

Abstract— In this paper technical issues and challenges

regarding implementation of ADS functionality on AutoCAD

platform are discussed. The results of the experiments for adaptation

of the synergetic computer algorithm and its basic functionality to

AutoCAD environment are presented. Technical aspects of the

possible implementation of this algorithm in ADS system, as well as

vectors’ elements combination/permutation routine performance are

analyzed. A brief philosophical outlook on the problem of modeling

the engineering creativity in ADS/CAD systems was given.

Keywords— Self-organization, Synergetic computer, ADS, CAD,

Pattern recognition, Synergetic neural networks, HVAC

I. INTRODUCTION

HE main characteristic of Autonomous Design System

(ADS) is the ability to process complex non-routine tasks

of the engineering design domain. In our approach the

principles of synergetics and synergetic computer are used as a

main tool in providing such functionality.

 The concept of the synergetic computer was introduced by

Hermann Haken in late eighties of the last century and it is

based on the profound analogy between pattern formation and

pattern recognition. Thus, the mathematical theory of

synergetics was possible to use in derivation of the basic

equations of synergetic computer. Synergetics (H. Haken’s

interpretation) can be considered as one of the modern, most

promising research programs. It is oriented towards the search

for common patterns of evolution and self-organization of

complex systems of any kind, regardless of the concrete nature

of their elements or subsystems (see e.g. [1], [2]).

 In this paper the technical details of the theory of the

synergetic computer and its possible realization on CAD

(Computer Aided Design) and ADS platforms are discussed.

While the algorithm implemented is based largely on H.

Haken models (for other synergetics-based models see [3]), the

significant differences to the basic characteristics of the

classical model were introduced and successfully tested in one

of the most popular CAD environment. For the first time ever

the synergetic computer was implemented on AutoCAD

platform. The presented research constitutes the next

intermediate step to the development and research of the fully

functional Autonomous Design System (ADS).

II. STANDARD HAKEN MODEL

In this section a short overview of the mathematical

background of the synergetic computer concept is presented.

For in-depth discussion of the standard model see [4].

 The basic dynamic equation of the synergetic computer or

synergetic neural network is as follows:

2

'

'

() () ()

() (),

k k k k k k

k k k

q v v q B v q v q v

C q q q F t

λ + + +

≠

+

= −

− +

∑ ∑ɺ

 (1)

where q is the state vector of a test (input) pattern with initial

value 0q , kλ is attention parameter, kv is the prototype

pattern vector,
kv
+

 is the adjoint vector of
kv , which obeys

the orthonormality relation

' '() .k k kkv v δ+ = (2)

,B C are positive constants and ()F t is fluctuating forces,

which may drive the system out from its equilibrium state.

Expression k kv v+⋅ acts as a matrix. This matrix has occurred

in number of other publications and is called the learning

matrix. The term

 ()k kv qξ += (3)

is called the order parameter. The equation (1) describes the

dynamics, which pulls the test pattern ()q t into one of the

prototype patterns
0k
v , namely the one to which (0)q was

closest. This means the pattern is being recognized by the

system.

 The corresponding dynamic equation of order parameters

On some technical issues and challenges in

development and implementation of

Autonomous Design System’s (ADS)

functionality

Dmitri Loginov

T

Issue 3, Volume 6, 2012 142

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

reads:

2 2

' '

' ' 1

.
M

k k k k k k k

k k k

B Cξ λ ξ ξ ξ ξ ξ
≠ =

= − −∑ ∑ɺ (4)

The order parameters obey the initial condition

 (0) ((0))k kv qξ +=

by which the initial values of order parameters in the evolution

series are determined.

 The equations (1) and (4) could be derived from

corresponding potential function equations (5) and (6). That is

,
V

q
q+

∂
= −

∂
ɺ ,

V
q

q

+ ∂
= −

∂
ɺ

2 2 2

'

1 '

1 1
() () ()

2 4

1
().

4

M

k k k k

k k k

V v q B v q v q

C q q

λ + + +

= ≠

+

= − +

+

∑ ∑
 (5)

And

,k

k

V
ξ

ξ

∂
= −

∂

∼

ɺ

2 2 2

'

1 '

2 2

'

' 1

1 1

2 4

1
() .

4

M

k k k k

k k k

M

k

k

V B

C

λ ξ ξ ξ

ξ

= ≠

=

= − +

+

∑ ∑

∑

∼

 (6)

The potential function is used to represent the potential field

in the space of k order parameters in which the fictitious

particle, representing the dynamics of the test pattern or the

corresponding order parameter, moves. The example of the

potential V is shown on Fig.1.

Fig.1 Example of potential function

In this plot the attractors are clearly visible. The attractors

are the stable fixed points, which are represented by a bottom

of each valley. The top of each mountain is an unstable fixed

point. All points in the landscape from which the particle can

roll down to the same attractors form the basin of attraction.

Points of minimal height on ridges are saddle points.

 The stable fixed points are at
kq v= , i.e. at the prototype

patterns, and there are no other stable fixed points. The stable

fixed points are equally characterized by 1kξ = , all otherξ ’s

= 0.

 The Haken’s classical model is built up upon a number of

assumptions. The most important of which are as follows:

- all attention parameters are equal and positive (i.e.

balanced attention parameters)

0,k

C

λ λ

λ

= >

=
 (7)

- the number of patterns is smaller than or equal to the

number of features

 M N≤ (8)

- vectors kv are subject to the condition

 0
k

k

v =∑ (9)

- the following normalization holds

2

1

() 1
N

T

k k kj

j

v v v
=

≡ =∑ (10)

- the number of features per pattern should be the same for

all prototype and test vectors (equality of vectors’ meaningful

dimensions). That is, for each

Issue 3, Volume 6, 2012 143

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

1 2(), ()... ()nv k v l v m ;

 ... ,k l m= = = (11)

where k, l,…,m are vectors’ meaningful dimensions.

As vectors kv are not necessarily orthogonal to each other,

we need to construct the adjoint vectors, which may be formed

as superpositions of the transposed vectors
T

kv :

' '

'

.T
k kk k

k

v a v+ = ∑ (12)

The coefficients
'kka must be determined to satisfy the

orthogonality condition (2). This may be done by multiplying

(12) by
'kv and interpreting

'kka and scalar products
'()T

k kv v

as elements of the corresponding matrices A and W

'

' '

()

[()].

kk

T

k k

A a

W v v

=

=

Equation (12) then can be written in the form

I AW= (13)

and can be solved formally by
1.A W −=

A. Synergetic neural network

Synergetic computer may be realized by artificial neural

networks, which act in a fully parallel manner. The resulting

system is then called Synergetic Neural Network or SNN.

SNN may be realized e.g. as one- or three-layer network. By

using order parameter concept the network can be

considerably simplified. As order parameters are defined by

(3), and satisfy

2(),k k kD Bξ ξ λ ξ= − +ɺ (14)

where

2

'

'

() ,
k

k

D B C ξ= + ∑ (15)

then, for a three layer network, we may use order parameters’

as neurons’ representation in the network’s second layer. The

input layer is represented by input (test) pattern vectors

(0)jq , and if SNN has to act as an associative memory, the

third layer should consist of

() () ,
j k kj

k

q t t vξ= ∑ (16)

where
jq is the activity of the cell j at the output layer,

kξ is

the final state of order parameter cell layer with 1kξ = for

0k k= (i.e. the pattern has been recognized) and 0kξ =

otherwise. The network may be further simplified by

introducing a common reservoir D as in (14). In this way the

number of connections may be further reduced.

B. Benefits of the synergetic computer (SNN) approach

The classical model has a number of advantages over

traditional neural computers (networks). That is, compared to

e.g. Hopfield Neural Network (HNN) it has following

advantages.

1. The model training time is short.

2. The space complexity is low, for SNN it is np , where n

is the number of features, p is the number of patterns and

p n≪ , while for HNN it is
2n .

3. The processor time complexity for the recognition

process is also low. For SNN it requires
2p multiplications

and p additions and for HNN
2n multiplications, n additions.

4. There are no so-called pseudo-states. This is most

important property. It may be proved that besides the

prototype vectors there are no other attractors.

In HNN, the system has the following potential functions. In

the case of discrete HNN:

And in the case of continuous HNN:

.

This potential function can not guarantee that all of the

attractors are actually the desired ones. In the construction of

HNN, no matter how carefully to learn and adjust the weights

ijw and threshold value iθ , it is still difficult to avoid/control

the generation of pseudo-state. In Haken model, considering

the system's dynamic behavior, the precise control of the

potential function (energy function) in the energy potential

field and not the type of connection of neurons nor the non-

linear mappings of them, allow thereby to eliminate the

pseudo-states.

5. The association effect: all of the prototype patterns can be

clearly and equally identified.

Issue 3, Volume 6, 2012 144

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

user
Stamp

C. Limitations of the synergetic computer

The limitations of the synergetic computer model, as it often

happens, are extensions of its advantages. Namely, the most

prominent disadvantage worth noticing is that the system

always selects the winning pattern out from the patterns

presented, even if they are not actually the right ones. This

occurs due to the fact that the biggest order parameter formed

initially as a dot product among all available vectors will

always win the competition. Therefore, if the vectors’ set does

not contain the right prototype pattern, it will not be

recognized by the system. It is true, however that the system

will recognize test pattern (vector) that is the most close to the

prototype pattern (vector).

Some problems with correct identification may occur when

the vectors have different order of elements (features). This is

because the inner (dot) product value’s magnitude depends on

the order of elements in the sequence (vector). Such

identification difficulties may occur in a case of different

elements combinations’ testing e.g. in points/distances

permutation example (see onward in section IV).

III. SYNERGETIC COMPUTER ON AUTOCAD

Implementation of the synergetic computer core

functionality on AutoCAD platform is the intermediate step

towards the realization of SNN in real life design process as a

main tool in ADS modeling. ADS is defined as an advance

CAD system, which has AI functionality and particularly the

functionality to solve the creative tasks of the engineering

design process. ADS is opposed to the conventional CAD

systems, (see e.g. [5]) which normally automate routine parts

of the design process and generally have no AI capabilities. In

this section some technical questions of implementation of

synergetic computer basic functionality are discussed.

 To this end, the objective was established to create an

AutoCAD application that can recognize a number of simple

geometric structures. At first the MATLAB prototype was

created in order to test the basic functionality of the model and

then the algorithm was implemented in AutoCAD

environment. For the sake of simplicity of the presentation, in

AutoCAD environment only three different patterns were

implemented. Actually, the number of patterns tested (in

MATLAB) was bigger and the noisy patterns were elaborated

as well.

 The prototype patterns for our case were chosen among

AutoCAD (Acad) polygon entities (more specifically, these

constitute of polyline objects in Acad database), namely, the

triangle, square and hexagon. As Acad is a vector graphics

software, we had to invent the way of representing our

prototype vectors properly. We had chosen to code vectors’

elements as a relative measure between entities’ endpoints i.e.

the distances between polygons’ vertices, as shown on Fig. 2.

Fig. 2 Representation of prototype vectors’ elements in AutoCAD

graphics system.

Thus, in a case of triangle the raw prototype vector is as

simple as
1 2(,).kv L L= We have now three state vectors to

recognize (shown as raw vectors):

0 01 02 03

1 11 12

2 21 22 23 24 25

(, ,)

(,)

(, , , ,).

v L L L

v L L

v L L L L L

=

=

=

 (17)

 From (14) we may deduce a discrete equation for the

order parameter evolution

2

(1) ()

(()) (),

k k

k k k

n n

D B n n

ξ ξ

γ λ ξ ξ

+ −

= − +
 (18)

where γ is the iteration speed and term D is according to (15).

The corresponding evolution for the case of three order

parameter is shown on Fig. 3.

Fig. 3 Evolution of order parameter equations

From Fig. 3 is seen that the system converges after twelve

L1 L2

Issue 3, Volume 6, 2012 145

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

steps, i.e. the winning order parameter becomes 1 1ξ = and

other order parameters 2 0 0.ξ ξ= = Thus, the prototype

pattern that corresponds to 1ξ will be recognized. Note that

due to the fact that the biggest initial order parameter (0)kξ

will always win the competition (in the case of balanced kλ),

the iteration (18) may be omitted and the resulted system

remarkably simplified. The learning process will be then

restricted to satisfying (10) and solving (13). If, however, we

are dealing with normalized vectors, finding of adjoint vectors

means just transposing and the whole dynamics reduces to

forming the inner products 0()T

kv q , which further reduces the

complexity of numerical computations.

 The user interface of the resulted system is shown on Fig.

4.

Fig. 4 GUI of SNN application

Fig. 5 AutoCAD graphics screen, the identified pattern is selected

The user may choose the pattern desired by selecting

respective radio button, then by pressing the action button the

system performs the recognition process and selects the

identified polygon by changing its color property (to blue), see

Fig. 5.

 The location and position of the test patterns has no effect

on the recognition results. The polygons may be rotated, or,

even overlapped on each other, the system still successfully

identifies the figures.

 On Fig. 6 the Acad text window with implemented system’s

output messages is shown.

Fig. 6 AutoCAD text window, program control messages

A. Differences from standard model

The model differs from classic Haken representations by the

following points: (8), (9) and (11). More specifically, in our

Acad model the number of patterns allowed to be bigger or

equal to the number of features .M N≥ Additionally,

numerical simulations have shown that the model works well

in situation where .M N≫

 We have omitted the condition (9) in our model, as tests

have proved it to be redundant.

 The size of the prototype vectors is different in our

implementation, thus the (11) is not satisfied. However, the

model still performs well. Here, of course, it is the number of

meaningful dimensions that is important. For a system to be

solvable, the trailing zeros should be added to vectors of

different size:

0 01 02 03

1 11 12

2 21 22 23 24 25

(, , ,0,0)

(, ,0,0,0)

(, , , ,).

v L L L

v L L

v L L L L L

=

=

=

Issue 3, Volume 6, 2012 146

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

All these modifications, while simplifying the system and

allowing for a greater flexibility, do not degrade the model’s

performance nor obscure general properties of SNN. It is

worth noting, that the recognition rate of the model so far was

100%. This could be explained e.g. by the fact that only the

noiseless patterns were used for the test vectors.

B. Tools and technologies used

AutoCAD Architecture 2008 as a main framework for the

model, VC++ 8.0, ObjectARX 2007, Eigen3, MATLAB 7.0.

C. Further research

The directions for further research connected with this

section discussion are outlined below.

In our model the balanced attention parameters were used

(according to (7)) and 1.k C Bλ = = = It is possible to use

the unbalanced attention parameter technique e.g. 1 0,6λ =

and 2 0, 4λ = . In that case the biggest value will influence the

evolution of the order parameters and it is possible for initially

smaller order parameter eventually to win the competition.

Attention parameters thus could be used as an additional

instrument to guide the selection of order parameters in

situations where selection criteria based solely on kξ values

are not sufficient. Those situations are likely to arise when

dealing with more complicated patterns and process

objectives, as e.g. in ADS structures or, just as simple, as in

treatment of vectors of different size, like (17). The

implementation of SNN in ADS, as well as the treatment of

noisy patterns, is a subject for a further research.

IV. POSSIBLE IMPLEMENTATION IN ADS

Of course, the implementation of the synergetic computer

for the recognition of simple AutoCAD entities is not the aim

of its own. Instead we want to apply these principles to the

useful recognition scenarios e.g. as a component of ADS

system. Although there are plenty of different application

possibilities that could be elaborated, let us research the one

from HVAC (Heating Ventilation Air Conditioning)

engineering domain. More specifically, we want to automate

the process of building’s outer peripheries (e.g. outer walls)

data acquisition from AutoCAD environment. To this end, we

will use the Heatloss original software developed in author’s

earlier research as a framework for software agents testing and

implementation on AutoCAD platform.

The process of the selection of outer walls of the building

clearly falls into the engineer’s creative activity class, if we

consider this process as a dynamic synergetic system. It is

quite easy for the human designer visually identify the outer

walls from other geometry on the graphic screen. For the

computer, however, it is not an easy task, if we treat all

graphical data equally in the sense of human visual perception.

This is our task to treat the underlying vector entities as

patterns, such that we could apply the principles of the self-

organization theory and use the synergetic tools described

above. Note that the same task may be solved by “traditional”

cybernetic approach methods e.g. by introducing some

additional metadata to the graphical objects in order to make it

possible for a straightforward computational identification.

Such parametrical approach is very common nowadays in

information systems design; in CAD domain it is used e.g. in

BIM (Building Information Modeling) applications.

In the following subsections we briefly explain the Heatloss

software’s related existing functionality and describe its

possible improvements by exploiting synergetic computer

properties/advantages. We will also discuss the issues of

optimal permutation selection realization of test patterns.

A. Additional functionality for HeatLoss software

The HeatLoss software is ObjectARX module that

automates the calculation of the building’s heat losses. Below

is the brief explanation of related GUI.

The Rooms tab is a main working UI of the program. It has

a grid control, which is similar to a spreadsheet by its

functionality. The grid control used in this program is very

powerful custom control. It has a rich set of different features;

most of them is not used currently in HeatLoss, but are

planned to the future releases. In the next version, for example,

we plan to add a drag-and-drop capability to the grid.

Fig. 7 HeatLoss application rooms peripheries window (Rooms

tab)

User selects type of the periphery, its ID and program brings

his immediately to the AutoCAD drawing screen (DWG)

where he picks characteristic points. Next the program

computes area of the periphery and heat loss of the room,

based on the data in the Settings tab and room’s inner

temperature and displays UI back to the user. The process

repeats. Of course it is possible to modify data in the grid and

in the tab after initial calculation is done. User may change, for

instance, number of entities, area of the periphery, U value,

inner temperature etc and program updates the heat loss value

accordingly.

Issue 3, Volume 6, 2012 147

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

We want to add to this program the additional functionality,

i.e. the ability for the system to select the outer periphery

(outer wall) on its own, using synergetic computer approach.

We shown earlier that such ability transform the conventional

CAD system into ADS system.

This can be achieved by the following. When user selects

the ID of the type of the periphery chosen, the system instead

of the prompting the user to manually select the periphery

(wall) length perform the identification process based on the

prototype patterns stored. Upon the identification, the system

acquires technical parameters of the room identified and

calculates the heat loss of this room.

One way to compare room’s characteristic vectors is to use

all possible combinations (more specifically, permutations) of

the representing distances (see Fig. 8) and to form

corresponding test vectors. The basic principle is the same as

described in section III.

Fig. 8 Representation of the room geometry as test vector elements

Here in Fig. 8 shown three leaders L1, L2, L3 drawn from

the base point BP. This combination corresponds to the

prototype pattern vector being recognized. However, in order

to get these points (distances) into comparison in AutoCAD,

we have to select all line/polyline type entities in the vicinity

of BP. Thus we will have eventually a number of different

distances from BP to the corresponding entities’ start/end

points; then we have to permute these distances such as to get

the right vector elements combination (e.g. L1, L2, L3). For

example, if we have 42 distances (i.e. 42 possible elements of

the test vector) and the prototype vector consisting of 3

elements, we will have as much as

! 42!
68880

()! (42 3)!

r

k

k
C

k r
= = =

− −
different permutations.

Therefore in order to preserve numerical computation

efficiency it is very important what kind of permutation

computation algorithm is chosen. In the next subsection we

will discuss this issue in more detail.

B. Patterns’ features selection optimization

As the computational speed in engineering applications is

quite important [6], we do not want to degrade software

performance in permutations module as well. This is

particularly important for CAD and ADS systems. That is why

ObjectARX (C++) technology is chosen for our systems’

implementation. In comparison with other AutoCAD

development technologies (VBA, .NET, AutoLisp/DCL see

e.g. [7]) ObjectARX is the most powerful IDE creating the

fastest and most compact ARX (DLL) modules available. The

processing speed of the permutation algorithm depends on the

functions and programming language constructs chosen for

one particular application. Let us review some widely used

C++ permutation algorithms/functions. We then compare them

and select the most effective (optimal) routine for our system

implementation. That is, we will perform the pattern selection

process optimization for our ADS module.

Howard Hinnant [8] has performed the tests amongst most

widely used permutation (combination) algorithms. Below is a

brief review of the results. There were 3 different approaches,

solutions A, B, and C.

Solution A.

The standard library has std::next_permutation and it is

possible trivially build a next_k_permutation from it and a

next_combination from that (Fig. 9):

template<class RandIt, class Compare>

bool next_k_permutation(RandIt first, RandIt

mid, RandIt last, Compare comp)

{

 std::sort(mid, last, std::tr1::bind(comp,

std::tr1::placeholders::_2

 ,

std::tr1::placeholders::_1));

 return std::next_permutation(first, last,

comp);

}

Fig. 9 Example code for solution A

The performance results of this solution are as follows:

N = 100, r = 5, visits = 75287520

 next_combination total = 4519.84 seconds

 next_combination per visit = 60034.3 ns

Fig. 10 The performance printout of solution A

Solution B.

This solution is developed by Hervé Brönnimann (called

Issue 3, Volume 6, 2012 148

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

N2639) and can be found at [9]. This proposal adds eight

algorithms (std::next_partial_permutation, next_combination,

next_mapping, next_repeat_combination_counts, their

counterparts std::prev_partial_permutation,

std::prev_combination, std::prev_-mapping,

std::prev_repeat_combination_counts, with their overloads)

to

the header <algorithm>, for enumerating permutations and

combinations, with and without repetitions. They mirror and

extend std::next_permutation and std::prev_permutation. For

sizes known at compile-time, these algorithms can generally be

simulated by a number of nested loops. The performance

results of this solution are shown on Fig. 11.

N = 100, r = 5, visits = 75287520

 next_combination total = 6.42602 seconds

 next_combination per visit = 85.3531 ns

Fig. 11 The performance printout of solution B

Solution C.

Finally there is a solution C found here [10]. This solution has

a different signature/style and is called for_each_combination

(for_each_permutation), and is used much like std::for_each.

The driver code between the timer calls is as follows:

Clock::time_point t0 = Clock::now();

f = for_each_combination(v.begin(), r,

v.end(), f);

Clock::time_point t1 = Clock::now();

Fig. 12 The driver code between the timer calls of solution C

The performance results of this solution are shown on Fig. 13.

N = 100, r = 5, visits = 75287520

 for_each_combination = 0.498979 seconds

 for_each_combination per visit = 6.62765

ns

Fig. 13 The performance printout of solution C

Solution C is 12.9 times faster than solution B, and over

9000 times faster than solution A.

We consider this a relatively small problem: only 75 million

visits. As the number of visits increases into the billions, the

discrepancy in the performance between these algorithms

continues to grow. Solution A is already unwieldy. Solution B

eventually becomes unwieldy. Solution C is the highest

performing algorithm to visit all combinations/permutations

author aware of.

Thus we have to choose the approach of the solution C for

our systems coding.

C. Further research

The actual implementation of the algorithms described in

this section in ADS system is left for a further research. More

specifically, this research is currently running and we obtained

some preliminary results in the realization of solution C on

AutoCAD in outer wall recognition routine. The description of

the results of the experiments is the subject of further

publications.

V. SOME GENERAL REMARKS ON THE SUBJECT

In this section the general and somewhat philosophical

remarks on the theory of ADS and modeling of the creative

part of the design process are presented.

The ongoing research in AI domain and in the field of

general technology shows that traditional methods of solving

engineering problems based on formal logic and systematical

approach shifts toward the new unrevealed, presently

undocumented features of human mind and intelligence (more

closely to the characteristics of self-organization?). There are

neural networks, which try to copy the functionality of

biological brain cells – neurons, fuzzy logic and modeling (for

a contemporary research on fuzzy dynamic systems see e.g.

[11]), expert systems, evolutionary programming/computing,

knowledge-based systems, swarm and genetic algorithms and

so on.

The routine parts of the engineering design process could be

successfully modeled with the help of cybernetics. It is really

the art of combinatorial manipulation and constructing to

fulfill the goal, using the already known or novice technology,

IT in this case. As it is based on cybernetics, it falls down to

organizational theories, contrary to self-organization paradigm,

and therefore is not connected with the subject of interest of

this paper.

Let us take a look at the notions of organization and self-

organization from the concept point of view. The concept of

organization denotes the process that leads to the rise of goal-

oriented structures due to conscious human goal-directed

action or some external ordering influence, and the concept of

self-organization would denote the process that leads to the

rise of goal-oriented structures beyond conscious human goal

directed action or some external ordering influence. Although

the term “self-organization” is widely used (and more

appropriate) in the field of synergetics, it has been utilized in

cybernetics as well. In cybernetics, however, it has different

meaning (from the philosophical point of view). In cybernetics

and systems engineering self-organization is understood as an

effect of an external ordering factor (e.g. self-organizing map

in [12]). In synergetics self-organization is understood as the

rise of harmonious behavior distinguished from man's

intervention and from external (with regard to the system)

ordering factors. External factors (e.g. strong non-equilibrium)

are indispensable for self-organization, but only as conditions,

not as ordering forces.

Hopefully, it is possible to imitate the creativity (at least to

some degree) by means of synergetic modeling. Could we

Issue 3, Volume 6, 2012 149

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

model the creative part of the (engineering) design process as

well? To answer this question we must analyze the synergetic

approach and compare it with traditional information

technology modeling instruments e.g. with cybernetics.

In cybernetics as well as in synergetics the objective

processes are modeled in order to control them. The cybernetic

models make it possible for man to strive for the desirable

results using the program created by him. The synergetic

models take into account that the programs form in the course

of self-organization [13].

All exact sciences (and also the traditional scientific

cognition) are model-based. These are exact only within that

model. Therefore it is not possible to explore/predict/study

adequately the real world by means of “exact” sciences by

definition. We can use exact sciences to explore models. CAD

systems, ADS frameworks are examples of design systems’

models. Both cybernetics and synergetics are exact sciences as

well. So we can use these disciplines only for the development

and research of models of the underlying real world’s

phenomena and not for the investigation of the real world

itself. It must be underlined that in exact sciences the approach

to the interaction between organization (management) and self-

organization does not go (and due to the specificity of exact

sciences must not go) farther from certain boundaries.

The limits mean that exact sciences in their models of

influence upon self-organization give only such

recommendations according to which the future state of an

object of management is given from the outside. Exact

sciences do not make any contribution to the opening of the

creative potential of the elements of the system [13]. So we

cannot use standalone synergetic methods (a kind of exact

science) to explore the creative potential of the system (and

self-organization). As the synergetics is exact science and is

based on mathematics, it has known limitations in its capability

to explore the real world. But still we can use it to create the

better models of the real life systems, not to understand these

systems completely. On the other hand, building more

adequate models of the environment leads to a better

understanding of the environment itself. And, therefore, may

lead us to a new level of understanding, to help us form a new

paradigm and from within it - to model even more precisely,

closely to the real world.

Synergetics better than cybernetics models the processes of

the real world which is ultimately the self-organizing system.

So we can use principles of synergetics in conjunction with

traditional computing technology to model some aspects of the

real systems. It is worth showing how creativity is understood

in synergetics. The meaning of the word creative is the

unpredictability and unavoidability of the unknown. The

creative chaos is the field of unknown and unpredictable

chances. The meaning of the word is closely related to such

concepts as non-equilibrium condition and conditions close to

equilibrium.

 Synergetics accentuates also one necessary condition of

self-organization: the order arises from chaos only under the

condition of strong non-equilibrium. It is necessary to

distinguish strictly chaos under the conditions close to

equilibrium (in which, generally speaking, self-organized

structures can only decompose) from chaos under the strongly

non-equilibrium conditions (in which composing of structures

through self-organization can take place) [13]. The former

type of chaos is non-creative, the latter is creative.

In engineering design process theory the meaning of the

words “creative” (and “creativity”) is slightly different. Here

the word “creative” denotes a non-routine part of the design

process. Contrary to the routine procedures where inputs and

outputs of the system are known or predictable, the creative

part of the process deals with output data that is mainly

unknown, although the field of possibilities (possible outputs,

similar to synergetics theory) is generally defined. This is true

in ordinary design scenarios where the ultimate goal of the

design procedure is known. When the output data of the

system is completely undefined and unknown, then we are

dealing with the system that generates some new design

information (i.e. invention mechanism). Note, that the input

data in majority of cases is defined (both in ordinary design

scenarios and in invention apparatus). The modeling of the

technical invention processes is even more complicated (if not

impossible) than imitating the creative part of the conventional

design process (i.e. the process where the field of the

possibilities of the output information is defined). There is a

hope that using the methods of synergetics and the philosophy

of self-organizing systems we can try to address the problems

of modeling creative design in a more precise and better

manner. The new science which accepts creativity based on

chance and irreversibility in nature, and considers the

fundamental indeterminacy of the whole history of nature and

of human society should evolve to acknowledge the potential

of this approach.

 Basically, we can consider a model as an idealized version

of the real system. The model is always a simpler and more

primitive than the real system. The traditional tool for creating

engineering design models nowadays is a Computer Aided

Design (CAD) system. For a creation of a new CAD system

we use CAD programming. Thus, CAD programming is

essentially construction of the model (computer program) for

the model (CAD application) of a model (engineering design,

project) of the system (e.g. engineering installation). Such

models’ cascading occurs e.g. in a case when we are

programming under some existing CAD platform, let’s say

under AutoCAD. On this level of abstraction the model itself

is very precise (it is nested into surrounding model etc.) and

perfectly describable by mathematics.

The aim is to try to add to this model the

properties/specifications of the self-organizing systems’

behaviors. The author does not really think that the model will

be capable of substituting the engineer completely in the

process of producing creative design. But there is a hope that

the model built in the spirit of synergetics could facilitate the

emergence of the elements of the creativity in engineering

Issue 3, Volume 6, 2012 150

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

design in which the human participates as well. It is likely that

these models in cooperation with the operator (engineer) can

function more effectively in creating new designs.

VI. CONCLUSION

This paper describes the results of the synergetic computer

implementation on AutoCAD platform.

 A number of useful modifications to the standard model

were committed, tested and successfully implemented in the

form of AutoCAD application. This is the first documented

usage of SNN on AutoCAD platform.

 The presented research constitutes another step to the

development and research of the fully functional Autonomous

Design System (ADS).

 Synergetic computer has one major advantage, compared

to the traditional neural computers, namely, there are no so-

called pseudo-states, into which the system could be trapped

in. It may be proved that besides the prototype vectors there

are no other attractors. In addition, the functionality of SNN,

especially pattern recognition mechanism and treatment of

ambiguous and noisy patterns closely resembles the

functionality of biological neural systems, including human

brain [14]. This point supports the whole philosophical study

of the self-organization phenomenon and is the main reason

for selecting synergetic computer approach for ADS

implementation.

A closer look on the problem of adding synergetic ADS

functionality to the existing HVAC CAD application was

taken. The technical part of the implementation of C++

permutation functionality and its performance considerations

as part of the currently developing ADS system was discussed.

We also gave a short philosophical outlook on the problem

of modeling the engineering creativity in ADS.

REFERENCES

[1] H. Haken, H. Knyazeva, “Arbitrariness in nature: synergetics and

evolutionary laws of prohibition,” Journal for General Philosophy of

Science, No.31, 2000, pp. 57–73.

[2] H. Haken, Synergetics. Introduction and advanced topics, Springer,

2004.

[3] Hermann Haken, Brain Dynamics. An Introduction to Models and

Simulations, Second Edition, Springer, 2008

[4] H. Haken, Synergetic Computers and Cognition. A Top-Down

Approach to Neural Nets, Springer, 2004.

[5] Lucia-Antoneta Chicos, Gheorghe Oancea, Camil Lancea, Daniel

Bancila, “Software system of integrated and simultaneous engineering,”

in Proc. 10th WSEAS International Conference on Applied Computer

Science (ACS '10), Iwate Prefectural University, Japan, 2010, pp. 238–

241.

[6] Cosmin Marian Poteras, Mihai Mocanu and Constantin Petrişors, “A

Distributed Design for Computational Steering with High Availability

of Data”, International Journal Of Systems Applications, Engenering &

Development, (NAUN), Issue 1, Volume 6, 2012, pp. 52–61.

[7] Sever Alexandru HABA, Gheorghe OANCEA, Anisor NEDELCU,

“Data Exchange Software Module between AutoCAD and CATIA

Environments,” in Proc. 11th WSEAS International Conference on

Systems Theory And Scientific Computation (ISTASC '11), Florence,

Italy, August 23-25, 2011, ISBN: 978-1-61804-027-5, pp. 134–137.

[8] Howard Hinnant. (2012, May 10). Stackoverflow C++ discussion.

[Online].Available:

http://stackoverflow.com/questions/2211915/combination-and-

permutation-in-c

[9] Hervé Brönnimann. (2012, May 10). Algorithms for permutations and

combinations, with and without repetitions. [Online].Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2639.pdf

[10] Howard Hinnant. (2012, May 12). Combinations and Permutations.

[Online].Available:

http://home.roadrunner.com/~hinnant/combinations.html

[11] Nikos Mastorakis, Olga Avramenko, “Fuzzy models of the dynamic

systems for evolution of populations,” in Proc. 3rd WSEAS

International Conference on Mathematical Biology and Ecology, Gold

Coast, Queensland, Australia, 2007, pp. 27–32

[12] Supakit Siripanadorn, Wipawee Hattagam, Neung Teaumroong,

“Anomaly detection using self-organizing map and wavelets in wireless

sensor networks,” in Proc. 10th WSEAS International Conference on

Applied Computer Science (ACS '10), Iwate Prefectural University,

Japan, 2010, pp. 291–297.

[13] Leo Näpinen, “Philosophical Foundations of Synergetic Modelling,”

Proceedings of the Estonian Academy of Sciences. Humanities and

Social Sciences, Vol.4, No.42, 1993, pp. 378–390.

[14] D. Loginov, “Synergetic Modelling – Application Possibilities in

Engineering Design,” in Proc. 10th WSEAS International Conference

on System Science and Simulation in Engineering (ICOSSSE '10), Iwate

Prefectural University, Japan, 2010, pp. 111–116.

Issue 3, Volume 6, 2012 151

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

