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Abstract—This paper presents the results on the performance of 
the sliding mode attitude controller for three axis attitude pointing 
based on the artificial neural network adjusted by a genetic 
algorithm for low Earth orbit microsatellite. Alsat-1 first Algerian 
microsatellite had been chosen for this study.    
 

Keywords—Alsat-1, Attitude, Control, Sliding, Artificial,  
Neural, Network, Genetic, Microsatellite. 

I. INTRODUCTION 
HE motion of a rigid body in space is specified by its 
position, velocity, attitude and angular rates.  The first 
two quantities are related to the translational motion of 

the centre of mass of the spacecraft which is called space 
navigation, (or orbit determination and control) [1].  The last 
two parameters are concerned with the rotational motion of 
the body of the spacecraft about the centre of mass and is 
the subject of what is called attitude determination and 
control. 

The attitude of a spacecraft is its orientation in space.  
Attitude analysis may be divided into determination, 
prediction, and control.  Attitude determination is the 
process of computing the orientation of the spacecraft 
relative to either an inertial reference or some object of 
interest such as the Earth.  Computation of the orientation of 
spacecraft with respect to some reference, requires several 
types of sensors on the spacecraft and sophisticated data 
processing procedures. The accuracy limit is usually 
determined by a combination of processing procedures and 
spacecraft hardware.  Attitude prediction is the process of 
forecasting the future orientation of the spacecraft by using 
the dynamic models to extrapolate the attitude history.  In 
this case the limiting features are the knowledge of the 
applied and environmental torques and the accuracy of the 
mathematical model of the spacecraft dynamics and 
hardware.  Attitude control is the process of orienting the 
spacecraft in a specified, predetermined direction.  It 
consists of two areas; attitude stabilisation which is the 
process of maintaining an existing orientation and attitude 
manoeuvre control, which is the process of controlling the 
orientation of the spacecraft from one attitude to another. 

Since the external (or environmental) disturbing torques 
can never be eliminated, some form of attitude 
determination and control is required for nearly all 
spacecraft. For engineering or flight-related functions, 

attitude determination is required only to provide a reference 
for control.  Attitude control is required to avoid solar or 
atmospheric damage to sensitive components, to control 
heat dissipation, to point directional antennas and solar 
panels (for power generation) and to orient thrusters used for 
orbit manoeuvres. The attitude requirement for spacecraft 
payloads is more varied and often more stringent than the 
engineering requirements.  Payload requirements, such as 
antenna orientation, may involve attitude determination, 
attitude control, or both.  Conventionally, a spacecraft is 
categorised by the procedure by which it is stabilised such 
as a spin-stabilised spacecraft or a three-axis stabilised 
spacecraft. 

The purpose of the Attitude Determination and Control 
Subsystem (ADCS) is to stabilise the spacecraft in a desired 
attitude despite the external disturbance torques acting on it.  
Stabilisation and control can be accomplished via multiple 
techniques.  These include gravity-gradient, magnetic, pure-
spin, dual-spin, one-axis bias momentum, and three-axis 
stabilisation [1]. The ADCS itself can be grouped into three 
distinct sections: (a) attitude sensors, (b) actuators, and      
(c) control logic/control computers.  Attitude sensors come 
in several varieties, including sun sensors, earth-horizon 
sensors, star sensors, magnetometers, and inertial 
measurement units (IMUs).  There are also several types of 
actuators, including reaction wheels, momentum wheels, 
control-moment gyros (CMGs), electromagnetic torquers, 
and thrusters.  Each stabilisation, sensing, and control 
technique has it's own advantages and disadvantages.  The 
optimum combination of stabilisation and control techniques 
depend largely on the spacecraft system performance 
requirements imposed on the ADCS, and to a lesser extent, 
constraints imposed by other satellite subsystems (including 
the payload). 

Alsat-1 is a low-cost microsatellite build by Surrey 
Satellite Technology Ltd. (SSTL) launched on the 28th of 
November 2002 from the cosmodrome of Plesetsk in Russia 
into a 686 km sun sunchronous orbit. Alsat-1 is an enhanced 
Earth microsatellite, stabilised in 3 axis for image 
acquisition mode. It was designed for disaster monotoring 
and is part of the international constellation dedicated to 
Disaster Monitoring (DMC) [2]. 

This paper presents the design of the sliding mode 
attitude controller for Alsat-1 based on the artificial neural 
network adjusted by a genetic algorithm.    
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The concept of the Genetic Algorithm, first formalized by 
Holland and extended to functional optimization by 
Goldberg [3], involves the use of optimization search 
strategies patterned after the Darwinian notion of natural 
selection and evolution. During a GA optimization, a set of 
trial solutions is chosen and evolves toward an optimal 
solution under the selective pressure of the object function. 
In general, a GA optimizer must be able to perform five 
basic tasks encode the solution parameters in the form of 
chromosomes, initialize a starting population, evaluate and 
assign fitness values to individuals in the population, 
perform reproduction through the fitness weighted selection 
of individuals from the population, and perform 
recombination and mutation to produce members of the next 
generation. 
 
This algorithm is represented in Fig. 1. 

 
Fig.1: Genetic Algorihm 

A. Initialization of the Population 
The first step, is to define an initial generation, consists of 

a set of individuals, each coded by a binary string called 
genotype (genetic information). These individuals are either 
defined at the outset or be chosen in a purely random. It is 
chosen most often for the second possibility because of the 
realization simplicity [3].  

B. Evaluation of the Population 
The population estimate is a function called fitness 

function, which assigns to each individual fitness value to 
determine the number of times that this individual will be 
selected for reproduction. This function also represents the 
link between the physical problem to be solved and the 
genetic algorithm [3]. 

C Selection, Reproduction 
Each of the individuals is selected by its fitness value. 

Reproduction consists in duplicating each individual in 
relation to the average of the performances for all the 
chromosomes of the population. Then individuals which 
give the best results have a good probability to be selected 
for the next generation [3]. 

D. Crossover 
After the reproduction step, a crossover allows a 

generation of new individuals. The crossover step consists to 
cut two chromosomes, named parents, on a random place, 
then the end of these two individuals string is reversed and 
two chromosomes are created and named children [3]. 

E. Originality of the Genetic Algorithms 
Genetic algorithms present originality compared with 

other optimization algorithms [3] 
• Use encoding parameters. 
• Work on a population of points. 
• Use the values of the function studied. 
• Use the probabilistic transition rules. 

F. Advantages and Disadvantages of the Genetic Algorithms 
First, the genetic algorithms are expensive in term of 

computing time, as they handle multiple solutions 
simultaneously. This is the calculation of the performance 
function it is most detrimental, and it generally improves the 
algorithm in order to avoid assessing this function too often. 
Then, the adjustment of a genetic a algorithm is tricky. One 
of the most characteristic is that of genetic drift, which is a 
good person goes in the space of a few generations, to 
invade the whole population. One speaks in this case 
premature convergence, which is to launch a local search 
around a minimum, which is not necessarily the optimum 
expected. Proportional selection methods may particularly 
encourage this kind of drift. 

Another problem arises when different people start to 
have similar performance: the good parts are no longer 
selected, and the algorithm is no longer rising. 
The choice of representation "intelligent" to allow an 
efficient generational replacement is another aspect of the 
question, and the effectiveness of a genetic algorithm 
depends heavily on how we operate the crossing of 
individuals. 

The great advantage of genetic algorithms is that they 
manage to find good solutions to very complex problems, 
and too remote for conventional combinatorial problems that 
can take advantage of some known properties. They must 
simply decide between two alternatives which is better, to 
make their selections. They are used in areas where a large 
number of parameters involved, and where one needs to 
obtain good solutions in a few iterations only. 

Moreover, genetic algorithms are well suited because of 
their simultaneous treatment of solutions in search of 
optimum multiple: creating a shared cost function, whose 
value depends partly on the distance between individuals, 
we see gradually forming sub-populations of individuals, 
who remain close to various peaks of the objective function. 
This is the technique of nesting by the method of sharing. 

In our search, we use differential evolution algorithms, 
which are a special case of genetic algorithms that optimize 
our parameters (synaptic weights of an Artificial Neural 
Network) are real. Consequently, a differential evolution 
algorithm does not require an encoding and decoding of 
individuals to be treated, and it uses all other operations in 
its process such as selection, crossover and mutation 
modeled mathematically as functions. 
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II. ALSAT-1 ATTITUDE DETERMINATION  

AND CONTROL SYSTEM 
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Fig. 2 System diagram & modes of Alsat-1 

  

A. Attitude Sensors 

A.1 Magnetometer 
Three 3-axis flux gate magnetometers are used to measure 

the geomagnetic field vector in the satellite’s body co-
ordinates.  These measurements are used to determine the 
torque vector generated when switching the magnetorquer 
coils.  When used with a magnetic field model (e.g. IGRF), 
magnetic measurement and model vectors can be fed to an 
extended Kalman filter to estimate the full attitude and 
angular rates of the satellite.  For a calibrated magnetometer, 
during periods of low solar activity, the attitude angles can 
be estimated to an accuracy of less than 1° per axis.  The 
magnetometer can also be used when the satellite is still 
tumbling after the launch, to estimate the orbit referenced 
angular rates of the satellite body by using a rate Kalman 
filter [ 5-4 ].  

 
Table1 presents the Alsat-1 magnetometer characteristics  

 
Fig. 3 Magnetometer on Alsat-1 

 
 

 

 

 

 
Table 1 : The Alsat-1 magnetometer characteristics  
Power 14 mA @ 12V 
Range - 60 mT to +60 mT 
Initial rate during 
detumbling   

< 0.1 deg/s 

Full attitude/rate 
during mission   

< 0.5 deg/s 

Dimension 130mm X 90mm X 36mm 
Mass 295 grm 
Thermal characteristics - 50° C to + 80° C 

A.2 SUN SENSORS 
Four 2-axis (azimuth and elevation) analogue sun sensors 

are used to determine the position of the sun relative to the 
satellite body.  Each axis has a ± 60° range and can measure 
the sun vector to a 1σ accuracy of 0.3° [2].  The four sensors 
therefore cover the full 360° azimuth range (with an overlap 
of 30° between sensors) and a 120° elevation range. 

 
Table 2 presents the Alsat-1 sun sensor characteristics  

 
Fig. 4 Sun sensor on Alsat-1 

 
 
 
 
 
 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 3, Volume 6, 2012

225



Table 2 : The Alsat-1 sun sensor characteristics  
Power 3 mA @ 12V 

FOV 
+/- 50 deg 
azimuth/elevation 

Accurate knowledge 
during sun lit < 0.25 deg 
Dimension 90mm X 107mm X 35mm 
Mass 300 grm 
Thermal characteristics - 50° C to + 80° C 
Vibration tolerance 15 grm RMS 

B. ATTITUDE ACTUATORS 

B.1 MAGNETORQUERS 
The magnetorquers are coils through which a constant 

current can be switched. Both the polarity (direction) of 
these current can be controlled to generate on average a 
magnetic moment vector of any specific magnitude and 
direction within a defined time interval. The magnetic 
torquers on Alsat-1 are three magnetorquer rods let say 
X/Y/Z [2]. 

The magnetorquer will be used for the following control 
function on Alsat-1 [6-7] 
• Detumbling of the body angular rates after ejection from 

the launch vehicle; 
• Control body spin around orbit normal; 
• Libration damping when the GG boom is deployed; 
• Yaw phase or yaw angular rate control when the GG 

boom is deployed; 
• Momentum management of the reaction/momentum 

wheels. 
 

Table 3 presents the Alsat-1 magnetorquer characteristics 

 
Fig. 5 Magnetorquer on Alsat-1 

 
Table 3 : The Alsat-1 magnetorquer characteristics  
Power consumption 500 mW 
Mass 500 grm 
Dimension 250mmX607mm 

X38 mm 
Thermal characteristics -30° C to + 60° C 

 

B.2 REACTION/MOMENTUM WHEELS 
One momentum wheel is installed in Y axis-axis and two 

reaction wheels are installed in Z axis (x2 for redundancy).  
Reaction wheels are essentially torque motors with high-
inertia rotors.  They can spin in either direction. Roughly 
speaking one wheel provides for the control of one axis.  
Momentum wheels are wheels with a nominal spin rate 
above zero.  Their aim is to provide a nearly constant 
angular momentum.  This momentum provides gyroscopic 
stiffness to two axes, while the motor torque may be 
controlled to precisely point around the third axis. 

The wheels are used for the following control functions 
on Alsat-1 [7] 
• Z-axis wheel (x2 redundancy) 

• Yaw control for push broom; 
• Quick transfer between BBQ mode and yaw 

steering; 
• Z disturbance cancellation during X thruster 

firings. 
• Y-axis wheel  

• Pitch momentum wheel for 3 axis stabilization 
with and without boom; 

• Y disturbance cancellation during X thruster 
firings. 

 
Table 4 presents the Alsat-1 wheel characteristics. 

 
Fig. 6 Wheel on Alsat-1 

 
Table 4 : The Alsat-1 wheel characteristics  

0-200 mA @ 28V 

50mA @ 5V  

1.2 W @ constant speed,  

5.0 W @ max. acceleration 

Power consumption 

0.8 W @ zero speed 

Max. wheel momentum 0.42 Nms 

Wheel MOI 0.0008 kgm2 

Max. wheel speed ±5000 rpm 
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B.3 BOOM 
The gravity gradient disturbance is a torque experienced 

by a low Earth orbiting spacecraft.  This disturbance is 
created by the unsymmetrical mass distribution of the 
spacecraft, causing a slight difference in the gravity forces 
acting on the body.  The result is a torque around the 
spacecraft centre of mass.   

Table 5 presents the Alsat-1 boom characteristics 

 
Fig. 7 Boom on Alsat-1 

 
Table 5 : The Alsat-1 boom characteristics 

30 ∼ 40 mA @ 5V Power consumption  
(Boom controller) 140 W for 10 msec  @ 28V 
Boom Length 6 meter 
Tip mass 3Kg 
Dimension 300mmX200mmX200 mm 
Mass (Boom+Tip mass) 5.8kg 

Thermal characteristics -40° C to + 100° C 
Vibration tolerance 70 grm 

III. ATTITUDE DETERMINATION 
The attitude was estimated using a quaternion based 

extended Kalman filter (qEKF).  This filter uses 
measurement vectors (in the body frame) from all the 
attitude sensors and by combining them with corresponding 
modelled vectors (in a reference frame), it estimates the 
attitude and angular rate values of the satellite. 

A 7-state EKF state vector [8-9-10] is comprised of the 
four-element quaternion attitude vector combined with the 
three-element body rates vector, with respect to the inertial 
frame. The state vector to be estimated is 7 dimensional 
such that 

[ ]Tzyx4321
T qqqq][ ωωω== Bqx ω         (1) 

The attitude sensors (magnetometer, sun sensor) will be 
used to determine the attitude of the satellite relative to the 
orbital frame.  When using magnetic field data: an orbital 
propagator is used to obtain the position of the satellite.  
Using this position data, a model of the geomagnetic field, 
the International Geomagnetic Reference Field (IGRF) 
model, computes the geomagnetic B -field in orbit 
coordinates.  On the other hand, the magnetic B -field is also 
measured by the 3-axis magnetometer in body coordinates.  

The attitude can then be solved from these two vectors over 
time. The innovation value used in the EKF is the vector 
difference between the measured body referenced vector and 
a modelled orbit referenced vector, (see Fig. 8), transformed 
to the body frame by the estimated attitude transformation 
matrix. 
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Fig. 8 Magnetic Attitude Estimate Procedure using a qEKF 

 
The system equation implemented on board Alsat-1 is 

given by [8-9-10] 
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where, 
T

BY x y z = ω ω ω ω  : inertially referenced body 
angular rate vector; 

T

LO ox oy oz = ω ω ω ω  : orbit reference body angular 
velocity vector; 
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[ ]T1 2 3 4q q q q=q  : quaternion; 
TMT MT MT MT

x y zN N N =  N : applied torque vector by   

3-axis magnetorquers; 
w = [wx wy wz]T  : zero mean system noise vector; 
aij : (i,j) component of the DCM matrix; 

z y y xx z

x y z

I I I II I, ,
I I I
− −−

α = β = γ = . 

 
The Kalman filter algorithm is given as follows [8-9] 

Propagation Cycle 

 Covariance Propagation 

7x7 tκ+1

∂ ∂ 
 ∂ ∂ ≈ + ∆
∂ ∂ 
 ∂ ∂ 

q q
q

I

q

� �

� �
ω

Φ
ω ω

ω

                                    (7) 

T
k 1 k 1 k k 1 k

ˆ
+ + += +P P QΦ Φ                                      (8) 

The process noise covariance matrix Q implemented on 
board Alsat-1 is given by [8-9] 

 
2 22 2 2 22 2
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Correction Cycle 

 Compute Observation Matrix  
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=
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Compute Kalman Gain Matrix 
t t 1

k k k k k k k( )−= +K P H H P H R                                   (14) 

Update State 

k+1 k+1 k 1 BY LO
ˆ ( )+= + −X X K Z AZ         (15) 

Update Covariance 

 [ ]k+1 7x7 k+1 k+1 k+1
ˆ =P I - K H P         (16) 

 

 

The Kalman filter loop process is depicted in Fig. 9 
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Fig. 9 Kalman Filter Loop Process  
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where, 
P  : Covariance matrix (7x7);    
K  : Kalman gain matrix (7x3); 
Φ  : State transformation matrix (7x7) ;   
R  : Measurement noise covariance matrix (3x3); 
Q  : Process noise covariance matrix (7x7) ;  
H  : Observation matrix (7x7); 
F  : Mathematical convention (7x7);   
Z  : Measurements of system state, either sun-
sensor or magnetometer; 

BYZ  : Body referenced measurements, directly from 
onboard sensors; 

LOZ  : Orbit referenced measurements, from orbit 
model prediction; 
t   : time. 

IV. ATTITUDE CONTROL 
This section will be devoted to the problem of the 

attitude control using reaction wheels based on the sliding 
mode control. Since the attitude quaternion has three 
independent components, this implies that we must find 
three sliding surfaces. 

The sliding mode control [11] has largely proved its 
effectiveness in the field of robotics, electric machinery, 
etc .... The benefit of such control is its robustness against 
disturbances and model uncertainties. Every time she has 
a major drawback is the chattering phenomenon [11]. 

The implementation of the sliding mode control law is 
performed in three steps as follows 
Step 1: choice of sliding surface; 
Step 2: Convergence condition and existence; 
Step 3: Establishment of the control law. 
 

Recall the dynamic of the spacecraft in the inertial 
space which is governed by Euler’s equations of motion 
[1].  

I I I
B B B( )= − × + −Iω C ω Iω h h��    (17)                    

where, 
[ ]Tzyx

I
B ωωω=ω   : inertially referenced body 

angular rate vector; 

















=

zzzyzx

yzyyyx

xzxyxx

III
III
III

I  : moment of inertia tensor of  

spacecraft (MOI); 
[ ]Tzyx hhh=h : reaction wheel angular  

momentum vector; 
T

D dx dy dzC C CC  =   : external disturbance torque 

vector such as aerodynamic torque and solar radiation 
pressure torque. 

Let =− − ×U h h
i

ω the control torque generated by the 
3 reaction wheels for 3-axis active attitude control. 
 
 
 
 
 

We propose the following sliding surface 
e e= +S q W q�      (18) 

where, 
e c=q q q  : quaternion error;  

W    : diagonal gain matrix (3 3)× . 
Deriving Equation (18), yields 

+ +e e c cS = q W q = q q W q q� �� � �� �    (19) 

Assuming  

=S 0�       (20)    

Then  

= −c cq q W q q�� �      (21) 

On the other hand, we have   

+=q ��� �Λω Λω      (22) 

Substituting Equation (17) into Equation (22) yields 
1

eq( )−= + − × + +q I I U C��� Λω Λ ω ω                 (23) 

Where again 
1

c c eq c( )−+ − × + + = −q q I I U C W q q� �Λω Λ ω ω  (24) 

Result 
1 1

c

1
c c c

( )

( I )

− −

−

= −

 + + − × 

U q I

q W q q q I C� �

Λ

Λω Λ ω ω
              (25) 

Finally the sliding mode control is given as follows 

( )

1 1
c

1
c c c

( )

( I ) sin g

− −

−

= −

 + + − × − 

U q I

q Wq q q I C K S� �
Λ

Λω Λ ω ω
      (26)  

To eliminate the chattering phenomenon, the function 
is replaced by a smooth function. 
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V. SIMULATIONS RESULTS 
For this application, the sliding mode controller based on 

the artificial neural network adjusted by a hybrid algorithm 
is simulated. We used a combination of two algorithms 
(Levenberg-Marquardt differential evolution) whose source 
code is available in Matlab on the Internet [12] .The 
differential evolution algorithm is used as pre-learning 
Levenberg-Marquardt. The differential evolution attempts 
to obtain a good solution by gradually reducing the search 
space. The Levenberg-Marquardt uses this solution to find 
an optimal solution more accurate. 

The main objective here is to find the best learning can 
provide a good model. For this, several tests are necessary, 
acting on the parameters affecting the learning. The 
simulation parameters are given in the following Tables. 
 
Table 6: The artificial neural network structure 
Structure Multilayer 

recurrent 
network 

Number of hidden layers 1 
Number of neurons in each hidden 
layer 

3 

Activation functions of hidden layers tansig 
Number of training samples 24000 
Learning method Gradient 

error back 
propagation 

 
Table 7: The evolutionary algorithm parameters 
Initial population 2 
Crossover rate 0.9 
Constant mutation 0.7 

50 
Generations 

 
Stopping criterion 

Accuracy of 
10-5 

 
The following initialization attitude parameters were 

utilized during the simulation 
 
Table 8: Orbit characteristics 
Orbit Circular 
Inclination [degree] 98 
Altitude [km] 680 
sampling period [sec] 10 
 
Table 9: Initial Euler angles and rates for the attitude 
propagator  
Initial roll angle φ [degree] 10 

Initial pitch angle θ [degree]  10 
Initial yaw angle ψ [degree]  -5 
Initial angular rate ωox [degree/sec]  0 
Initial angular rate ωoy degree/sec]  -0.06 
Initial angular rate ωoz [degree/sec]  0.0 
 

 
 
 

Table 10: Initial Euler angles and rates for the attitude 
filter (qEKF) 
Initial roll angle φ [degree] 0.0 

Initial pitch angle θ [degree]  0.0 
Initial yaw angle ψ [degree]  0.0 
Initial angular rate ωox [degree/sec]  0.0 
Initial angular rate ωoy degree/sec]  -0.06 
Initial angular rate ωoz [degree/sec]  0.0 
 
Table 11: Inertia tensor (Satellite configuration I) 
Ixx  [kgm2] 152.9 

Ixy  [kgm2] 0.0 
Ixz [kgm2] 0.0 
Iyx [kgm2] -0.25 
Iyy [kgm2] 152.5 
Iyz [kgm2] 0.0005 
Izx [kgm2] 0.1 
Izy [kgm2] 0.0 
Izz [kgm2] 4.91 
 
Table 12: Miscellaneous 
Simulation time [orbit] 3.0 
Integration step [sec] 0.1 
Sampling time [sec] 1 
 
 

 
Fig. 10 Sun sensor measurement during  

three axis attitude pointing control 

 
Fig. 11 Magnetometer measurement  

during three axis attitude pointing control 
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Fig. 12 Estimated Euler angles during  

three axis attitude pointing control 
 
 

 
Fig. 13 Estimated roll angle during  
three axis attitude pointing control 

 

 
Fig. 14 Estimated pitch angle during  
three axis attitude pointing control 

 

 
Fig. 15 Estimated yaw angle during  
three axis attitude pointing control 

 
 

 
Fig. 16 Estimated angular body rates during  

three axis attitude pointing control 
  

 
Fig. 17 Estimated angular body rate ωox during  

three axis attitude pointing control 
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Fig. 18 Estimated angular body rate ωoy during  

three axis attitude pointing control 
 

 
Fig. 19 Estimated angular body rate ωoz during  

three axis attitude pointing control 
 

The state error estimation and the RMS of attitude 
parameters during three axis attitude pointing control are 
computed at the third orbit and presented by the following 
tables. 
  
Table 13: State error estimation during three axis attitude 
pointing control  

 RMS of attitude 
error 

Roll [deg] 0.025 
Pitch [deg] 0.068 
Yaw [deg] 0.11 
ωox [deg/sec] 6.42*105 
ωoy [deg/sec] 7.80*10-5 
ωoz [deg/sec] 3.57*10-4 
 Magnitude of 

error 
Angles [deg] 0.13 
Angular velocity [deg/sec] 3.71*10-4 

 
 
 
 
 
 

Table 14: RMS of attitude parameters during three axis 
attitude pointing control  

 RMS of attitude 
parameters 

Roll [deg] 0.08 
Pitch [deg] 0.05 
Yaw [deg] 0.09 
ωox [deg/sec] 6.30*10-5 
ωoy [deg/sec] 2.45*10-5 
ωoz [deg/sec] 4.05*10-4 
 Magnitude of 

error 
Angles [deg] 0.13 
Angular velocity [deg/sec] 4.10*10-4 

 
Figures 12 to 19 show the simulation result when doing 

three axis attitude pointing control with a deployed boom 
using the reaction wheels. The satellite is left to nutate 
freely for the second orbit, starting from an initial attitude 
of 10 deg pitch, 10 deg roll and -5 deg yaw. At the start of 
the first orbit the three reaction wheels are activated and 
within a fraction of an orbit the pitch and roll librations 
are damped to a three axis attitude pointing error less than 
0.15 deg and 0.4 mdeg/sec. 

It can be seen from Table 8 that the magnitude of the 
RMS error estimation when using the 7-state EKF 
indicates that the angular error is approximately 0.13 deg. 
The rate error is about 0.37 mdeg/sec. 

The artificial neural network controller adjusted by the 
differential evolution algorithm initially based on the 
sliding mode has completed its task for three axis attitude 
pointing control, while keeping the performance of the 
Artificial Neural Network. 
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VI. CONCLUSION 
This paper presents the results on the performance of 

the sliding mode attitude controller for three axis attitude 
pointing based on the artificial neural network adjusted 
by a genetic algorithm for an active gravity gradient 
stabilised microsatellite. The technique consists with used 
the genetic algorithm to determine the optimal attitude 
controller.  This algorithm has the advantage of escaping 
the local solutions, it tend to produce global optimal 
results without requiring a great deal of information about 
the solution domain. However, the choice of the function 
fitness is delicate, because it is the only link between the 
physical problem to optimize and the genetic algorithm.   

The artificial neural network controller initially 
adjusted by the differential evolution algorithm which is a 
special case of genetic algorithm has completed its task 
for three axis attitude pointing control error less than 0.15 
deg and 0.4 mdeg/sec. 

To conclude, the attitude control based on the genetic 
algorithm can be attractive, efficient, alternative attitude 
control systems for an active gravity gradient stabilised 
satellite but it can be extended for agile satellite. 
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