

Abstract— Starting from the basic identity-encryption, were

proposed by the other authors. The models were assumed in the

random oracle model with a variant of the computational Diffie-

Hellman problem. In our paper we propose a new variant of Identity-

Based Encryption (IBE), using elliptic curves schemes and prove his

security completeness. Also, we are doing a complete description of

the necessary system used in present scheme in order to secure a

communication. The performance of our system is comparable to the

performance of ElGamal encryption in F*p and the security of the

system is based on the elliptic curve calculus intractability.

Keywords— Identity-Based Encryption, Diffie-Hellman

problem, Elliptic Curves Cryptography, Escrow ElGamal.

I. INTRODUCTION

There have developed security algorithms of information

based on making the Public Key System which has an

equivalent in an identity system [6]. Initially, this system was

created in order to assure the confidentiality of the

communication between the members in a group who knows

identity information of that who want to communicate. This is,

for example, the email address, the surname, the first name, a

code on the identity card, etc. So, this kind of scheme has:

Setup: generate the control parameters in order to identify

the users and create the master key. Extract: it uses the master

key in order to generate the private key corresponding to

public key that was generated in function of the Identity String

(IS). Encrypt: the description of the encryption algorithm that

will be applied on the plain text. It will use the public key.

Decrypt: the decryption algorithm of the ciphered message. It

will use the corresponding private key.

Many of other proposed schemes use an important quantity

of processor-time [4, 8, 7, 5] to calculate the private key, or

they consider a dedicated hardware as being preexistent.

To describe our model in this work, we’ll first illustrate a

general model of the scheme. This model is based on the

creation of the public key which is not necessary to be taken

from a server. By convention, it considers the public key is

made by the concatenation of the complete name of the

receiver and the current week. So, we obtain IS (Identity

String). It will create an algorithm which transforms some kind

of string in a key and this key will become the encryption

Manuscript received November 2011.

public key used to encrypt the plain text and it will be sent by

communication channel.

The data transferred from one system to another over public

network can be protected by the method of encryption. On

encryption the data is encrypted/scrambled by any encryption

algorithm using the ‘key’. Only the user having the access to

the same ‘key’ can decrypt/de-scramble the encrypted data.

This method is known as private key or symmetric key

cryptography. There are several standard symmetric key

algorithms defined. Examples are AES, 3DES etc. These

standard symmetric algorithms defined are proven to be highly

secured and time tested. But the problem with these algorithms

is the key exchange. The communicating parties require a

shared secret, ‘key’, to be exchanged between them to have a

secured communication. The security of the symmetric key

algorithm depends on the secrecy of the key. Keys are

typically hundreds of bits in length, depending on the

algorithm used. Since there may be number of intermediate

points between the communicating parties through which the

data passes, these keys cannot exchange online in a secured

manner. In a large network, where there are hundreds of

system connected, offline key exchange seems too difficult and

even unrealistic. This is where public key cryptography comes

to help. Using public key algorithm a shared secret can be

established online between communicating parties without the

need for exchanging any secret data.

In public key cryptography each user or the device taking

part in the communication have a pair of keys, a public key

and a private key, and a set of operations associated with the

keys to do the cryptographic operations. Only the particular

user/device knows the private key whereas the public key is

distributed to all users/devices taking part in the

communication. Since the knowledge of public key does not

compromise the security of the algorithms, it can be easily

exchanged online.

A shared secret can be established between two

communicating parties online by exchanging only public keys

and public constants if any. Any third party, who has access

only to the exchanged public information, will not be able to

calculate the shared secret unless it has access to the private

key of any of the communicating parties.

The receiver will solicit the private key from the Public Key

Generator (PKG). This private key is corresponding with the

public key that is characteristic to this user (receiver). The

decryption will be produced with this key, so Public Key

Differentiated access based on cryptographic

methods

Gheorghe Grigoraş, Dana Dănciulescu and Nicolae Constantinescu

Issue 3, Volume 6, 2012 152

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Generator holds the control of all the decryption keys and the

public keys associated with every user. To communicate with

Public Key Generator, any participant has a secret code that is

also known by the PKG. It is used to assure the Challenge-

Response algorithm in order to make the secure

communication between PKG and any participant.

A. One-way function

In public key cryptography, keys and messages are

expressed numerically and the operations are expressed

mathematically. The private and public key of a device is

related by the mathematical function called the one-way

function. One-way functions are mathematical functions in

which the forward operation can be done easily but the reverse

operation is so difficult that it is practically impossible. In

public key cryptography the public key is calculated using

private key on the forward operation of the one-way function.

Obtaining of private key from the public key is a reverse

operation. If the reverse operation can be done easily, that is if

the private key is obtained from the public key and other

public data, then the public key algorithm for the particular

key is cracked. The reverse operation gets difficult as the key

size increases. The public key algorithms operate on

sufficiently large numbers to make the reverse operation

practically impossible and thus make the system secure. For

e.g. RSA algorithm operates on large numbers of thousands of

bits long.

B. Key Agreement

Key agreement is a method in which the device

communicating in the network establishes a shared secret

between them without exchanging any secret data. In this

method the devices that need to establish shared secret

between them exchange their public keys. Both the devices on

receiving the other device’s public key perform key generation

operation using its private key to obtain the shared secret.

As we see in the previous section the public keys are

generated using private key and other shared constants. Let P

be the private key of a device and U(P, C) be the public key.

Since public key is generated using private key, the

representation U(P, C) shows that the public key contain the

components of private key P and some constants C where C is

known by all the device taking part in the communication.

Consider two devices A and B. Let PA and UA(PA, C) be the

private key and public key of device A, and PB and UB(PB, C)

be the private key and public key of device B respectively.

Both device exchanges their public keys.

Device A, having got the public key of B, uses its private

key to calculate shared secret:

KA=Generate_Key(PA, UB(PB, C))

Device B, having got the public key of A, uses its private

key to calculate the shared secret

KB=Generate_Key(PB, UA(PA, C))

Figure 1. Key Agreement

The key generation algorithm ‘Generate_Key’ will be such

that the generated keys at the device A and B will be the same,

that is shared secret KA=KB=K(PA, PB, C).

Since it is practically impossible to obtain private key from

the public key any middleman, having access only to the

public keys UA(PA, C) and UB(PB, C), will never be able to

obtain the shared secret K. Examples of key agreement

algorithms are DH, RSA and ECDH.

During the key exchange process the public keys may pass

through different intermediate points. Any middleman can thus

tamper or change the public keys to its public key. Therefore

for establishing shared secret it is important that device A

receives the correct public key from device B and vice versa.

II The RSA Algorithm

One of the biggest problems in cryptography is the

distribution of keys. Suppose you live in the United States and

want to pass information secretly to your friend in Europe. If

you truly want to keep the information secret, you need to

agree on some sort of key that you and he can use to

encode/decode messages. But you don’t want to keep using the

same key, or you will make it easier and easier for others to

crack your cipher. But it’s also a pain to get keys to your

friend. If you mail them, they might be stolen. If you send

them cryptographically, and someone has broken your code,

that person will also have the next key. If you have to go to

Europe regularly to hand-deliver the next key, that is also

expensive. If you hire some courier to deliver the new key, you

have to trust the courier, et cetera.

A Trap-Door Ciphers

But imagine the following situation. Suppose you have a

special method of encoding and decoding that is “one way” in

a sense. Imagine that the encoding is easy to do, but decoding

is very difficult. Then anyone in the world can encode a

message, but only one person can decode it. Such methods

exist, and they are called “one way ciphers” or “trap door

ciphers”.

Here’s how they work. For each cipher, there is a key for

encoding and a different key for decoding. If you know the key

for decoding, it is very easy to make the key for encoding, but

it is almost impossible to do the opposite—to start with the

encoding key and work out the decoding key. So to

communicate with your friend in Europe, each of you has a

trap door cipher. You make up a decoding key Da and generate

the corresponding encoding key Ea. Your friend does exactly

the same thing, but he makes up a decoding key Db and

Issue 3, Volume 6, 2012 153

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

generates the corresponding encoding key Eb. You tell him Ea

(but not Da) and he tells you Eb (but not Db). Then you can

send him messages by encoding using Eb (which only he can

decode) and vice versa—he encodes messages to you using Ea

(which only you can decode, since you’re the only person with

access to Da). Now if you want to change to a new key, it is no

big problem. Just make up new pairs and exchange the

encoding keys. If the encoding keys are stolen, it’s not a big

deal. The person who steals them can only encode messages—

they can’t decode them. In fact, the encoding keys (sometimes

called “public keys”) could just be published in a well-known

location.

B Certification

There is, of course, a problem with the scheme above. Since

the public keys are really public, anyone can “forge” a

message to you. So your enemy can pretend to be your friend

and send you a message just like your friend can—they both

have access to the public key. Your enemy’s information can

completely mislead you. So how can you be certain that a

message that says it is from your friend is really from your

friend?

Here is one way to do it, assuming that you both have the

public and private keys Ea, Eb, Da, and Db as discussed in the

previous section. Suppose I wish to send my friend a message

that only he can read, but in such a way that he is certain that

the message is from me. Here’s how to do it. I will take my

name, and pretend that it is an encoded message, and decode it

using Da. I am the only person who can do this, since I am the

only person who knows Da. Then I include that text in the real

message I wish to send, and I encode the whole mess using Eb,

which only my friend knows how to decode.

When he receives it, he will decode it using Db, and he will

have a message with an additional piece of what looks to him

like junk characters. The junk characters are what I got by

“decoding” my name. So he simply encodes the junk using my

public key Ea and makes certain that it is my name. Since I am

the only one who knows how to make text that will encode to

my name, he knows the message is from me. You can encode

any text for certification, and in fact, you should probably

change it with each message, but it’s easy to do.

C RSA Encryption

Previously we described what a trap-door cipher means,

further on we will see how one is made. The most used cipher

of this form is “RSA Encryption” which will be described in

this chapter. I will find two huge prime numbers, p and q that

have 100 or maybe 200 digits each. I will keep those two

numbers secret (they are my private key), and I will multiply

them together to make a number N = pq. That number N is

basically my public key. It is relatively easy for me to get N; I

just need to multiply my two numbers. But if you know N, it is

basically impossible for you to find p and q. To get them, you

need to factor N, which seems to be an incredibly difficult

problem.

But exactly how is N used to encode a message, and how are

p and q used to decode it? Below is presented a complete

example, but I will use tiny prime numbers so it is easy to

follow the arithmetic. In a real RSA encryption system, keep in

mind that the prime numbers are huge.

In the following example, suppose that person A wants to

make a public key, and that person B wants to use that key to

send A a message. In this example, we will suppose that the

message A sends to B is just a number. We assume that A and

B have agreed on a method to encode text as numbers. Here

are the steps:

1. Person A selects two prime numbers. We will use p = 23

and q = 41 for this example, but keep in mind that the real

numbers person A should use should be much larger.

2. Person A multiplies p and q together to get pq = (23)(41)

= 943. 943 is the “public key”, which he tells to person B (and

to the rest of the world, if he wishes).

3. Person A also chooses another number e which must be

relatively prime to (p −1)(q − 1). In this case, (p − 1)(q − 1) =

(22)(40) = 880, so e = 7 is fine. e is also part of the public

key, so B also is told the value of e.

4. Now B knows enough to encode a message to A.

Suppose, for this example, that the message is the number M =

35.

5. B calculates the value of C = Me(mod N) = 357(mod

943).

6. 35
7
 = 64339296875 and 64339296875(mod 943) = 545.

The number 545 is the encoding that B sends to A.

7. Now A wants to decode 545. To do so, he needs to find a

number d such that

ed = 1(mod (p −1)(q − 1)), or in this case, such that 7d =

1(mod 880). A solution is d = 503, since 7*503 = 3521 =

4(880) + 1 = 1(mod 880).

8. To find the decoding, A must calculate C
d
(mod N) =

545
503

(mod 943). This looks like it will be a horrible

calculation, and at first it seems like it is, but notice that

 503 = 256+128+64+32+16+4+2+1 (this is just the binary

expansion of 503). So this means that:

545
503

=545
256+128+64+32+16+4+2+1

=545
256

545
128

 ... 545
1

But since we only care about the result (mod 943), we can

calculate all the partial results in that modulus, and by repeated

squaring of 545, we can get all the exponents that are powers

of 2. For example, 545
2
(mod 943) = 545 · 545 = 297025(mod

943) = 923. Then square again: 545
4
(mod 943) =

(545
2
)

2
(mod 943) = 923 · 923 = 851929(mod 943) = 400,

and so on. We obtain the following table:

545
1
(mod 943) = 545

545
2
(mod 943) = 923

545
4
(mod 943) = 400

545
8
(mod 943) = 633

545
16

(mod 943) = 857

545
32

(mod 943) = 795

545
64

(mod 943) = 215

545
128

(mod 943) = 18

Issue 3, Volume 6, 2012 154

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

545
256

(mod 943) = 324

So the result we want is:

545
503

(mod943)=324·18·215·795·857·400·923·545(mod

943) = 35.

Using this tedious (but simple for a computer) calculation, A

can decode B’s message and obtain the original message N =

35.

D RSA Key Generation

The RSA algorithm [10] has gained widespread use in the

software industry and it is utilized by more and more people

each year. RSA key pairs are the basis for ensuring both the

privacy of data in RSA ciphertexts as well as the non-

repudiability of digitally signed messages. However, the

security of these basic functionalities rests on the honest and

correct generation of RSA key pairs.

There are many subtle security issues surrounding the

generation and use of RSA keys. For example, there are

instances in which a malicious user may deliberately try to

generate and certify a weak public key. The user can choose

the prime p in the RSA public key n = pq such that p-1 is

smooth (a smooth integer has no large prime divisors). This

allows anyone to factor n using Pollard’s p-1 factoring

algorithm [11]. The notion of generating a weak key may

appear counter-intuitive to many readers. Why would anyone

ever want to do a thing like that? The reasons for doing it are

many. Perhaps the biggest reason for doing so is to be able to

back out of a contract if business begins to turn south. By

certifying a “weak” RSA public key, the signer will be in a

position down the road to repudiate any and all digital

signatures that were created using the corresponding private

key. This can be argued on mathematical grounds in a court of

law since a weak key is a key that can be factored by anyone.

Hence, everyone has the ability to produce signatures using the

weak key pair. Weak keys are particularly attractive to a

malicious user when the existence of the weakness is not

readily apparent, since in this case another user is not likely to

produce forgeries under the malicious user’s name.

However, to avoid being blamed for deliberately generating

a weak key, the signer would have to convince a disinterested

third party (such as a judge) that the use of the weak key was

not deliberate. This is a challenge since it must be proven that

a trustworthy key generation algorithm was used and that it

was not tampered with. When RSA keys are generated

randomly, the probability that a key is weak is already very

small, and the use of strong primes reduces the risk even more.

Strong primes have certain properties that make the product n

hard to factor by specific factoring methods. Such properties

include the existence of a large prime factor of p-1 and a large

prime factor of p+1. This is one of the issues in the strong

primes debate. Why else would a user want to certify a weak

key?

Consider the possibility of political insurgency. A person

from country A starts working for the government in country B

and acts under cover. The person certifies a weak public key

and uses it to store, receive, and transmit (in key exchange

protocols) highly sensitive information. This has the potential

to severely damage country B. Also, an “innocent” weakness

in the key could get the person off the hook if he or she is

accused. Of course, a simpler approach to the problem is for a

malicious user to simply publish his or her private key in some

inconspicuous fashion. The user would later point out the

location of the private key and state that anyone could have

obtained it. However, this argument is not likely to hold up in

court. One would have to assess the probability that the private

key would show up naturally, without the intervention of the

key owner, and the chances of this are very small indeed. In

truth weak keys are not likely to be generated, even when the

simplest methods for generating RSA keys is used. However, it

is possible using simple RSA key generation. So, a malicious

user can try to make the case that, e.g., p-1 just happened to be

smooth. These issues illustrate the importance of being able to

validate RSA keys [12]. Even an honest user may generate and

use an easily factorable RSA public key without realizing it.

This happens when a malicious insider, such as the

programmer that creates the RSA key generation device,

inserts a backdoor that lets the insider obtain the user’s private

key. The reasons why a programmer would want to insert such

a backdoor are obvious. It would permit the programmer to

gain illicit access to encrypted information such as e-mails,

secure socket connections, and so forth, and would also allow

the programmer to impersonate users (e.g., forging signatures

of other users, accessing the accounts of other users, etc.).

The scope of the problem is by no means specific to RSA.

Backdoor attacks have been shown to exist in Diffie-Hellman,

ElGamal, DSA, elliptic curve cryptosystems, and more. The

scope of the problem is not limited to insider attacks either. An

outsider is often in a position to insert a backdoor as well.

Malicious software such as viruses and worms can insert a

backdoor as part of their payload. The scope of this problem is

immense, especially considering the fact that a backdoor can

often be exploited in a completely covert way. For instance,

when the attacker simply reads information but does not

modify information it is often difficult to detect that the attack

is even occurring. A tamper-resistant microchip is an ideal

medium for planting a backdoor, since by its very nature the

backdoor is well-hidden. Even when a key generation

algorithm is implemented in software, the program is

effectively a “black-box” in the eyes of the average user, since

a deep understanding of mathematics as well as the underlying

assembly language is necessary to discern the true nature of

the program.

E Proving the Form of n=pq

When an RSA key generation device outputs two RSA

primes, the key owner can perform rather simple tests on the

correctness of the outputs. For instance, the key owner can

Issue 3, Volume 6, 2012 155

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

check that p and q are primes, that they are the correct size,

etc. However, for ensuring nonrepudiability it is necessary that

other users be convinced as well that n = pq was generated

properly. The purpose is to convince others that n is not

“weak” and that there is no backdoor in use. This is a

challenging problem since it is often the case that only the key

holder is allowed to know p and q. Certain properties relating

to the correctness of RSA key generation can be verified

simply be performing computations on n. For instance, it can

be publicly verified that: n is not prime, n is not divisible by

small primes, and that n is not a perfect power (see for sieving

algorithms). Performing these checks is a good measure, since

a weak key such as n=p
2
q

2
 will be readily discovered. These

verifications help to show that n was properly generated, but

they are not sufficient. For example, when a 1024-bit key n is

generated these verifications will not detect the case that p is

160 bits in length and q is 864 bits in length. One way that a

black-box key generation implementation can prove these

more complex assertions regarding n is to utilize non-

interactive zero-knowledge proof systems. In a nutshell, a non-

interactive zero-knowledge proof system consists of a proof

generating algorithm and a corresponding verification

algorithm.

The proof generating algorithm proves some type of

assertion regarding a problem instance. For instance, the

problem instance may be an integer n and the assertion may be

that n is the product of two distinct prime numbers. The output

of the proof generating algorithm is a data file that is typically

anywhere from 40 kilobytes to over a 100 kilobytes in size.

The data file has the property that it reveals nothing about the

secrets associated with the problem instance (e.g., it does not

expose p or q). The verification algorithm takes this file and

the problem instance as input and verifies whether or not the

file is valid. A valid file implies that the assertion holds with

overwhelming probability. Several such proof systems can be

utilized to prove the form of n. These proof systems are the

subject of this section. The following are some well-known

zero-knowledge interactive protocols that show various

properties of n. All of these protocols can be converted into

non-interactive zero-knowledge proof systems. Peralta and van

de Graaf presented a

 protocol that proves in perfect zero-knowledge that n is a

Blum integer [13]. They define the set of Blum integers to be

integers of the form n=p
r
q

s
 where p, q ≡ 3 mod 4, r and s are

odd, and p and q are prime. A zero-knowledge protocol has

been given that proves that n is square-free. Recall that an

integer n is said to be square-free if m
2
 does not evenly divide

n for any m > 1. The protocol utilizes a parameter k that

signifies the number of rounds in the protocol. By making k

large enough, a cheating prover has a negligible chance of

convincing the verifier that n is square-free when in fact it is

not. A protocol that proves that n is a Blum integer combined

with a protocol that proves that n is square-free proves that n is

contained in the subset of Blum integers characterized by r = s

= 1. Zero-knowledge protocols have been developed that

prove surprisingly complicated facts about n. For instance, a

statistical limited-knowledge protocol (that leaks very little

information) has been given that proves that n is the product of

two primes that are nearly equal in size, assuming that n has

already been proven to be the product of two distinct primes

[14]. A statistical zero-knowledge protocol has been given that

proves that n is the product of two quasi-safe primes [15].

Finally, there is a zero-knowledge protocol that proves that n

is the product of two safe primes. This last protocol is

asymptotically efficient but would be cumbersome to utilize in

practice.

An interesting open question regarding Blum integers is the

following. Is there a probabilistic (or deterministic) algorithm

for deciding whether or not n is a Blum integer? The existence

of such a predicate would eliminate the need for a zero-

knowledge proof that n is a Blum integer. These algorithms

and protocols that prove various properties of n are helpful

since they prove that there are no obvious weaknesses in the

structure of n. However, they do not sufficiently protect

against various forms of abuse. There is a wealth of literature

surrounding the abuse of key generation algorithms, digital

signature algorithms, and so on. These abuses are the subject

of the next section.

F Cryptographic Abuses of RSA Key Generation

Gus Simmons initiated the investigation of abuses that

involve clandestine information leakage within the context of

cryptographic algorithms and protocols. The classic problem

that demonstrates this type of abuse is known as the Prisoner’s

Problem. In the prisoner’s problem, two prisoners are allowed

to communicate to each other but are not allowed to send

encrypted messages to each other. They are only permitted to

exchange public keys and digitally sign their messages. The

problem is to devise a way, using the digital signature

algorithm in question, for the two prisoners to communicate

secretly with each other through digital signatures in such a

way that the warden cannot detect or read the subliminal

messages. Such a communications channel is called a

subliminal channel.

Yvo Desmedt noted that a subliminal channel exists in

composites, and that use of this channel constitutes an abuse of

RSA key generation. One way to implement a subliminal

channel in composites is as follows. A subliminal message ms

and a checksum t of ms are concatenated together (denoted by

ms || t). The resulting string is asymmetrically encrypted using

the public key of the recipient of ms. The asymmetric

cryptosystem must be probabilistic to ensure that c is

pseudorandom. Let c be the resulting ciphertext. A random

prime p and a random pad RND are chosen.

The quotient q and remainder r are then solved for in c ||

RND = pq + r. If q is composite then this process is repeated.

When q is prime, the public key is n = pq = (c || RND)−r. At

worst a borrow bit will be taken from c, but this can be

rectified. The subliminal message ms is recovered by

decrypting c and c+1 and verifying which of the two

Issue 3, Volume 6, 2012 156

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

checksums is correct. Note that the security parameter for c is

half of the value of the security parameter for n. This approach

is based on kleptography [16][17].

The subliminal channel in composites can be used to let one

prisoner communicate secretly with another (although they

have to keep generating new keys to keep communicating this

way). Therefore, typical RSA key generation is subject to

information leakage abuse by inmates. RSA key generation is

also subject to abuse by malicious insiders. Consider the

following rather simple attack. The attacker, who is the

programmer that is creating the RSA key generation algorithm,

stores a secret seed in the key generation algorithm and the

algorithm supplies this seed to pseudorandom number

generator. The fact that the seed is chosen uniformly at random

and is “secure” leads to a cryptographically secure

pseudorandom bit sequence. This sequence is known to the

attacker and can be the sole source of randomness for deriving

output pairs (p, q). The attack amounts to replacing the

“honest” random sequence that is inherent to a probabilistic

Turing machine with a “dishonest” pseudorandom sequence

that is completely reconstructable by the insider. An RSA key

pair that is compromised in this way allows the insider to read

anything encrypted using the user’s public key, and allows the

insider to forge any signed document on behalf of the user.

This type of attack is a very general one, since it can be

applied to any probabilistic algorithm, not just cryptographic

ones. Research has been conducted to investigate insider

attacks against cryptographic algorithms with the specific goal

of making the attacks robust from the attacker’s perspective.

This type of attack is far more attractive to an attacker than

generating a “weak” key that can be exploited by anyone. The

goal in this type of attack is to plant a backdoor in the key

generation algorithm that: (1) generates keys that are

indistinguishable from “normal” keys, (2) is robust against

reverse-engineering, and (3) generates keys that are

cryptographically secure with respect to everyone except the

attacker. This type of attack gives the attacker an exclusive

advantage.

It has been shown how to use the notion of a subliminal

channel to mount this type of attack against RSA key

generation. The attack makes use of the subliminal channel in

composites n = pq where n is a W-bit quantity. The intuition

behind the insider attack is as follows. If there were a way to

display randomly generated information in the bit

representation of n = pq such that: (1) only the insider can

access the information, (2) only the insider can detect that the

information is there, and (3) the information allows the insider

to factor n, then a robust attack against RSA key generation

would exist. The fact that the information is randomly

generated each time that a key pair is generated provides

security going forward with respect to a passive reverse-

engineer.

A heuristic version of this attack is as follows.

It makes use of a pseudorandom number generator

(PRNG) denoted by G. The insider places his or her

own public key in the device. This key is used to compute c

in the subliminal channel. The device chooses ms randomly. It

then computes the pseudorandom bit sequence G(ms). The bits

in this sequence are considered W/2 bits at a time. The first

such sequence that is a W/2-bit prime becomes p. If p leads to

a prime value for the quotient q in the channel, then n = (c ||

RND)−1 is output as the user’s public key. The insider obtains

this public key from a CA, for instance. The insider then uses

his or her own private key to obtain ms. Given ms it is then

straightforward to recover p and factor n. The attack is robust

against reverse-engineering since only the public key of the

insider, not the corresponding private key, is revealed upon

inspecting the RSA key generation code. Furthermore,

compromised composites are computationally

indistinguishable from uncompromised composites under

reasonable intractability assumptions, thus assuring that no one

will ever know that the attack is being carried out [16][17].

This type of attack is called a secretly embedded trapdoor

with universal protection (SETUP). The attacker’s public key

is the secretly embedded trapdoor. The advantage of a SETUP

attack over using a fixed pseudorandom bit sequence is that it

provides secrecy going forward. That is, even if the key

generation device is reverse-engineered and its state is

revealed, it will not help the reverse-engineer factor the future

(or even past) RSA keys that are produced. This is because the

seed ms is chosen randomly each time that the key generation

algorithm is invoked. This is of particular importance in

software implementations in which each user obtains the exact

same copy of the key generation software. These types of

attacks are by no means unique to RSA key generation. In

addition they have been shown to exist in discrete-logarithm

based cryptosystems. A SETUP attack has been shown against

the Diffie-Hellman key exchange that leaks one of the two

Diffie-Hellman exponents. An attack has been shown against

the Digital Signature Algorithm that leaks the private key, and

other attacks have been shown as well.

G Curbing Abuses of Cryptosystems

The standard approach to mitigating insider abuse in a

cryptographic algorithm is to prevent the algorithm from

having the luxury of controlling the final randomness that is

used to derive the output values. This is enforced by requiring

the use of a protocol to perform the computation, as opposed

to a stand-alone algorithm. Gus Simmons introduced the idea

of using randomization to destroy subliminal channels. To

destroy a particular subliminal channel that was identified,

Simmons has the warden generate a random number x ∈ Rn

(the ring of residues modulo n) and modify the message that

was being sent from one prisoner to the other prisoner using x.

For other early results that use randomization to eliminate

subliminal channels.

To address the problem of key generation abuse, Desmedt

investigated abuse-free ways of generating key pairs. His

protocol is outlined within the context of the prisoner’s

problem, but applies to other abuses as well such as the

Issue 3, Volume 6, 2012 157

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

previously mentioned attack that uses a pseudorandom number

generator. In this protocol an inmate Alice and a warden

jointly generate a key pair such that only Alice knows the

private key and such that the warden is convinced that no form

of abuse is occurring.

A high-level description of this protocol is as follows. Alice

commits to a random string ra and the warden sends Alice a

random string rw. Alice performs the bitwise exclusive-or

operation to obtain the random string r = ra ⊕ rw. If r does not

satisfy the properties needed to make the key pair (e.g., it does

not lead to two RSA primes) then Alice reveals ra to the

warden. If r does lead to a proper public key, then Alice

proves this in zero-knowledge. The overhead of this zero-

knowledge protocol is substantial in practice since it relies on

a very general zero-knowledge interactive protocol

construction.

III A new proposed encryption scheme

In this part of article we describe the modality of secure

information that will be transferred to another participant

trough the communication channel. This scheme has four

parts:

Setup

Every participant of the group has a control key, a personal

parameter noted ID, known by himself and by the Public Key

Generator. It is used to assure the secure communication

between him and PKG.

Extract

Using the personal parameter ID and a message key it will

communicate the private key for the participant. The private

key will be generated by the Public Key Generator at the

request of a participant authenticated by an ID.

Encryption

Another participant, using the transformation algorithm of a

string (IS) in a public key
{ }*

1,0∈pk
 will encrypt the plain

text with this key and the cipher text such obtained will be

transferred by the communication channel.

Decryption

Using the private key, obtained from the Public Key

Generator, one participant will decrypt a message that is

destined for him.

As we have already discussed, the algorithm used to obtain

the private key from the Public Key Generator is a Challenge-

Response type. Therefore, for its construction we’ll use, in the

same way like in [3, 2] the following phases:

Definition

The expression 13 +x is a permutation of pF
, where E

is an elliptic curve given by the equation
132 += xy

,

defined over pF
, and p is a prime number which satisfy

16 −= qp
, where q is a prime number,

3>q
.

Let be pFEP /∈
 a generator in a group of points of

order
() 6/1+= pq

.

Choice

Let be a point pFy ∈0 , there is an unique point 0x
, so that

() pFEyx /, 00 ∈

Transformation

Let be
21

p
F∈+ ζ

 a solution of the

equation
px mod013 =−

. A transformation equation

() ()yxyx ,, ζφ =
 is an automorphism of groups on the

elliptic curve E . If
() pFEyxP /, ∈=

then
() 2/

p
FEP ∈φ

, but
() pFEP /∉φ

. Determination

The points
()PP φ,

 generate an isomorphic

group qq ZZ ×
. We note this group of points as being

[]qE
.

These points can be calculated like in [3, 2].

Transformation IS-PK

The public key which will encrypt the plain text is made

from a string obtained through the concatenation between the

complete name of the receiver and the current weak. As we

have a string, it is necessary to transform it in a key, PK. For

this, at the beginning, we code the string (in accordance with

ASCII) to obtain
() { }*1 1,0∈IS

. Using a cryptographic

function, denoted here H, with
{ } .1,0:

*

pFH →
, we’ll

construct the point Q: 0y
 will be equal with

()()1ISH
 and

() ()()
pyyx

p
mod11

3/122

0

3/12

00

−
−=−=

. So that,

() pFEyxQ /, 00 ∈=
, and we’ll compute

() QQ
IS

61 =
 in

order to obtain the necessary order for Q (this is denoted in [2]

as being a random oracle model).

A Key life and the way to have the key in all parts

As we pointed out before, IS is made by the concatenation

of the complete name of a participant and the current weak.

This means that the key will be changed in every weak.

Therefore, the validity of a pair of the key (public key and

private key) is maintained only a weak.

B The functional scheme

In this part of the article we will describe the four steps of

the algorithm which assures the confidentiality of the

communications.

Setup

As we described before, we chose an elliptic curve E

generated through a prime number p, p= 6q-1, a prime number

q, q>3. We chose pFEP /∈
 according with the

Issue 3, Volume 6, 2012 158

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

transformation IS-PK. Also, we select

*

qZs ∈

and
sPPpub =

. The master key is

*

qZs ∈
.

Extract

As we have
() { }*1 1,0∈IS

, the Public Key Generator will

construct a private key, hereby:
()() () { }*21 1,0∈= ISISH

.

From this point it results that
() pIS

FEQ /2 ∈
 of order q. The

private key will be
() ()22 ISIS

sQd =
, where s is the master key.

Encrypt

Let be T the plain text to be encrypted by a sender. The

ciphered text C will be obtained as being
()()rQHTrP ⊕,

,

where
()() 22 ,

ppubIS
FPQQ ∈=

 and r is chosen with random

oracle, qZr ∈
.

Decrypt

We have
()VUC ,=

 a ciphered text with the public

key
()2IS

Q
. We’ll obtain again the plain text from the ciphered

text as follows:
()RHVT +=

, where

()() 22 ,
pIS

FUdR ∈=
.

C Security

The security of the system is given by the security of public

keys system based on elliptic curves. These notions are in

details described and prove in [1,9]. The mode of creation of

the public key and private key doesn’t offer advantages in the

determinations of plain text for any attacker.

IV Conclusions and future works

In this paper, the authors proposed a new encrypt scheme of

IBE type based on elliptic curves. This scheme represents a

powerful method to assure the confidentiality of

communications in a group which has a PKG. The advantages

are given by the facility of the generation of the private and the

public keys and by the fact that an user A which wants to send

a message to any other participant B, doesn’t allow to establish

a link with PKG, in order to obtain the public key of B. It is

enough to know the name of B. Also, only PKG knows about

the key system of every user and the code allocated to

everyone.

As a first application, we want to implement this scheme in

a network with 163 systems. The next step consist of the

creation of an hierarchy systems in the network, in order to

have access to the information, so that any user is able to read

all the messages that circulate in the tree, between the users

who are hierarchies situated in theirs descendant nodes of the

tree

REFERENCES

[1] 1) I.F. Blake, G. Seroussi, N.P. Smart, “Elliptic Curves in

Cryptography”, 2000 Cambridge University Press

[2] 2) Dan Boneh, Matt Franklin, “Identity-Based Encryption from the

Weil Pairing”, CRYPTO 2001, LNCS 2139, pp. 213-229, 2001

Springer-Verlag Berlin Heidelberg

[3] 3) D. Boneh, M. Franklin, “Identity based encryption", Full version

available at http://crypto.stanford.edu/ibe

[4] 4) Y. Desmedt and J. Quisquater, “Public-key systems based on the

di_culty of tampering", Proc. Crypto '86, pp. 111-117, 1986.

[5] 5) U. Maurer and Y. Yacobi, “Non-interactive public-key

cryptography", proc. Eurocrypt '91, pp. 498-507.

[6] 6) A. Shamir, “Identity-based cryptosystems and signature schemes",

Proc. Crypto '84, pp. 47-53.

[7] 7) S. Tsuji and T. Itoh, “An ID-based cryptosystem based on the

discrete logarithm problem", IEEE Journal on Selected Areas in

Communication, vol. 7, no. 4, pp. 467-473, 1989.

[8] 8) H. Tanaka, “A realization scheme for the identity-based

cryptosystem", Proc.Crypto '87, pp. 341-349, 1987.

[9] 9) E. Verheul, “Evidence that XTR is more secure than supersingular

elliptic curve cryptosystems", Proc. Eurocrypt 2001.

[10] 10) R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital

Signatures

[11] and Public-Key Cryptosystems. In Communications of the ACM, vol.

21, no. 2, pages 120–126, 1978.

[12] 11) J. M. Pollard. Theorems on Factorizationand Primality Testing. In

Proceedings of the Cambridge Philosophical Society, vol. 76, pages

521–528, 1974.

[13] 12) R. D. Silverman. RSA Public Key Validation. In Workshop on

Cryptography and Computational Number Theory, K. Y. Lam, I.

Shparlinski, H. Wang, C. Xing (Eds.), Progress in Computer Science

and Applied Logic, vol. 20, Birkh¨auser, 2001.

[14] 13) J. van de Graaf, R. Peralta. A simple and secure way to show the

validity of your public key. In Advances in Cryptology—Crypto ’87, C.

Pomerance (Ed.), LNCS 293, pages 128–134, Springer-Verlag, 1987.

[15] 14) M. Liskov, R. Silverman. A Statistical Limited-Knowledge Proof for

Secure RSA Keys. Submitted to IEEE P1363 working group.

[16] 15) R. Gennaro, D. Micciancio, T. Rabin. An Efficient Non-Interactive

Statistical Zero- Knowledge Proof System for Quasi-Safe Prime

Products. In Conference on Computer and Communications Security,

pages 67–72, ACM, 1998.

[17] 16) A. Young, M. Yung. The Dark Side of Black-Box Cryptography, or:

Should We Trust Capstone. In Advances in Cryptology-Crypto ’96, N.

Koblitz (Ed.), LNCS 1109, pages 89–103, Springer-Verlag, 1996.

[18] 17) A. Young. Kleptography: Using Cryptography Against

Cryptography. PhD Thesis, Columbia University, 2002.

Issue 3, Volume 6, 2012 159

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

