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Abstract— This paper study the design of a static output 

feedback fuzzy controller for a synchronous machine without 

damper. The non-linear mathematical model is described by a 

continuous-time Takagi-Sugeno (T-S) fuzzy model. Motivated by 

stability results developed for parallel distributed compensation 

(PDC) controller, an Output PDC (OPDC) controller that corresponds 

to a nonlinear static output feedback control law is proposed. Based 

on the Lyapunov stability criterion, the stability analysis is presented 

in terms of Linear Matrix Inequalitie (LMI) optimisation to seek the 

static output feedback gains that satisfy the Lyapunov stability 

inequalities. Simulation results for synchronous machine demonstrate 

the OPDC controller‘s effectiveness. 

 

Keywords—  Continuous systems, T-S model, OPDC controller, 

Quadratic stability, LMI formulation 

I. INTRODUCTION 

 he issue of stability and the synthesis of controllers for 

nonlinear systems described by continuous-time Takagi-

Sugeno models [14] has been considered actively. There has 

been also an increasing interest in the multiple model 

approach [17,13] which also uses the T-S systems to 

modeling. During the last years, many works have been 

carried out to investigate the stability analysis and the design 

of state feedback controller of T-S systems.  

Nonlinear control syntheses based on the Takagi–Sugeno 

(T-S) fuzzy model have been successfully developed in the 

past decade [18–21]. Most of these designs [5–10, 18–25] are 

based on linear matrix inequality (LMI) techniques [12, 26], 

which concentrate on transferring various performance 

constraints and Lyapunov inequalities into LMI 

representations. 

Afterwards, a LMI solver can be employed to compute the 

feedback gains of each fuzzy rule and the common positive 

definite matrix to satisfy all Lyapunov inequalities. 

Unfortunately, the static output feedback fuzzy control design 

becomes much more difficult and complex than the state 

feedback design because it is a nonlinear matrix inequalities  
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(NLMIs) problem. Therefore, only a few investigators [1, 4, 7] 

have found a way to convert the NLMI problem into an LMI 

problem. 

Unfortunately, the mathematical derivations of these 

approaches are too complex to apply in the real world. Also, 

these design results are conservative because some extra 

constraints have to be attached when converting the NLMIs 

into LMIs. 

 

The advantage of the T-S fuzzy model lies in that the 

stability and performance characteristics of the system 

represented by a T-S model can be analyzed using Lyapunov 

function approach [13].  Tanaka and Sugeno in [13] showed 

that the stability of a T-S fuzzy model could be shown by 

finding a common symmetric positive definite matrix P for r 

sub-models, that satisfy a set of Lyapunov inequalities [10], 

[14]. 

 

Using a Quadratic Lyapunov function and PDC technique 

[6], [8] sufficient conditions for the stability and stabilisability 

have been established [5,6,10,13,15,16]. The stability depends 

on the existence of a common positive definite matrix 

guarantying the stability of all local subsystems. The PDC 

control is a nonlinear state feedback. 

 

Recently a number of control law have been derived from 

the PDC controller [4, 13,14,15,17]. For example, a static 

Output PDC (OPDC) [7], which is an output feedback 

controller PDC, used to stabilise T-S models. The LMI 

approach is used to develop a static output feedback controller 

for nonlinear systems described by continuous-time T-S 

models. 

 

The purpose of this paper is to develop a simple and 

powerful method to solve the static output feedback gains for 

a synchronous machine in T-S fussy design, so each fuzzy rule 

such that all the Lyapunov stability inequalities can be 

satisfied Quadratic Lyaponov function. It is well known that 

the system performance depends on a PDC control that can be 

shifted by feedback gains. Since the feedback gains are given, 

the Lyapunov stability inequalities of the static output 

feedback syntheses can be dealt with using the LMI solver, 

Static Output Feedback Fuzzy Controller  

Of a Synchronous Machine  

OUAALINE Najat,  ELALAMI Noureddine 

T 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT 
Issue 3, Volume 6, 2012

234

mailto:oualine@gmail.com
mailto:nouaaline@fsts.ac.ma
http://cgi.ninjaproxy.com/index.php/1010110A/6fa983ba5f83b7479846d3418d0681687f61dfddf409619f970f095c5fb5c1dbb66eb8664908670386b92ad947417561ea35a0c7da70adba5f267cee321c4dc4ef2b7ff59989195832380a8716480
http://cgi.ninjaproxy.com/index.php/1010110A/6fa983ba5f83b7479846d3418d0681687f61dfddf409619f970f095c5fb5c1dbb66eb8664908670386b92ad947417561ea35a0c7da70adba5f3362ea321c4cccc22752fbda89131a713a16480


 

 

who define the fitness function by using the computing results 

of the LMI solver 

 

In this paper we study the stabilization of a synchronous 

machine, using fuzzy Takagi-Sugeno approach. By using 

Output Parallel Distributed Compensation (OPDC) as a 

nonlinear static output feedback control law, we give a 

formula for the fishing effort that allows stabilizing the system 

around a steady state. Only the stability conditions 

reformulated into solving an LMI problem was developed for 

the synchronous machine.  

 

The rest of this paper is organized as follows. In section 2, 

we present an overview of dynamic Takagi-Sugeno systems 

and OPDC formulation in terms of LMI [21]. Section 3 deals 

with the description of the continuous model structured of 

Synchronous machine, which is transformed to a Takagi-

Sugeno fuzzy model, and controlled by an OPDC law. The 

simulation results are shown. Finally, a conclusion is given. 

II. T-S FUZZY MODEL AND ITS STABILITY  

A. Model representation  

 

The design procedure describing in this section begins with 

representing a given nonlinear plant by the so-called Takagi-

Sugeno (T-S) fuzzy model. The fuzzy model proposed by 

Takagi and Sugeno [11] is described by fuzzy IF-THEN rules 

which represent local linear input-output relations of a 

nonlinear system. The main feature of a Takagi-Sugeno fuzzy 

model is to express the local dynamics of each fuzzy 

implication (rule) by a linear system model. The overall fuzzy 

model of the system is achieved by fuzzy ‗‗blending‘‘ of the 

linear system models. 

 

The i
th

 rule of the T–S fuzzy models for a continuous fuzzy 

system is written as follows: 

A T-S model [9], [10], is based on the interpolation 

between several LTI local models as follows in the 

continuous time case: 

 

,
 ̇( )  ∑   ( ( ))*    ( )       ( )+ 

 
   

 ( )  ∑   ( ( ))     ( )
 
                            

      (1) 

 

where r is the number of submodels,       is the 

state vector and  ( )     is the input vector,  ( )  
   is the output vector,  ( )     is the decision 

variables vector and   ( ( )) is the activation function. 

 

        ,          and          are the state 

matrix, the input matrix and the output matrix 

respectively. 

 

Different classes of models can be considered with 

respect to the choice of the decision variables and the 

type of the activation function.  

In this paper, all the decision variables of the T-S 

model (1) are assumed measurable.  

 

Each linear consequent equation represented by (    ( )  
     ( )) is called ―subsystem‖ or ―submodel‖. 

 

Model Rule i : 

 

     ( )      
 (  ( ))          ( )      

 
(  ( )) 

 

       {
 ̇( )      ( )       ( )

  ( )      ( )                    
        (2) 

 

Where i=1, 2, …, r. r is the number of IF-THEN rules. 

The normalized activation function   ( ( )) corresponding 

to the i
th

 submodel is such that [2], [3], [14]: 

 

,
∑   ( ( ))

 
                              

  ( ( ))             *     +
        (3) 

 

B. Stability using Static Output Feedback  

 

We have proposed an LMI-based design method using 

fuzzy state feedback control in [1]. However, in real-world 

control problems, the states may not be completely accessible. 

In such cases, one needs to resort to output feedback design 

methods. 

 

Fuzzy static output feedback control is the most desirable 

since it can be implemented easily with low cost fuzzy model. 

The designed fuzzy controller shares the same fuzzy sets with 

the fuzzy model in the premise parts. For the fuzzy models (1) 

we construct the following fuzzy controller via the OPDC: 

 

 
Control Rule i : 

 

     ( )      
 (  ( ))           ( )      

 
.  ( )/ 

 

       ( )      ( )         

 

Where    is the local output controllor feedback to 

determine the overall fuzzy control law is composed of several 

linear output feedbacks blended together using the nonlinear 

functions of the model. 

 

 ( )   ∑   ( ( ))    ( )
 
      (4) 

 

In the sequel, we assume that Ci = C, i = 1, ... ,r, is full row 

rank.  
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By substituting (4) into (1), the closed-loop fuzzy 

system can be represented as: 

 

 ̇( )   ∑∑  ( ( )

 

   

 

   

  ( ( )(         )  ( ) 

          (5) 

 

The following theorem deals with sufficient 

conditions in LMIs form to ensure asymptotic stability 

of (5).  

 

Theorem 1 [14]: The equilibrium of the continuous 

fuzzy system described by (5) is asymptotically stable in 

the large if there exists a   P > 0 such that: 

 

  
                         (6) 

 

   
                                 (7) 

Where: 

 

   (         )   (8) 

 

     
(         )

 
 (         )

 
   (9) 

  

In the following, sufficient conditions in LMIs form are 

given to ensure asymptotic stability of (5). 

 

Suppose that there exist matrices X >0, M and N, such  

that: 

 
                      

 

 

    (   )
        (     )

         

              (10) 

 

(     )  .(     ) /
 

 (         )  

 ((         ) )
 
        (11) 

 

                             

 

 

With   ( ( ))   ( ( ))      

  

The LMIs (10,11) are obtained from (6,7) by using the 

changes of variables                     . Since the 
matrix C is assumed full row rank, we deduce that there exist a 

non-singular matrix : 

 

      (   )      (12) 

 

And then 

 

      
     (13) 

 

Or 

 
          (    )           *     + 

 

III. APPLICATION: STABILIZATION OF THE SYNCHRONOUS 

MACHINE 

A. The synchronous Machine and its Mathematical Model 

The mathematical model of the synchronous machine 

adopted in this work is obtained on consist to transform all 

stator quantities from phase a, b and c into equivalent d-q axis 

new variables. 

The equations are derived by assuming that the initial 

orientation of the q-d synchronously rotating reference frame 

is such that the d-axis is aligned with stator terminal voltage 

phase. The details of their above equation and its parameters 

can be found in [16].  

The mathematical model of the synchronous machine with 

damper was established as the follow: 

 

The state equations: 

 

 ̇( )   ( ( ))   ( ( )) ( )  (13) 

 
Where: 

 
 ( ( ))

 

[
 
 
 
 
 

  ( )       

      (   ( ))       ( )    (  ( ))      ( )    (  ( ))      ( )

     (  ( ))      ( )    

      (  ( ))       ( )       ( )      ( )   

      (  ( ))      ( )       ( )      ( )  ]
 
 
 
 
 

 

 

 

 ( ( ))  [
           
            

]
 

 

 

Where the state vector:  

 

 ( )   .  ( )    ( )   
  ( )    

 ( )    
  ( )/

 

   , 

 

the input vector  ( )   (   ( )   ( ))
 
    

 

Augmented with an output vector: 

 

 ( )     ( ), with    (             ),  
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then  ( )  (                )
 . 

 

The entire symbols for nonlinear model used in this paper  

are given in appendix A. 

 

The synchronous machine model parameters are given in 

appendix B.  

 

A Takagi-Sugeno fuzzy model of this system is given in the 

following section. 

 

B.  Construction of T-S Fuzzy Model 

 

The TS fuzzy model represents exactly many nonlinear 

models on a limited interval of the state variables [14]. One of 

the main interests of this representation is that it allows 

systematic methods to design control laws [2]. Unfortunately, 

for this approach the stability criteria are only sufficient, such 

that numerous model rules are necessary to meet conservative 

specifications. Furthermore, the number of rules grow by 2
n
 

where n is the number of non-linearities [14]. Still, it has been 

used successfully for the PDC control of synchronous machine 

[1, 2, 3, 4].   

 

As commented earlier, the number of model rules goes 

as e=2
n
 with n nonlinear terms [2] and [17]. 

 

Note that there are four non linearities in the non-

linear dynamical model (1): 

 

   (   ( ))      (  ( ))    (  ( ))  

 

And     ( )    (  ( )). 

 

Thus n = 3 indicating e= 2
3
 = 8 rules are required. 

However, with some compromise the number of rules 

can be reduced to 2 while maintaining model [1], [17]. 

 
First, we can rewrite two of the nonlinear terms in 

   (  ( )) and    (  ( )) as: 

 

   (  )

  ( )
 

       (  ( ))    ( )    (   )

  ( ) (       (   ))
  

 
    (  ( )     (  ( )))

  ( ) (       (   ))
 
   (   )

   

 

And 

 

   (  ( ))  
   (  ( ))     (   )

     (   )
  

 
     (  ( ))

     (   )
     (   ) 

 

Whose membership functions are bounded in the range: 

 

  ( )  ,        -              [ 
 

 
]          : 

 
 

|
       (  ( ))    ( )    (   )

  ( ) (       (   ))
 

   (  ( ))     (   )

     (   )
|       

 

 

Therefore the transformation on    (  ( )) can be 

eliminated with little compromise and the fuzzy model order 

reduced to 2
2
 or 4 rules. Then, the final fuzzy model is 

described by only two rules. 

 

Here the premise vector is independent of the input and 

often considered as a part of the state vector or as a linear 

combination of this one. And the premise vector is defined by  

 

 ( )  [  (  ( ))   (  ( ))]  

 

        (  ( ))    ( )       (  ( ))    ( ) 

 

For a premise terms, define,    ( )    ( )        
 

Next, calculate the minimum and maximum values of    ( ) 

under    ( )  ,    -    . 

 

They are obtained as follows:  

 

     ( )         ( )     

 

From the maximum and minimum values,   ( ) can be 

represented by: 

 

  ( )    
 (  ( ))     

 (  ( )) (  ) 

 

Where     
 (  ( ))    

 (  ( ))    

 

Therefore the membership functions can be calculated as: 

 

  
 (  ( ))  

  ( )   

  
      

 (  ( ))  
    ( )

  
 

 

Finally, the complete fuzzy model is comprised of four 

rules, the premise variable is: 

 

  ( )    ( )       ( )    ( ) 

 

with the following membership functions respectively, 

 

  
 (  ( ))  

     ( )

  ( )
      

 (  ( ))      
 (  ( )) 

 

  
 (  ( ))    ( )      

 (  ( ))      
 (  ( )) 

 

The Takagi-Sugeno fuzzy model of the synchronous 

machine connected to infinite bus system can be rewritten by 
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introducing submodels are described respectively by the four 

matrices Ai, Bi, Ci, i=1, .. , 4. as follows: 
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With; 
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 ,        (   )      -,  
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   [
               
                

]
 

        ,             -   

 

 
The T.S fuzzy model exactly represents the nonlinear 

systems. Notice that this fuzzy model has the commons B and 

C matrix.  

 
In the OPDC design, each control rule is associated with the 

corresponding rule of a T–S fuzzy model. The designed fuzzy 

controller shares the same fuzzy sets as the fuzzy model and 

the same weights   ( ( )) in the premise parts. The following 

output feedback fuzzy controller is constructed via OPDC as 

follows: 

 

 ( )   ∑  ( ( ))    ( )

 

   

 

 

  ( ( ))  
  ( ( ))

∑   ( ( ))
 
   

           , 

 

  ( ( ))  ∏  
 

 

   

.  ( )/          

 
Finally, the complete the closed loop model T-S fuzzy (5) is 

synthesized with the premise variable: 

 

  ( )    ( )        ( )    ( ) 

 

The synthesis of the controller consists of finding the 

feedback gains of the conclusion parts Ki which guaranteed 

the asymptotic stability of the output closed loop system.  

IV. SIMULATIONS 

 

To show the effectiveness of the proposed design, a 

simulation study is performed using simulations tets to a 

synchronous machine. 

Many tests have been performed to prove the goodness of 

the proposed fuzzy control system. Some results, obtained by 

means of the SIMULINK program of MATLAB, are reported 

in what follows. 

 

For these simulations, the model rules are chosen for 

  ( )  ,       - and     ,   -. 
 

Assume that the initial conditions  ( ): 

 

 ( )  (                        )   

 

We presents only the results for the value of      
 

 
 

and a = 0.82. Every set of LMIs was solved via the 

Matlab LMI toolbox.  

 
Using a software simulator, we have found matrixes X, Ni 

and M that satisfies (10) and (11), and also gains Ki for the 

output feedback controller (13) that stabilizes the system: 

 

   ,                 - 
 

   ,                 - 
 

   ,                 - 
 

   ,                 - 
 

   ,                 - 
 

   ,                - 
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   ,                 - 
 

   ,                - 
 

The trajectories of the state vector and the system response 

were illustrated by the above simulation results in the case of 

Static output quadratic stability.Figure.1 displays overall 

simulation results of the state vector. 

 

 

  
 

  
 

  

 
 

  
 

Figure.1 The trajectories of the state vector: a:  d angular position 

of rotor (rad), b: ωd Rotor angular speed (rad/s), c:    
   d -axis sub-

transient F.E.M, d:   
  q -axis transient F.E.M and e:   

    q -axis sub-

transient F.E.M. 

 

The simulations results displays the trajectory of the state 

vector at different values of at startup and those simulations 

illustrate the effect of the different values of the angle  d. 

 

In general, we conclude that in the  same way of the parallel 

distributed compensation (PDC) concept stabilize the 

synchronous machine [1, 2, 3, 4], in this paper we can also 

show that the static output feedback fuzzy controller also 

features this property. 

 

V. CONCLUSION 

In this paper, we have described an output feedback control 

designed to stabilize the synchronous machine with damper 

infinite bus. The OPDC law was used to design a fuzzy 

controller from T-S fuzzy model. 

 

The static output feedback fuzzy control problems are 

derived from the Lyapunov stability criterion, so the problem 

is formulated as the solution of LMIs set.  
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Another way to deal with the static output feedback control 

for Synchronous machine modeled by a T-S model is to 

transform the synthesis of the output feedback into a 

complementarity problem, which constitutes our future 

researches. 

 

The numerical simulations and experimental results have 

illustrated the expected performance and indicate that the 

stability of the OPDC controlled system is very suitable in 

Synchronous Machine and it leads to an optimization problem. 

 

APPENDIX 
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TABLE I 

MACHINE SYNCHRONOUS DATA (CAPACITY POWER 200VA) 
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