less biased, smaller SE and RMSE. The OLS and MM 

based technique are fairly closed to each other in this regard.  

 It is interesting to see that the optimum-MM has 

smaller RMSE than the optimum-OLS in the presence of 

outliers. On the other hand, the performance of optimum-OLS 

is very poor. 

 

 

Table 5: Optimum response for contaminated data 

 

 ‘-’ indicate that the optimum cannot be estimated 

 

 

 

 

 

 

Table 6: Estimation the Optimum response for clean data 

 

 

Table 7: Estimation the Optimum response for contaminated 

dataset 

 

 

VII. CONCLUSION 

 

This article clearly shows that the performance of the 

optimum-MM to estimate the optimal setting and optimal 

response is comparable to the optimum-OLS when no 

outlier(s) in a data set. However, the optimum-OLS is very 

sensitive to the presence of outliers. On the other hand, the 

optimum-MM is very reliable as it is outlier resistant. Hence, 

in the presence of outlier(s) it is recommended to use the 

optimum-MM to estimate the optimal response. 
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Design 

Point 

Method 

 

Optimal Setting  

= ( ) 

 

Optimum 

Response = 

y 

 

Factorial 

Point 

OLS 

 

(-0.1698,-0.1822,  -

0.1726) 

-2.9365 

MM 

 

(0.5585,0.0963, 

1.1696) 

0.5733 

 

Axial 

Point 

OLS 

 
- - 

MM 

 

(0.8721,-0.0732, 

1.1909) 

0.5971 

 

Center 

Point 

OLS 

 
- - 

MM 

 

(0.9231,0.1149, 

1.6017) 

0.6160 

 

Method 

 

Optimum-OLS 

 

Optimum-MM 

 

Bias 

 

-0.084438 

 

-0.114096 

 

SE 
0.015252 0.052209 

 

RMSE 
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Method 

 

Optimum-OLS 

 

Optimum-MM 

 

Bias 
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-5.974056 

 

SE 
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RMSE 
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