
 

 

  

Abstract— Starting from the basic identity-encryption, were 

proposed by the other authors. The models were assumed in the 

random oracle model with a variant of the computational Diffie-

Hellman problem. In our paper we propose a new variant of Identity-

Based Encryption (IBE), using elliptic curves schemes and prove his 

security completeness. Also, we are doing a complete description of 

the necessary system used in present scheme in order to secure a 

communication. The performance of our system is comparable to the 

performance of ElGamal encryption in F*p and the security of the 

system is based on the elliptic curve calculus intractability. 

 

Keywords— Identity-Based Encryption, Diffie-Hellman 
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I. INTRODUCTION 

 

There have developed security algorithms of information 

based on making the Public Key System which has an 

equivalent in an identity system [6]. Initially, this system was 

created in order to assure the confidentiality of the 

communication between the members in a group who knows 

identity information of that who want to communicate. This is, 

for example, the email address, the surname, the first name, a 

code on the identity card, etc. So, this kind of scheme has: 

Setup: generate the control parameters in order to identify 

the users and create the master key. Extract: it uses the master 

key in order to generate the private key corresponding to 

public key that was generated in function of the Identity String 

(IS). Encrypt: the description of the encryption algorithm that 

will be applied on the plain text. It will use the public key. 

Decrypt:  the decryption algorithm of the ciphered message. It 

will use the corresponding private key.  

Many of other proposed schemes use an important quantity 

of processor-time [4, 8, 7, 5] to calculate the private key, or 

they consider a dedicated hardware as being preexistent. 

To describe our model in this work, we’ll first illustrate a 

general model of the scheme. This model is based on the 

creation of the public key which is not necessary to be taken 

from a server. By convention, it considers the public key is 

made by the concatenation of the complete name of the 

receiver and the current week. So, we obtain IS (Identity 

String). It will create an algorithm which transforms some kind 

of string in a key and this key will become the encryption 
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public key used to encrypt the plain text and it will be sent by 

communication channel.  

The data transferred from one system to another over public 

network can be protected by the method of encryption. On 

encryption the data is encrypted/scrambled by any encryption 

algorithm using the ‘key’. Only the user having the access to 

the same ‘key’ can decrypt/de-scramble the encrypted data. 

This method is known as private key or symmetric key 

cryptography. There are several standard symmetric key 

algorithms defined. Examples are AES, 3DES etc. These 

standard symmetric algorithms defined are proven to be highly 

secured and time tested. But the problem with these algorithms 

is the key exchange. The communicating parties require a 

shared secret, ‘key’, to be exchanged between them to have a 

secured communication. The security of the symmetric key 

algorithm depends on the secrecy of the key. Keys are 

typically hundreds of bits in length, depending on the 

algorithm used. Since there may be number of intermediate 

points between the communicating parties through which the 

data passes, these keys cannot exchange online in a secured 

manner. In a large network, where there are hundreds of 

system connected, offline key exchange seems too difficult and 

even unrealistic. This is where public key cryptography comes 

to help. Using public key algorithm a shared secret can be 

established online between communicating parties without the 

need for exchanging any secret data. 

In public key cryptography each user or the device taking 

part in the communication have a pair of keys, a public key 

and a private key, and a set of operations associated with the 

keys to do the cryptographic operations. Only the particular 

user/device knows the private key whereas the public key is 

distributed to all users/devices taking part in the 

communication. Since the knowledge of public key does not 

compromise the security of the algorithms, it can be easily 

exchanged online. 

A shared secret can be established between two 

communicating parties online by exchanging only public keys 

and public constants if any. Any third party, who has access 

only to the exchanged public information, will not be able to 

calculate the shared secret unless it has access to the private 

key of any of the communicating parties.  

The receiver will solicit the private key from the Public Key 

Generator (PKG). This private key is corresponding with the 

public key that is characteristic to this user (receiver). The 

decryption will be produced with this key, so Public Key 

Differentiated access based on cryptographic 

methods 

Gheorghe Grigoraş, Dana Dănciulescu and Nicolae Constantinescu 

Issue 3, Volume 6, 2012 152

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

Generator holds the control of all the decryption keys and the 

public keys associated with every user. To communicate with 

Public Key Generator, any participant has a secret code that is 

also known by the PKG. It is used to assure the Challenge-

Response algorithm in order to make the secure 

communication between PKG and any participant. 

 

A. One-way function 

In public key cryptography, keys and messages are 

expressed numerically and the operations are expressed 

mathematically. The private and public key of a device is 

related by the mathematical function called the one-way 

function. One-way functions are mathematical functions in 

which the forward operation can be done easily but the reverse 

operation is so difficult that it is practically impossible. In 

public key cryptography the public key is calculated using 

private key on the forward operation of the one-way function. 

Obtaining of private key from the public key is a reverse 

operation. If the reverse operation can be done easily, that is if 

the private key is obtained from the public key and other 

public data, then the public key algorithm for the particular 

key is cracked. The reverse operation gets difficult as the key 

size increases. The public key algorithms operate on 

sufficiently large numbers to make the reverse operation 

practically impossible and thus make the system secure. For 

e.g. RSA algorithm operates on large numbers of thousands of 

bits long. 

 

B.       Key Agreement 

Key agreement is a method in which the device 

communicating in the network establishes a shared secret 

between them without exchanging any secret data. In this 

method the devices that need to establish shared secret 

between them exchange their public keys. Both the devices on 

receiving the other device’s public key perform key generation 

operation using its private key to obtain the shared secret. 

As we see in the previous section the public keys are 

generated using private key and other shared constants. Let P 

be the private key of a device and U(P, C) be the public key. 

Since public key is generated using private key, the 

representation U(P, C) shows that the public key contain the 

components of private key P and some constants C where C is 

known by all the device taking part in the communication. 

Consider two devices A and B. Let PA and UA(PA, C) be the 

private key and public key of device A, and PB and UB(PB, C) 

be the private key and public key of device B respectively. 

Both device exchanges their public keys. 

Device A, having got the public key of B, uses its private 

key to calculate shared secret: 

KA=Generate_Key(PA, UB(PB, C)) 

Device B, having got the public key of A, uses its private 

key to calculate the shared secret 

KB=Generate_Key(PB, UA(PA, C)) 

 

 
Figure 1. Key Agreement 

 

The key generation algorithm ‘Generate_Key’ will be such 

that the generated keys at the device A and B will be the same, 

that is shared secret KA=KB=K(PA, PB, C). 

Since it is practically impossible to obtain private key from 

the public key any middleman, having access only to the 

public keys UA(PA, C) and   UB(PB, C), will never be able to 

obtain the shared secret K. Examples of key agreement 

algorithms are DH, RSA and ECDH. 

During the key exchange process the public keys may pass 

through different intermediate points. Any middleman can thus 

tamper or change the public keys to its public key. Therefore 

for establishing shared secret it is important that device A 

receives the correct public key from device B and vice versa. 

 

II The RSA Algorithm 

 

One of the biggest problems in cryptography is the 

distribution of keys. Suppose you live in the United States and 

want to pass information secretly to your friend in Europe. If 

you truly want to keep the information secret, you need to 

agree on some sort of key that you and he can use to 

encode/decode messages. But you don’t want to keep using the 

same key, or you will make it easier and easier for others to 

crack your cipher. But it’s also a pain to get keys to your 

friend. If you mail them, they might be stolen. If you send 

them cryptographically, and someone has broken your code, 

that person will also have the next key. If you have to go to 

Europe regularly to hand-deliver the next key, that is also 

expensive. If you hire some courier to deliver the new key, you 

have to trust the courier, et cetera. 

 

A  Trap-Door Ciphers 

But imagine the following situation. Suppose you have a 

special method of encoding and decoding that is “one way” in 

a sense. Imagine that the encoding is easy to do, but decoding 

is very difficult. Then anyone in the world can encode a 

message, but only one person can decode it. Such methods 

exist, and they are called “one way ciphers” or “trap door 

ciphers”. 

Here’s how they work. For each cipher, there is a key for 

encoding and a different key for decoding. If you know the key 

for decoding, it is very easy to make the key for encoding, but 

it is almost impossible to do the opposite—to start with the 

encoding key and work out the decoding key. So to 

communicate with your friend in Europe, each of you has a 

trap door cipher. You make up a decoding key Da and generate 

the corresponding encoding key Ea. Your friend does exactly 

the same thing, but he makes up a decoding key Db and 
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generates the corresponding encoding key Eb. You tell him Ea 

(but not Da) and he tells you Eb (but not Db). Then you can 

send him messages by encoding using Eb (which only he can 

decode) and vice versa—he encodes messages to you using Ea 

(which only you can decode, since you’re the only person with 

access to Da). Now if you want to change to a new key, it is no 

big problem. Just make up new pairs and exchange the 

encoding keys. If the encoding keys are stolen, it’s not a big 

deal. The person who steals them can only encode messages—

they can’t decode them. In fact, the encoding keys (sometimes 

called “public keys”) could just be published in a well-known 

location. 

 

B  Certification 

There is, of course, a problem with the scheme above. Since 

the public keys are really public, anyone can “forge” a 

message to you. So your enemy can pretend to be your friend 

and send you a message just like your friend can—they both 

have access to the public key. Your enemy’s information can 

completely mislead you. So how can you be certain that a 

message that says it is from your friend is really from your 

friend? 

Here is one way to do it, assuming that you both have the 

public and private keys Ea, Eb, Da, and Db as discussed in the 

previous section. Suppose I wish to send my friend a message 

that only he can read, but in such a way that he is certain that 

the message is from me. Here’s how to do it. I will take my 

name, and pretend that it is an encoded message, and decode it 

using Da. I am the only person who can do this, since I am the 

only person who knows Da. Then I include that text in the real 

message I wish to send, and I encode the whole mess using Eb, 

which only my friend knows how to decode.  

When he receives it, he will decode it using Db, and he will 

have a message with an additional piece of what looks to him 

like junk characters. The junk characters are what I got by 

“decoding” my name. So he simply encodes the junk using my 

public key Ea and makes certain that it is my name. Since I am 

the only one who knows how to make text that will encode to 

my name, he knows the message is from me. You can encode 

any text for certification, and in fact, you should probably 

change it with each message, but it’s easy to do.  

 

C  RSA Encryption 

Previously we described what a trap-door cipher means, 

further on we will see how one is made. The most used cipher 

of this form is “RSA Encryption” which will be described in 

this chapter. I will find two huge prime numbers, p and q that 

have 100 or maybe 200 digits each. I will keep those two 

numbers secret (they are my private key), and I will multiply 

them together to make a number N = pq. That number N is 

basically my public key. It is relatively easy for me to get N; I 

just need to multiply my two numbers. But if you know N, it is 

basically impossible for you to find p and q. To get them, you 

need to factor N, which seems to be an incredibly difficult 

problem. 

But exactly how is N used to encode a message, and how are 

p and q used to decode it? Below is presented a complete 

example, but I will use tiny prime numbers so it is easy to 

follow the arithmetic. In a real RSA encryption system, keep in 

mind that the prime numbers are huge. 

In the following example, suppose that person A wants to 

make a public key, and that person B wants to use that key to 

send A a message. In this example, we will suppose that the 

message A sends to B is just a number. We assume that A and 

B have agreed on a method to encode text as numbers. Here 

are the steps: 

1. Person A selects two prime numbers. We will use p = 23 

and q = 41 for this example, but keep in mind that the real 

numbers person A should use should be much larger. 

2. Person A multiplies p and q together to get pq = (23)(41) 

= 943. 943 is the “public key”, which he tells to person B (and 

to the rest of the world, if he wishes). 

3. Person A also chooses another number e which must be 

relatively prime to (p −1)(q − 1). In this case, (p − 1)(q − 1) = 

(22)(40) = 880, so e = 7 is fine. e is also part of the public 

key, so B also is told the value of e. 

4. Now B knows enough to encode a message to A. 

Suppose, for this example, that the message is the number M = 

35. 

5. B calculates the value of C = Me(mod N) = 357(mod 

943). 

6. 35
7
 = 64339296875 and 64339296875(mod 943) = 545. 

The number 545 is the encoding that B sends to A. 

7. Now A wants to decode 545. To do so, he needs to find a 

number d such that  

ed = 1(mod (p −1)(q − 1)), or in this case, such that 7d = 

1(mod 880). A solution is d = 503, since 7*503 = 3521 = 

4(880) + 1 = 1(mod 880). 

8. To find the decoding, A must calculate C
d
(mod N) = 

545
503

(mod 943). This looks like it will be a horrible 

calculation, and at first it seems like it is, but notice that 

 503 = 256+128+64+32+16+4+2+1 (this is just the binary 

expansion of 503). So this means that: 

545
503

=545
256+128+64+32+16+4+2+1

=545
256

545
128

 ... 545
1
 

But since we only care about the result (mod 943), we can 

calculate all the partial results in that modulus, and by repeated 

squaring of 545, we can get all the exponents that are powers 

of 2. For example, 545
2
(mod 943) = 545 · 545 = 297025(mod 

943) = 923. Then square again: 545
4
(mod 943) = 

(545
2
)

2
(mod 943) = 923 · 923 = 851929(mod 943) = 400, 

and so on. We obtain the following table: 

 

545
1
(mod 943) = 545 

545
2
(mod 943) = 923 

545
4
(mod 943) = 400 

545
8
(mod 943) = 633 

545
16

(mod 943) = 857 

545
32

(mod 943) = 795 

545
64

(mod 943) = 215 

545
128

(mod 943) = 18 
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545
256

(mod 943) = 324 

 

So the result we want is: 

 

545
503

(mod943)=324·18·215·795·857·400·923·545(mod 

943) = 35. 

 

Using this tedious (but simple for a computer) calculation, A 

can decode B’s message and obtain the original message N = 

35. 

 

D  RSA Key Generation 

The RSA algorithm [10] has gained widespread use in the 

software industry and it is utilized by more and more people 

each year. RSA key pairs are the basis for ensuring both the 

privacy of data in RSA ciphertexts as well as the non-

repudiability of digitally signed messages. However, the 

security of these basic functionalities rests on the honest and 

correct generation of RSA key pairs. 

There are many subtle security issues surrounding the 

generation and use of RSA keys. For example, there are 

instances in which a malicious user may deliberately try to 

generate and certify a weak public key. The user can choose 

the prime p in the RSA public key n = pq such that p-1 is 

smooth (a smooth integer has no large prime divisors). This 

allows anyone to factor n using Pollard’s p-1 factoring 

algorithm [11]. The notion of generating a weak key may 

appear counter-intuitive to many readers. Why would anyone 

ever want to do a thing like that? The reasons for doing it are 

many. Perhaps the biggest reason for doing so is to be able to 

back out of a contract if business begins to turn south. By 

certifying a “weak” RSA public key, the signer will be in a 

position down the road to repudiate any and all digital 

signatures that were created using the corresponding private 

key. This can be argued on mathematical grounds in a court of 

law since a weak key is a key that can be factored by anyone. 

Hence, everyone has the ability to produce signatures using the 

weak key pair. Weak keys are particularly attractive to a 

malicious user when the existence of the weakness is not 

readily apparent, since in this case another user is not likely to 

produce forgeries under the malicious user’s name.  

However, to avoid being blamed for deliberately generating 

a weak key, the signer would have to convince a disinterested 

third party (such as a judge) that the use of the weak key was 

not deliberate. This is a challenge since it must be proven that 

a trustworthy key generation algorithm was used and that it 

was not tampered with. When RSA keys are generated 

randomly, the probability that a key is weak is already very 

small, and the use of strong primes reduces the risk even more. 

Strong primes have certain properties that make the product n 

hard to factor by specific factoring methods. Such properties 

include the existence of a large prime factor of p-1 and a large 

prime factor of p+1. This is one of the issues in the strong 

primes debate. Why else would a user want to certify a weak 

key? 

Consider the possibility of political insurgency. A person 

from country A starts working for the government in country B 

and acts under cover. The person certifies a weak public key 

and uses it to store, receive, and transmit (in key exchange 

protocols) highly sensitive information. This has the potential 

to severely damage country B. Also, an “innocent” weakness 

in the key could get the person off the hook if he or she is 

accused. Of course, a simpler approach to the problem is for a 

malicious user to simply publish his or her private key in some 

inconspicuous fashion. The user would later point out the 

location of the private key and state that anyone could have 

obtained it. However, this argument is not likely to hold up in 

court. One would have to assess the probability that the private 

key would show up naturally, without the intervention of the 

key owner, and the chances of this are very small indeed. In 

truth weak keys are not likely to be generated, even when the 

simplest methods for generating RSA keys is used. However, it 

is possible using simple RSA key generation. So, a malicious 

user can try to make the case that, e.g., p-1 just happened to be 

smooth. These issues illustrate the importance of being able to 

validate RSA keys [12]. Even an honest user may generate and 

use an easily factorable RSA public key without realizing it. 

This happens when a malicious insider, such as the 

programmer that creates the RSA key generation device, 

inserts a backdoor that lets the insider obtain the user’s private 

key. The reasons why a programmer would want to insert such 

a backdoor are obvious. It would permit the programmer to 

gain illicit access to encrypted information such as e-mails, 

secure socket connections, and so forth, and would also allow 

the programmer to impersonate users (e.g., forging signatures 

of other users, accessing the accounts of other users, etc.). 

The scope of the problem is by no means specific to RSA. 

Backdoor attacks have been shown to exist in Diffie-Hellman, 

ElGamal, DSA, elliptic curve cryptosystems, and more. The 

scope of the problem is not limited to insider attacks either. An 

outsider is often in a position to insert a backdoor as well. 

Malicious software such as viruses and worms can insert a 

backdoor as part of their payload. The scope of this problem is 

immense, especially considering the fact that a backdoor can 

often be exploited in a completely covert way. For instance, 

when the attacker simply reads information but does not 

modify information it is often difficult to detect that the attack 

is even occurring. A tamper-resistant microchip is an ideal 

medium for planting a backdoor, since by its very nature the 

backdoor is well-hidden. Even when a key generation 

algorithm is implemented in software, the program is 

effectively a “black-box” in the eyes of the average user, since 

a deep understanding of mathematics as well as the underlying 

assembly language is necessary to discern the true nature of 

the program. 

 

E  Proving the Form of n=pq 

When an RSA key generation device outputs two RSA 

primes, the key owner can perform rather simple tests on the 

correctness of the outputs. For instance, the key owner can 
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check that p and q are primes, that they are the correct size, 

etc. However, for ensuring nonrepudiability it is necessary that 

other users be convinced as well that n = pq was generated 

properly. The purpose is to convince others that n is not 

“weak” and that there is no backdoor in use. This is a 

challenging problem since it is often the case that only the key 

holder is allowed to know p and q. Certain properties relating 

to the correctness of RSA key generation can be verified 

simply be performing computations on n. For instance, it can 

be publicly verified that: n is not prime, n is not divisible by 

small primes, and that n is not a perfect power (see for sieving 

algorithms). Performing these checks is a good measure, since 

a weak key such as n=p
2
q

2
 will be readily discovered. These 

verifications help to show that n was properly generated, but 

they are not sufficient. For example, when a 1024-bit key n is 

generated these verifications will not detect the case that p is 

160 bits in length and q is 864 bits in length. One way that a 

black-box key generation implementation can prove these 

more complex assertions regarding n is to utilize non-

interactive zero-knowledge proof systems. In a nutshell, a non-

interactive zero-knowledge proof system consists of a proof 

generating algorithm and a corresponding verification 

algorithm. 

The proof generating algorithm proves some type of 

assertion regarding a problem instance. For instance, the 

problem instance may be an integer n and the assertion may be 

that n is the product of two distinct prime numbers. The output 

of the proof generating algorithm is a data file that is typically 

anywhere from 40 kilobytes to over a 100 kilobytes in size. 

The data file has the property that it reveals nothing about the 

secrets associated with the problem instance (e.g., it does not 

expose p or q). The verification algorithm takes this file and 

the problem instance as input and verifies whether or not the 

file is valid. A valid file implies that the assertion holds with 

overwhelming probability. Several such proof systems can be 

utilized to prove the form of n. These proof systems are the 

subject of this section. The following are some well-known 

zero-knowledge interactive protocols that show various 

properties of n. All of these protocols can be converted into 

non-interactive zero-knowledge proof systems. Peralta and van 

de Graaf presented a 

 protocol that proves in perfect zero-knowledge that n is a 

Blum integer [13]. They define the set of Blum integers to be 

integers of the form n=p
r
q

s
 where p, q ≡ 3 mod 4, r and s are 

odd, and p and q are prime. A zero-knowledge protocol has 

been given that proves that n is square-free. Recall that an 

integer n is said to be square-free if m
2
 does not evenly divide 

n for any m > 1. The protocol utilizes a parameter k that 

signifies the number of rounds in the protocol. By making k 

large enough, a cheating prover has a negligible chance of 

convincing the verifier that n is square-free when in fact it is 

not. A protocol that proves that n is a Blum integer combined 

with a protocol that proves that n is square-free proves that n is 

contained in the subset of Blum integers characterized by r = s 

= 1. Zero-knowledge protocols have been developed that 

prove surprisingly complicated facts about n. For instance, a 

statistical limited-knowledge protocol (that leaks very little 

information) has been given that proves that n is the product of 

two primes that are nearly equal in size, assuming that n has 

already been proven to be the product of two distinct primes 

[14]. A statistical zero-knowledge protocol has been given that 

proves that n is the product of two quasi-safe primes [15]. 

Finally, there is a zero-knowledge protocol that proves that n 

is the product of two safe primes. This last protocol is 

asymptotically efficient but would be cumbersome to utilize in 

practice. 

An interesting open question regarding Blum integers is the 

following. Is there a probabilistic (or deterministic) algorithm 

for deciding whether or not n is a Blum integer? The existence 

of such a predicate would eliminate the need for a zero-

knowledge proof that n is a Blum integer. These algorithms 

and protocols that prove various properties of n are helpful 

since they prove that there are no obvious weaknesses in the 

structure of n. However, they do not sufficiently protect 

against various forms of abuse. There is a wealth of literature 

surrounding the abuse of key generation algorithms, digital 

signature algorithms, and so on. These abuses are the subject 

of the next section. 

 

F  Cryptographic Abuses of RSA Key Generation 

Gus Simmons initiated the investigation of abuses that 

involve clandestine information leakage within the context of 

cryptographic algorithms and protocols. The classic problem 

that demonstrates this type of abuse is known as the Prisoner’s 

Problem. In the prisoner’s problem, two prisoners are allowed 

to communicate to each other but are not allowed to send 

encrypted messages to each other. They are only permitted to 

exchange public keys and digitally sign their messages. The 

problem is to devise a way, using the digital signature 

algorithm in question, for the two prisoners to communicate 

secretly with each other through digital signatures in such a 

way that the warden cannot detect or read the subliminal 

messages. Such a communications channel is called a 

subliminal channel. 

Yvo Desmedt noted that a subliminal channel exists in 

composites, and that use of this channel constitutes an abuse of 

RSA key generation. One way to implement a subliminal 

channel in composites is as follows. A subliminal message ms 

and a checksum t of ms are concatenated together (denoted by 

ms || t). The resulting string is asymmetrically encrypted using 

the public key of the recipient of ms. The asymmetric 

cryptosystem must be probabilistic to ensure that c is 

pseudorandom. Let c be the resulting ciphertext. A random 

prime p and a random pad RND are chosen. 

The quotient q and remainder r are then solved for in c || 

RND = pq + r. If q is composite then this process is repeated. 

When q is prime, the public key is n = pq = (c || RND)−r. At 

worst a borrow bit will be taken from c, but this can be 

rectified. The subliminal message ms is recovered by 

decrypting c and c+1 and verifying which of the two 
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checksums is correct. Note that the security parameter for c is 

half of the value of the security parameter for n. This approach 

is based on kleptography [16][17]. 

The subliminal channel in composites can be used to let one 

prisoner communicate secretly with another (although they 

have to keep generating new keys to keep communicating this 

way). Therefore, typical RSA key generation is subject to 

information leakage abuse by inmates. RSA key generation is 

also subject to abuse by malicious insiders. Consider the 

following rather simple attack. The attacker, who is the 

programmer that is creating the RSA key generation algorithm, 

stores a secret seed in the key generation algorithm and the 

algorithm supplies this seed to pseudorandom number 

generator. The fact that the seed is chosen uniformly at random 

and is “secure” leads to a cryptographically secure 

pseudorandom bit sequence. This sequence is known to the 

attacker and can be the sole source of randomness for deriving 

output pairs (p, q). The attack amounts to replacing the 

“honest” random sequence that is inherent to a probabilistic 

Turing machine with a “dishonest” pseudorandom sequence 

that is completely reconstructable by the insider. An RSA key 

pair that is compromised in this way allows the insider to read 

anything encrypted using the user’s public key, and allows the 

insider to forge any signed document on behalf of the user. 

This type of attack is a very general one, since it can be 

applied to any probabilistic algorithm, not just cryptographic 

ones. Research has been conducted to investigate insider 

attacks against cryptographic algorithms with the specific goal 

of making the attacks robust from the attacker’s perspective. 

This type of attack is far more attractive to an attacker than 

generating a “weak” key that can be exploited by anyone. The 

goal in this type of attack is to plant a backdoor in the key 

generation algorithm that: (1) generates keys that are 

indistinguishable from “normal” keys, (2) is robust against 

reverse-engineering, and (3) generates keys that are 

cryptographically secure with respect to everyone except the 

attacker. This type of attack gives the attacker an exclusive 

advantage. 

It has been shown how to use the notion of a subliminal 

channel to mount this type of attack against RSA key 

generation. The attack makes use of the subliminal channel in 

composites n = pq where n is a W-bit quantity. The intuition 

behind the insider attack is as follows. If there were a way to 

display randomly generated information in the bit 

representation of n = pq such that: (1) only the insider can 

access the information, (2) only the insider can detect that the 

information is there, and (3) the information allows the insider 

to factor n, then a robust attack against RSA key generation 

would exist. The fact that the information is randomly 

generated each time that a key pair is generated provides 

security going forward with respect to a passive reverse-

engineer. 

A heuristic version of this attack is as follows. 

It makes use of a pseudorandom number generator 

(PRNG) denoted by G. The insider places his or her 

own public key in the device. This key is used to compute c 

in the subliminal channel. The device chooses ms randomly. It 

then computes the pseudorandom bit sequence G(ms). The bits 

in this sequence are considered W/2 bits at a time. The first 

such sequence that is a W/2-bit prime becomes p. If p leads to 

a prime value for the quotient q in the channel, then n = (c || 

RND)−1 is output as the user’s public key. The insider obtains 

this public key from a CA, for instance. The insider then uses 

his or her own private key to obtain ms. Given ms it is then 

straightforward to recover p and factor n. The attack is robust 

against reverse-engineering since only the public key of the 

insider, not the corresponding private key, is revealed upon 

inspecting the RSA key generation code. Furthermore, 

compromised composites are computationally 

indistinguishable from uncompromised composites under 

reasonable intractability assumptions, thus assuring that no one 

will ever know that the attack is being carried out [16][17]. 

This type of attack is called a secretly embedded trapdoor 

with universal protection (SETUP). The attacker’s public key 

is the secretly embedded trapdoor. The advantage of a SETUP 

attack over using a fixed pseudorandom bit sequence is that it 

provides secrecy going forward. That is, even if the key 

generation device is reverse-engineered and its state is 

revealed, it will not help the reverse-engineer factor the future 

(or even past) RSA keys that are produced. This is because the 

seed ms is chosen randomly each time that the key generation 

algorithm is invoked. This is of particular importance in 

software implementations in which each user obtains the exact 

same copy of the key generation software. These types of 

attacks are by no means unique to RSA key generation. In 

addition they have been shown to exist in discrete-logarithm 

based cryptosystems. A SETUP attack has been shown against 

the Diffie-Hellman key exchange that leaks one of the two 

Diffie-Hellman exponents. An attack has been shown against 

the Digital Signature Algorithm that leaks the private key, and 

other attacks have been shown as well. 

 

G  Curbing Abuses of Cryptosystems 

The standard approach to mitigating insider abuse in a 

cryptographic algorithm is to prevent the algorithm from 

having the luxury of controlling the final randomness that is 

used to derive the output values. This is enforced by requiring 

the use of a protocol to perform the computation, as opposed 

to a stand-alone algorithm. Gus Simmons introduced the idea 

of using randomization to destroy subliminal channels. To 

destroy a particular subliminal channel that was identified, 

Simmons has the warden generate a random number x ∈ Rn 

(the ring of residues modulo n) and modify the message that 

was being sent from one prisoner to the other prisoner using x. 

For other early results that use randomization to eliminate 

subliminal channels.  

To address the problem of key generation abuse, Desmedt 

investigated abuse-free ways of generating key pairs. His 

protocol is outlined within the context of the prisoner’s 

problem, but applies to other abuses as well such as the 
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previously mentioned attack that uses a pseudorandom number 

generator. In this protocol an inmate Alice and a warden 

jointly generate a key pair such that only Alice knows the 

private key and such that the warden is convinced that no form 

of abuse is occurring. 

A high-level description of this protocol is as follows. Alice 

commits to a random string ra  and the warden sends Alice a 

random string rw. Alice performs the bitwise exclusive-or 

operation to obtain the random string r = ra ⊕ rw. If r does not 

satisfy the properties needed to make the key pair (e.g., it does 

not lead to two RSA primes) then Alice reveals ra to the 

warden. If r does lead to a proper public key, then Alice 

proves this in zero-knowledge. The overhead of this zero-

knowledge protocol is substantial in practice since it relies on 

a very general zero-knowledge interactive protocol 

construction. 

 

III A new proposed encryption scheme 

 

In this part of article we describe the modality of secure 

information that will be transferred to another participant 

trough the communication channel. This scheme has four 

parts: 

Setup 

Every participant of the group has a control key, a personal 

parameter noted ID, known by himself and by the Public Key 

Generator. It is used to assure the secure communication 

between him and PKG. 

Extract 

Using the personal parameter ID and a message key it will 

communicate the private key for the participant. The private 

key will be generated by the Public Key Generator at the 

request of a participant authenticated by an ID. 

Encryption 

Another participant, using the transformation algorithm of a 

string (IS) in a public key 
{ }*

1,0∈pk
 will encrypt the plain 

text with this key and the cipher text such obtained will be 

transferred by the communication channel.  

Decryption 

Using the private key, obtained from the Public Key 

Generator, one participant will decrypt a message that is 

destined for him. 

As we have already discussed, the algorithm used to obtain 

the private key from the Public Key Generator is a Challenge-

Response type. Therefore, for its construction we’ll use, in the 

same way like in [3, 2] the following phases: 

Definition  

The expression 13 +x  is a permutation of pF
, where E  

is an elliptic curve given by the equation 
132 += xy

, 

defined over pF
, and p is a prime number which satisfy 

16 −= qp
, where q is a prime number, 

3>q
. 

Let be pFEP /∈
 a generator in a group of points of 

order
( ) 6/1+= pq

.  

Choice 

Let be a point pFy ∈0 , there is an unique point 0x
, so that 

( ) pFEyx /, 00 ∈
 

Transformation 

Let be 
21

p
F∈+ ζ

 a solution of the 

equation
px mod013 =−

. A transformation equation 

( ) ( )yxyx ,, ζφ =
 is an automorphism of groups on the 

elliptic curve E . If 
( ) pFEyxP /, ∈=

 

then
( ) 2/

p
FEP ∈φ

, but
( ) pFEP /∉φ

. Determination 

The points 
( )PP φ,

 generate an isomorphic 

group qq ZZ ×
. We note this group of points as being

[ ]qE
. 

These points can be calculated like in [3, 2]. 

Transformation IS-PK 

The public key which will encrypt the plain text is made 

from a string obtained through the concatenation between the 

complete name of the receiver and the current weak. As we 

have a string, it is necessary to transform it in a key, PK. For 

this, at the beginning, we code the string (in accordance with 

ASCII) to obtain
( ) { }*1 1,0∈IS

.  Using a cryptographic 

function, denoted here H, with
{ } .1,0:

*

pFH →
, we’ll 

construct the point Q: 0y
 will be equal with 

( )( )1ISH
 and 

( ) ( )( )
pyyx

p
mod11

3/122

0

3/12

00

−
−=−=

. So that, 

( ) pFEyxQ /, 00 ∈=
, and we’ll compute 

( ) QQ
IS

61 =
 in 

order to obtain the necessary order for Q (this is denoted in [2] 

as being a random oracle model). 

 

A  Key life and the way to have the key in all parts 

As we pointed out before, IS is made by the concatenation 

of the complete name of a participant and the current weak. 

This means that the key will be changed in every weak. 

Therefore, the validity of a pair of the key (public key and 

private key) is maintained only a weak.  

 

B The functional scheme 

In this part of the article we will describe the four steps of 

the algorithm which assures the confidentiality of the 

communications. 

Setup 

As we described before, we chose an elliptic curve E 

generated through a prime number p, p= 6q-1, a prime number 

q, q>3. We chose pFEP /∈
 according with the 
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transformation IS-PK. Also, we select 

*

qZs ∈
 

and
sPPpub =

. The master key is 

*

qZs ∈
. 

Extract 

As we have
( ) { }*1 1,0∈IS

, the Public Key Generator will 

construct a private key, hereby: 
( )( ) ( ) { }*21 1,0∈= ISISH

. 

From this point it results that 
( ) pIS

FEQ /2 ∈
 of order q. The 

private key will be 
( ) ( )22 ISIS

sQd =
, where s is the master key. 

Encrypt 

Let be T the plain text to be encrypted by a sender. The 

ciphered text C will be obtained as being 
( )( )rQHTrP ⊕,

, 

where 
( )( ) 22 ,

ppubIS
FPQQ ∈=

 and r is chosen with random 

oracle, qZr ∈
. 

Decrypt 

We have 
( )VUC ,=

 a ciphered text with the public 

key
( )2IS

Q
. We’ll obtain again the plain text from the ciphered 

text as follows:
( )RHVT +=

, where 

( )( ) 22 ,
pIS

FUdR ∈=
. 

 

C Security 

The security of the system is given by the security of public 

keys system based on elliptic curves. These notions are in 

details described and prove in [1,9]. The mode of creation of 

the public key and private key doesn’t offer advantages in the 

determinations of plain text for any attacker. 

 

IV Conclusions and future works 

 

In this paper, the authors proposed a new encrypt scheme of 

IBE type based on elliptic curves. This scheme represents a 

powerful method to assure the confidentiality of 

communications in a group which has a PKG. The advantages 

are given by the facility of the generation of the private and the 

public keys and by the fact that an user A which wants to send 

a message to any other participant B, doesn’t allow to establish 

a link with PKG, in order to obtain the public key of B. It is 

enough to know the name of B. Also, only PKG knows about 

the key system of every user and the code allocated to 

everyone. 

As a first application, we want to implement this scheme in 

a network with 163 systems. The next step consist of the 

creation of an hierarchy systems in the network, in order to 

have access to the information, so that any user is able to read 

all the messages that circulate in the tree, between the users 

who are hierarchies situated in theirs descendant nodes of the 

tree 
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