
 

 

 
Abstract—The conversion of an external signal by the cell into 

internal molecules is called the signal transduction process. In this 
paper, the role of the G-protein coupled receptors (GPCRs) is 
considered because GPCRs constitute the largest family of protein on 
eukaryotic cell membrane. Furthermore, GPCRs can detect the 
external signals and transduce them into the cell leading to the 
production of the secondary hormone or massager such as cAMP 
(cyclic adenosine monophosphate). The abnormality of the signal 
transduction process can cause many serious diseases. Better 
understanding of GPCRs and the signal transduction process should 
be greatly beneficial for  pharmacological research. Here, a stochastic 
differential equation (SDE) model of the signal transduction in the 
cell has been proposed and investigated. An SDE model has been 
modified from the deterministic model proposed by Rattanakul et al. 
(2009) to take into account the observation that experimental data on 
cAMP measurements often show random fluctuations (Ueda and 
Shibata, 2007). The model parameters are then estimated by using the 
Euler-Maruyama approximation and maximum likelihood estimators. 
With the estimated parameters, the stochastic model simulations are 
found to provide a better dynamic representation of the transduction 
system with noise, in comparison to the deterministic model which 
does not take into account the random fluctuations in the production 
of the secondary signaling hormone, cAMP, which could 
significantly impact the amplification effect that it has on the primary 
signaling hormone. Such stochastic behavior can significantly 
influence the outcome of the process which controls the proper 
function of the human body. We discuss the simulation results of the 
SDE model with estimated parametric values in comparison with 
those obtained from the deterministic model proposed by Ratanakul 
et al. [80], with parameter values estimated by a genetic algorithm. 
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I. INTRODUCTION 
 

cell is the smallest unit of the living organism. Organism 
is composed of cells which are unicellular (a single cell) 

or multicellular. A regular cell size is 10 micron and a regular 
mass is 1 nanogram. The cells need to communicate with each 
other in order to perform their functions which are growth, 
creation, metabolism, and so on. The cell can sense and 
respond to other cells or surrounding signals through a 
signaling process [1]. 
 

 Normally, the signaling process involves extracellular 
signaling molecules and receptors on cell membrane. The cell 
membrane has many receptors, one of the largest family of 
which is that of G-protein-coupled receptors (GPCRs). 

 
GPCRs which are found only in eukaryotic cells control 

every aspect in pathological processes. The signaling process 
consists of three stages; signal reception, transduction, and 
response. First, the receptors detect the chemical signal from 
the environment. When the chemical signal binds to the 
receptors, the signal transduction turns the exterior stimuli into 
a form which can produce an exact cellular response. Lastly, 
the transduced signal triggers an exact cellular response. After 
all these processes have occurred, the signaling process must 
be terminated [2]. 

 
The common feature in all signal transduction pathways is 

that a component in the environment is recognized, typically 
by a protein in the plasma membrane. The environmental 
trigger is called the ligand, and the plasma membrane protein 
is called the receptor. The receptor usually spans the 
membrane, and binding to the ligand on the extracellular side 
triggers a change that activates its function on the intracellular 
side. This part of the process is called signal transduction [3]. 

 
Any abnormalities in the signal transduction process can 
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cause many serious diseases, such as diabetes and cancer, 
which arises from a cell that cannot respond to the signal 
properly. For example, a signaling process which fails to 
suitably terminate can cause uncontrolled cell activities such 
as abnormal growth and the possibility of cancer. For this 
reason, in depth understanding of the signal transduction 
process is crucial for pharmacological research and effective 
drug development  [2], [3], [4]. 

 
 In a previous work, Levchenko and Iglesias [5] proposed a 

model for the chemotactic signaling system which explains the 
conversion of a shallow gradient of chemo attractant in 
Dictyostelium and neutrophils. They found that local 
excitation and global inhibition are controlled by the G protein 
activation.  

 
In 2003, Iglesias [6] proposed a deterministic model for the 

signaling process associated with chemotaxis in Dictyostelium 
which is based on gradient sensing and adaptation. The model 
considers both the positive feedback loop and the negative 
feedback loops. His paper discusses how control engineering 
mechanisms such as robustness and amplification are similar 
to those found in the signal transduction pathways. 

 
In 2006, based on the model proposed by Iglesias, 

Rattanakul et al. [7] invistigated a deterministic model of 
signal transduction pathway, which involves the G protein 
coupled receptors, consisting of a system of two differential 
equations governing the interaction between the inhibitor 
protein and the ligand – receptor complexes. Signal 
transduction across the plasma membrane is mediated by 
membrane receptor bound proteins which connect the 
genetically controlled biochemical reactions in the cytosol to 
the production of the second messenger, leading to desired 
intracellular responses. Their model took into account the 
receptors internalization and incorporated receptor diffusion 
and movement across the cell membrane. 

 
On considering the experimental data reported by Rattankul 

et al. in [8], it was observed that the cAMP level fluctuates 
randomly. According to Felber et al. [9], who proposed the 
master equation simulation of the underlying diffusional effect 
involving the G-protein, the diffusion and reaction showed 
probabilistic nature and behave in stochastic fashion. They 
calculated the kinetics of the active effector from signaling 
process which is determined by the stochastic lifetime 
distribution. 

 
In an earlier work by Oosawa [10], it was proposed that a 

fluctuation in the signal is generated by thermal fluctuations of 
biomolecules. Oosawa constructed a theory to describe the 
mechanism of signal generation [10]. Also, Lamb [11] 
presented the simulation results for the two-dimensional 
diffusional interactions involving the protein receptors and the 
stochastic simulations confirmed a simplified analytic model 
which he proposed. The simulation also gave the efficiency 
quantitative estimates of coupling in the concentration of 

activated G-protein to activated effector. 
More recently, Ueda and Shibata [12] proposed a stochastic 

model of chemotactic signaling by which noise and signal 
propagation along the transmembrane signaling pathway by 
chemoattractant receptors can be analyzed quantitatively. 
They found that an extrinsic noise could occur when ligands 
stochastically bind to receptors and intrinsic noise which 
arises when the receptors generate noisy second messengers. 

 
The work of Naoki et al. [13] reveals that information of 

external signal is amplified using the frequencies of 
intracellular noise. The stochastic reactions allow the system 
to spontaneously become excited and the performance of cell 
is improved by this effect. 

 
Taking into account such observations mentioned above, it 

appears that many researchers have discovered and 
investigated the occurrences of fluctuation in biomolecules. 
This agrees with the data on experimental measurements of 
cAMP reported by Rattanakul et al. [8] which exhibited noisy 
fluctuation in the cAMP level. We will therefore construct a 
stochastic differential equation model that will describe more 
accurately the dynamic behavior of the system. Modified from 
the deterministic model proposed by Rattanakul et al. [8], the 
SDE model takes into account the impact of random 
fluctuations in the amplification effects of the secondary 
hormone on the first signal from the external environment of 
the cell. Then, the model parameters are estimated by using 
the Euler - Maruyama approximation and Maximum 
likelihood estimator. 

 

II. THE TRANSDUCTION PROCESS  
 

Cells have a mechanism for detecting and responding to 
external signals. One of the more complex tactics for doing 
this involves a three-stage G protein coupled enzyme cascade 
[2], a schematic diagram of which is shown in Figure 3. 

Fig. 1 The basal level of G-protein GTPase cycle. 
 
In the first stage, the basal stage, the G protein which is 

constituted of 3 subunits: α, β and γ subunits, with GDP bound 
to the α - subunit, is activated by the receptor’s interaction 
with a particular ligand.  
 

In the second stage, the transduction stage, after the receptor 
has been activated and turned on the heterotrimeric G protein, 
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by causing the G protein to replace GDP (guanosine 
diphosphate) by GTP (guanosine triphosphate), the GTP-
bound α - subunit then dissociates from  β and γ subunits and 
either or both regulates the effector  unit whose activity 
produces secondary messengers, such as cyclic adenosine 
monophosphate  (cAMP). 
 
 

 
 
 
Fig. 2 The activation of α-subunit of G-protein of G-protein 
GTPase cycle. 
 
 

 
 
 
Fig. 3 The activation of effector of G-protein GTPase cycle. 
 
 
 The G protein subunit is transient and it is terminated by the 
GTPase activity of the α - subunit. GTPase converts bound 
GTP to GDP then the protein becomes inactivated. 
 

III. THE GOVERNING EQUATIONS 
 

A. Deterministic model 
 
 

We could think of the intracellular signal transduction in 
this way. Adenylyl cyclase (AC) occurs in two stages: active 
(R*) and inactive (R).  R is converted into R* by a GDP bound 
α - subunit of G protein denoted by A and R* is converted into 
R by GDP bound α - subunit whose amount is given by I. 
Moreover, A  and  I  are activated by the external signal which 
binds to the cell receptors on the cell membrane, becoming G 

protein coupled receptors at a concentration S. Lastly, the 
activation of AC leads to the synthesis of cAMP (C) which 
regulates a downstream reaction to amplify the initial signal.  

 
 
 

 
 
Fig. 4 The reaction scheme of signal transduction involving G-
protein coupled receptors. 
 
 Based on earlier research works [7, 8, 14], we could 
consider the above dynamics in the following way. 
 

The equation for R* can be written as  
 

                         
*

*
r r

dR
k IR k AR

dt                             (1) 

 
where the first term on the right is the removal rate and the last 
term is the activation rate.  
 

Assuming that the total amount of AC is constant denoted 
by RT so that RT = R* + R, Equation (1) becomes  

 
*

*( )r r r T

dR
k I k A R k AR

dt                      (2) 

 
From the scheme seen in Figure 4, the dynamics of the 

activator of density A and inhibitor of density I are described 
by the following equations: 

 

a a

dA
k A k S

dt                                  (3) 

and 

i i

dI
k I k A

dt                                    (4) 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 325



 

 

where the first terms on the right are the corresponding 
removal rates and the last terms are the corresponding rates of 
production. 
 

The concentration of the second messenger or cAMP (C) 
which is synthesized as a result of enzyme R* activation [15], 
satisfies the following equation 

2*
1 2c c c

dC
k C k R k

dt                         (5) 

 
where the first term on the right is the removal rate and the last 
two terms represent the synthesis rate, kc2 being the zero order 
rate of production. 

 
The dynamics of S follows the equation 
 

1

2
s s

b SdS
k S k C

dt b S   


                 (6) 

 
where the first term on the right is the removal rate, the second 
term is the rate at which it is internalized through the cell 
membrane and the last term represents the signal amplification 
due to the secondary hormone C. 

 
As argued in [5] and [6], we may assume that the dynamics 

of R*, A and C are relatively fast compared to the dynamics of  
I and S. Then, the values of R*, A and C equilibrate quickly to 

 

* r T

r r

k AR
R

k I k A




                                   (7) 

 

s

a

k
A S

k
                                               (8) 

 
2*1 2 .c c

c c

k k
C R

k k 

                              (9) 

 
Substituting (8) in (4), we obtain 
 

1 2 .
dI

a I a S
dt

                                      (10) 

 

where  
 

1 ia k  

and 

2 .a i

a

k k
a

k




  

Substituting (7), (8), and (9) in (6), we have 
 

         
2

1 4
3 62

2 5( )

b S a SdS
a S a

dt b S a S I
    

 
               (11)                     

 

where 
 

3

2

1
4

,

,

s

c s a r
T

c a r

a k

k k k k
a R

k k k



  



 
  

 

 

 

5

2
6

,

.

a r

a r

c s

c

k k
a

k k

k k
a

k

 






 

 

B. B.  Formulation of the gradient-sensing SDEs model  
 

Following observations made by researchers mentioned 
earlier [10 – 13, 16], we could think about the above system 
(10) - (11) in the following way. 

 
Substituting Equation (7) in (9), one obtains 
 

 

2
4

62

5

a S
C k a

a S I

 
  

  
                        (12) 

 

where 
 

1
.

s

k
k

  

 
Then, we can write (11) as 
 

               1
3 0

2

, (0)
b SdS C

a S S S
dt b S k

    


         (13)       

               
when C is considered to be erratic. 

 
We hypothesize that C is perturbed by a Gaussian white 

noise  , 

 
C C     

 
where   is a positive unknown parameter representing the 
noise intensity factor. 

 
Then, we obtain 
 

               1
3

2

b SdS C
a S

dt b S k


   




                   (14)    

 
Substituting / k  with  , one has 

 

1
3

2

b S C
dS a S dt dW

b S k


 
      

            (15) 

or 
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 

2
1 4

3 62
2 5

b S a S
dS a S a dt dW

b S a S I


 
      
   

             

(16) 
where W represents a standard Brownian motion. 
 
 Therefore, we arrive at the model consisting of the 
following equations 

 

1 2 0, (0) ,
dI

a I a S I I
dt

                                     (17) 

 

2
1 4

3 62
2 5

b S a S
dS a S a dt

b S a S I

 
     
   

 

 

0, (0)dW S S                                          (18) 

 

2
4

62

5

a S
C k a

a S I

 
  

  
                                          (19) 

 

IV. PARAMETER ESTIMATIONS 
 

A. Experimental data  
 

In order to determine whether the above system (17) - (19) 
gives a suitable model for the transduction process, 
measurements of intracellular cAMP has been utilized to 
arrive at estimates for the model parameters. The 
measurements  was done by using Fisher rat thyroid cells 
stably expressing type II antidiuretic hormone receptors, FRT-
V2R, cultured in F-12 modified Coon's medium (Sigma) 
supplemented with 10% fetal bovine serum, 100 U/ml 

penicillin and 100 g/ml  streptomycin at 37 C in a 

humidified atmosphere of 5% 2CO .  

 
Every two weeks, the FRT-V2R cells were selected with 

medium containing 500 g/ml  Zeocin, 500 g/ml  Geneticin 

and 350 g/ml  hygromycin. Then, the FRT-V2R cells were 

plated in 24-well plates overnight. After obtaining 80 % of 
confluence, the cells were washed three times with PBS and 
incubated with 100 nM dDAVP (Sigma-Aldrich), a selective 
V2R agonist.  
 

 The incubation time was varied from 5 seconds to 16 
minutes. The reaction was terminated by lysis buffer. After the 
incubation, cell lysate was transferred to 96-well plates. Then, 
the intracellular cAMP measurement using  cAMP Biotrak 
EIA system (Amersham, GE Healthcare). The measurement 
protocol follows manufacturer's instructions, and samples 
were determined at optical density 450 nm [8]. 
 

 Lowry method (1951) [17] was used to determine the 
amount of intracellular cAMP expressed per unit amount of 
protein. 

 
To estimate the parameter values, we consider that the 

unknown model parameters  

  1 2 3 4 5 6 1 2, , , , , , , ,a a a a a a b b   

could be estimated given the 2 equations. We use Euler-
Maruyama approximation and Maximum likelihood estimator 
[18] to estimate the parameters upon the measured experi-
mental data described above. 
 

B. Euler-Maruyama approximation  
 

Next, we consider the following It ô SDE [19] 
 

   , ,t t t tdX f X dt g X dW                 (20) 

 

              
0(0)X X    

 
where W is an m - dimensional standard Wiener process and  

 
1: and : mf g        

 
are known functions depending on an unknown finite-
dimensional parameter vector .    

 
Considering the It ô SDE (20) on  0 , ,t T for a given 

discretization 1o n Nt t t t T        of  0 , ,t T an Euler 

- Maruyama approximation is a continuous time stochastic 
process satisfying the iterative scheme 

 

   1

0 0

,

, 0, 1, , 1
n n n n n nY Y h f Y g Y W

Y X n N
    

  
          (21) 

 

where 
 

 

     
1

1

,

is the ,

0,

n n

n n n

n n n n

Y Y t

h t t stepsize

W W t W t h






 

    N
 

 

with  0 0W t   and Ν is the normal distribution. 

 

C. Maximum likelihood estimator  
 

The maximum likelihood estimator (MLE) of   can be 
calculated if the transition densities ( ; , )t sp x x   of X are 

knows, .s t  The log-likelihood function of   is given by 
 

   1
1

log , ,
n

n i i
i

l p x x 


                    (22) 

 

and the maximum likelihood estimator ̂  can be found by 
maximizing (22) with respect to  . Under mild regularity 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 327



 

 

conditions, ̂  is consistent, asymptotically normally 
distributed and asymptotically efficient as n tends to infinity. 
 

V. RESULTS AND DISCUSSION 
 

The estimated parameter values can be found as given in 
Table I. 
 

TABLE I 
 

ESTIMATED MODEL PARAMETERS 
ON FIRST RUN 

 
 

parameter 
 

estimated value 

1a  0.90817 0.03345  

2a  0.29170 0.01829  

3a  2.14885 9.38365  

4a  0.06629 0.28644  

5a  0.31687 0.88463  

6a  0.07902 0.24257  

1b  0.31918 2.49458  

2b  0.11690 0.30378  

  0.00954 0.00249  

 
 
Simulation results of the identified model are shown in 

Figure 5 and Figure 6. 
 
We observe that the estimations are reasonable, except 

possibly for 3a  and 1b  for which the error intervals are 

relatively large. This is probably because of the limitation on 
the data set, containing only 13 samples, while we try to 
estimate 9 parameters. 

 
To check for the consistency of the estimations, a second 

run was carried out with over 50 simulations. The estimated 
parameter values are as given in Table II. The parameter 
estimates are close to the corresponding values in the first run. 
We still have a large error in the estimate for a3. 

 
The plots of empirical mean, confidence interval and 

1 3 and Q Q quartiles of the identified model, using the 

parameter estimates in Table II, are shown in Figure 7, 
showing wider 95% confidence interval and , while the errors 
in the estimated parameter values are smaller. 

 
 

 

 
Fig. 5 Plots the numerical solution over 50 simulations on the 
first run. The experimental measurements are shown as white 
dots. 

 
 
Fig. 6 Plots the empirical mean (green solid line), 95% 
confidence interval (dashed lines), 1 3 and Q Q quartiles of the 

numerical solution (dotted lines) over 50 simulations on the 
first run. The experimental measurements are shown as empty 
circles, while the empirical mean is shown here as a solid 
curve. 
 

We then carried out a third run over 70 simulations and 
found that the errors associated to all parameter estimates are 
consistently smaller, as seen in Table III, although the 
estimates for a4 and a6 are still in question. 

 
Thus, we observe that the parameter estimates seem to be 

more reliable when more simulations are carried out in a run, 
since the errors are now consistently smaller for all 
parameters. 
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The plots of empirical mean, confidence interval and 

1 3 and Q Q quartiles of the identified model, using the 

parameter estimates in Table III, are shown in Figure 8. 
 
 

TABLE II 
 

ESTIMATED MODEL PARAMETERS  
FROM SECOND RUN 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Plots the empirical mean (green solid line), 95% 
confidence interval (dashed lines), 1 3 and Q Q quartiles of the 

numerical solution (dotted lines) over 50 simulations in the 
second run. The experimental measurements are shown as 
empty circles, while the empirical mean is shown here as a 
solid curve. 

 
TABLE III 

 

ESTIMATED MODEL PARAMETERS 
ON THE THIRD RUN 

 
 

parameter 
 

estimated value 

1a  1.15643 0.04536  

2a  0.44894 0.02456  

3a  3.61315 0.08314  

4a  0.04645 0.04215  

5a  0.41766 0.41960  

6a  0.01532 0.10948  

1b  0.21536 0.02393  

2b  0.24483 0.00826  

  0.01455 0.00354  

 
 

Considering Tables 1, 2 with Table 3, the errors of the 
estimated parameter values decrease with more simulations in 
a run. Thus, the more thorough simulations yield smaller error. 
  

 
 

Fig. 8 Plots the empirical mean (green solid line), 95% 
confidence interval (dashed lines), 1 3 and Q Q  quartiles of the 

numerical solution (dotted lines) over 70 simulations in the 
third run. The experimental measurements are shown as empty 
circles, while the empirical mean is shown here as a solid 
curve. 
 

 
parameter 

 
estimated value 

1a  0.86294 0.05192  

2a  0.38193 0.03162  

3a  2.16829 0.71925  

4a  0.03810 0.08376  

5a  0.51923 0.14921  

6a  0.020728 0.14824  

1b  0.30284 0.04289  

2b  0.32078 0.01092  

  0.03028 0.01093  
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Finally, we present the values of the system parameter 
estimated over 100 simulations in Table IV. The errors are 
consistently small for all parameters except for possibly a3. 

 
TABLE IV 

 

ESTIMATED MODEL PARAMETERS 
OVER 100 SIMULATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
By comparison, in [8] Rattanakul et al. utilized a 

deterministic model to simulate the signaling system and the 
parameter values were estimated by a genetic algorithm. It 
may be observed that the parameter estimates obtained from 
different runs are greatly different from one run to another, 
and the simulated curves do not approximate the data points 
that closely, even though the parameter estimates already 
yielded minimum least squares. This would lead us to 
conclude that confidence on the reliability of the estimates 
could not be very high. It would also be difficult to justify our 
choice of one set of estimates from another. 

 
With the results in this paper, however, we see that the three 

sets of estimates (in Tables I - III) are relatively close to each 
other, more or less within the error bars of each corresponding 
parameter. The parameter values obtained in this manner 
should thus be more reliable and the identified SDE model can 
then more properly represent the behavior of the probabilistic 
dynamics of such a complex system. 

 
To ascertain whether the model with the parameter values 

obtained in this manner actually approximate the dynamic 
behavior of the G protein coupled receptors S and that of the 
inhibiting hormone I closely enough, we need to obtain 
experimental data on the densities of both quantities which 
involves complicated controlled experiments which are not 
currently within our capability. 

 

 

Figure 9 shows the plots the empirical mean, 95% 
confidence interval, and the 1 3 and Q Q quartiles of the 

numerical solution over 100 simulations using the parametric 
values found in Table IV. 

 

VI. CONCLUSION 

 
The aim of this paper was to estimate the parameters of the 

model for the experiment data in signal transduction involving 
G protein coupled receptors. 

 
We developed a mathematical model by modifying the 

deterministic model proposed in [8] into stochastic model. 
Then, we estimated the parameter values by using the Euler -
Maruyama Approximation and maximum likelihood esti-
mators. Nine of the unknown parameter values could be 
estimated moderately well, given the limited data set of only 
13 samples. The errors of the estimation parameters will 
decrease when we more simulation run. 

 
 The parameters which we estimated can help the physicians 

in monitoring abnormality in the cell signaling process which 
leads to many serious diseases. 
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parameter 

 
estimated value 

1a  1.16796 0.16256  

2a  0.61427 0.17978  

3a  1.67558 1.27681  

4a  0.12473 0.06261  

5a  0.20681 0.00296  

6a  0.14282 0.10272  

1b  0.30172 0.00268  

2b  0.35862 0.00284  

  0.01081 0.00021  
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