
 

 

  
Abstract—Due to growing dynamics and complexity of today’s 

markets, customer demands are often highly volatile. In order to 
achieve a well-founded forecast of customer demands, a company has 
to consider several dynamic influences. Classical simple statistical 
prediction methods are mostly easy to apply but are not able to react 
on dynamic behavior. More complex statistical methods achieve 
better forecasts but also do not include dynamic means. Prediction 
methods of nonlinear dynamics consider qualitative in addition to 
quantitative information within time series of past customer orders in 
order to achieve better forecasts into the future. In particular, local 
models use the information fostered by delay time embedding of 
nonlinear time series analysis. In this paper, a research approach is 
presented that has the goal of outlining suitable prediction methods 
for future customer demands of a forecasting company in a 
production and delivery network.  
 

Keywords— demand forecast, forecasting methods, nonlinear 
dynamics, time series analysis.  

I. INTRODUCTION 

ODAY’S markets are characterized by a strong 
competition among globally dispersed companies. Along 

with the continuing trends of outsourcing and the companies’ 
concentration on their core competences these markets are 
highly complex. In addition, mutual dependencies within the 
related production and logistics processes as well as changing 
conditions in the economic, political, and ecologic 
environment foster the development of dynamics on all time 
scales. These conditions entail volatile markets complicating 
the accurate forecast of future customer demands [1]. 
However, a well-founded prediction of upcoming customer 
demands is highly important for a company’s long- and mid-
term planning, especially considering procurement strategies 
and production resources. Here, low-quality data on future 
customer demands in combination with limited flexibility in 
reaction can implicate undesirable consequences. In the case 
of overestimation, low efficiencies can result. Vice versa, an 
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underestimation of the customer demand can lead to capacity 
overloads, followed by delayed deliveries and even out-of-
stock-situations which can cause a loss of customers in an 
extreme case. Therefore, forecasting methods are required 
which achieve high-quality predictions on future customer 
demands considering all available information within the data 
at hand. 

The incoming data of customer demands can be regarded as 
time series. In order to grasp the dynamic evolution one can 
distinguish between external and internal dynamic influences 
that impact on the time series and accordingly on a customer’s 
demand. These influences are illustrated in Fig. 1. External 
dynamic influences are given by general market trends, e.g. 
seasonal fluctuations, changes of currency rates, political 
issues or personal relationships. These factors and their 
dependencies are boosted by the continuing globalization and 
its impact on complexity and volatility. From a forecasting 
company’s point of view, the external dynamic influences are 
superposed by internal dynamic influences which arise from 
its direct customers. Here, the internal settings of a customer’s 
production system and its control, e.g. considering the 
system’s organization, order policies etc., are of eminent 
importance for the impressed dynamics on the time series of 
its demand. Generally, each production system can be 
interpreted as a dynamic system [3], [4], [5]. Information on 
the system’s structure, capacities, operational rules, and 
queuing policies determine the system’s dynamics. This 
insight is instructive for the prediction of its demand as it 
accounts for deterministic and qualitative properties within the 
related time series which can be considered in addition to 
quantitative information. 

In the following, we present the research approach of the 
project “Forecasting in Production Considering Prediction 
Models of Nonlinear Dynamics” which is funded by German 
Research Foundation. The main goal of the research project is 
to improve forecasting considering customer demands in 
production systems. It bases on the assumption that the 
analysis of dynamic properties within the time series 
representing customer demands leads to a better 
comprehension of their behavior and allows more precise 
predictions of future demands. The project considers 
quantitative as well as qualitative properties. In the next 
section we give a short overview on forecasting methods 
including their ability to deal with volatile customer demands 
and qualitative information. Furthermore, we detail the 
project’s approach to consider qualitative data for an improved 
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selection and application of forecasting methods. Within this, 
time series analysis as a tool for characterization is linked with 
prediction methods, especially emphasizing methods of 
nonlinear dynamics. In particular, prediction by local models 
of nonlinear dynamics is considered. These models use 
qualitative data from the reconstruction of dynamic properties 
by delay time embedding in order to improve forecasting 
results. 

II. FORECASTING METHODS 

Over the years diverse forecasting methods have been 
developed. In the course of the twentieth century, these 
methods have been adapted and furthered with the aid of new 
arising powerful computers. There are three main classes in 
which the forecasting methods can be grouped: statistical 
methods, methods of soft computing, and methods of 
nonlinear dynamics, Fig. 2.  

In general, classical statistical methods, e.g. moving 
average, exponential smoothing or linear regression, split an 
observed time series based on past values into components of 
trend, season, and random noise. After that, the resulting 
model is applied to extrapolate the time series into the future 
[7]. Most of the methods are quite simple and applicable for 
non-experts. Associated with the introduction of computers 
they were advantageous because of entailing low computing 
efforts. However, an application of the mentioned simple 
statistical methods is only reasonable to receive vague 
estimations of future demands. The increased power of today’s 
computers allows the adaptation of more sophisticated 

prediction methods. As an example, the Box-Jenkins-method 
provides improved forecasting results while requiring 
intensified computation capacity [8].  

Other computational intensive procedures are con-
temporary methods of soft computing. These are characterized 
by a strongly increased model complexity and are currently 
rather of academic interest than applicable for a forecasting 
company. Examples of these models are expert systems [9], 
artificial neural networks [10], methods of fuzzy logic [11] or 
genetic programming [12], [13]. Furthermore, the indicated 
methods allow their combination to hybrid systems, e.g. expert 
systems and artificial neural networks were used in order to 
gain predictions of outward stock movement [14]. Equally, a 
combined Neuro-Fuzzy system was applied to the daily sales 
rate prediction of newspapers [15]. However, although the 
application of soft computing methods provides the capability 
to achieve high-quality prediction results when applied 
correctly, they are still in the period of development and 
feature various potentials for improvement. In addition, these 
models are rather complex which complicates their application 
and interpretation by non-experts, e.g. the application of 
neural networks requires the choice, training, and optimization 
of networks and their underlying functions [10]. 

Dealing with a time series which represents a customer’s 
demand influenced by his production system, the question 
arises whether the applied prediction method considers 
qualitative structures of the time series obtained by time series 
analysis. Here, methods of nonlinear dynamics offer the 
potential to take deterministic as well as quantitative and 

 

Fig. 1 Dynamic Influences on Demand Forecasts Within a Production and Delivery Network (in Accordance to [2]) 
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stochastic properties of observed time series into account. 
These methods enable to include dynamic effects in 
production and logistics systems which have been studied in 
various publications [3], [5], [16], [17], [18]. Suitable methods 
for this challenge are found among local, global, and hybrid 
models. Local models create individual prediction functions 
for each single point within the time series [19]-[21]. A special 
prediction algorithm that uses local models is described in 
section IV. Global models strive to describe the whole time 
series in terms of a polynomial as a basis for predictions [22]. 
Hybrid models are a combination of both, local and global 
models [23]. Besides, approaches were developed to combine 
methods of nonlinear dynamics with methods of soft 
computing [24]. Indeed, these approaches of combined 
application are in development and have potentials to be 
specified and extended. 

In contrast to the before mentioned forecasting methods, the 
methods of nonlinear dynamics are applicable to real systems 
even without a previous idealization. Moreover, they have the 
potential to predict the future more precisely without the 
necessity of splitting the time series into its components of 
trend, season, and random noise. However, equally to the 
methods of soft computing, the application of methods of 
nonlinear dynamics requires expert knowledge especially 
considering the choice of parameters associated with the 
methods. On that account, an understanding of the time series’ 
properties facilitates adequate adjustments of the model 
parameters. These properties can be inspected by methods of 
linear and nonlinear time series analysis. Thus, the next 
section describes suitable methods for analysis and 
characterization of time series. 

III.  ANALYSIS AND CHARACTERIZATION OF TIME SERIES 

Generally, the choice of suitable forecasting methods is 

supported by qualitative information on a time series’ 
evolution. Methods of linear and nonlinear time series analysis 
are applicable to analyze and characterize a time series in 
terms of its structure and patterns. Linear methods are capable 
of giving a preliminary estimate of the time series’ properties. 
In terms of stationarity the mean and the variance can be used 
to derive first indications. However, being indexes of the 
statistical overall-properties, an application of these methods 
does not provide sufficient information about the time series’ 
structure. In order to deal with the related characteristics, 
Fourier analysis as a measure of power spectrum or the 
autocorrelation function which observes the self-similarity of 
the time series are adaptable. These methods are appropriate to 
characterize time series arisen out of linear processes. In order 
to deal with nonlinear effects, e.g. originating from 
interdependent production and logistics processes, methods of 
nonlinear time series analysis have to be adapted as well. 

The state of a system is determined uniquely by a set of 
variables which span the phase space. The time series’ 
evolution over time is described by a sequence of points 
within phase space, a so-called trajectory. The analysis of a 
trajectory’s movement in phase space allows investigating the 
time series’ properties and characterizing their dynamic 
structure [25], [26], [27]. Over the years, several methods to 
analyze and characterize the properties and dynamics of 
nonlinear time series have been developed. A method to 
provide vectors that span a reconstructed phase space is the 
model of delay time embedding that is described in the next 
section [28]. Here, the box counting dimension and the 
method of false neighbors are applicable to estimate the 
dimension of the reconstructed phase space and the delay time 
[29], [30]. Postulating similar future evolutions from two 
contiguous points in phase space, the method of false 
neighbors allows determining whether these points are true 
neighbors or if their neighborhood originates in a projection of 
a higher-dimensional space. Counting these false neighbors 
the system’s dimension can be estimated. In addition, the 
calculation of Lyapunov-exponents is a way to investigate the 
divergence or convergence of contiguous trajectories. As a 
result, sensitivity in terms of starting conditions on future 
evolutions can be analyzed. In case the trajectories deviate 
from each other even if the initial values are very close, the 
behavior is called chaotic. Therefore, the calculation of 
Lyapunov-exponents implies the ability to separate areas in 
which the trajectory acts chaotic from those showing regular 
dynamic movement [27]. 

A procedure of approximating a complex and multi-
dimensional trajectory by a sequence of discrete points is the 
so-called Poincaré mapping. By applying this method, a 
complex dynamic system can be reduced to a simplified and a 
more comprehensive appearance [25].  

Furthermore, the calculation and illustration of recurrence 
plots represents a trajectory’s recurrences within a high-
dimensional phase space on a two-dimensional squared 
matrix. This can be instructive for future developments of a 
time series and recurrence quantification analysis [31], [32], 
[33]. Finally, entropy as a term of physics or information 

 

Fig 2 Forecasting Methods (in Accordance to [6]) 
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theory can be adapted to measure a system’s level of dynamic 
disorder and indicate its predictability [34]. In order to deal 
with stochastic and deterministic effects within a time series, 
the signal-noise-ratio characterizes to which extend a given 
signal is overlaid by a noise-signal, determining the ratio of 
stochastic to deterministic influences. 

Our approach is to analyze an incoming time series 
representing a customer’s demand in terms of its dynamic 
characteristics and link these with suitable forecasting 
methods. The next section details a usage of local prediction 
models after a dynamic reconstruction by delay time 
embedding of nonlinear time series analysis. 

IV. LOCAL MODELS OF NONLINEAR DYNAMICS 

In the wide range of different forecasting methods for time 
series, models of nonlinear dynamics promise high forecasting 
accuracy because of considering qualitative in addition to 
quantitative data information. For instance, local models of 
nonlinear dynamics use the delay time embedding method of 
nonlinear time series analysis to build a reconstructed phase 
space in which the attractor is equivalent to the attractor in the 
unknown original phase space. Based on this qualitative 
information about the time series structure, the time series is 
extrapolated into the future by using a nearest neighbor 
prediction algorithm. In the case when a time series on hand 
represents customer demands in production and delivery 
networks, the described procedure is applied in order to 
identify deterministic structures within past customer orders 
and subsequently to achieve better forecasts of future 
customer demands. In this section, firstly, we give a short 
overview of dynamic systems and its properties. Afterwards, 
we describe the method of delay time embedding and 
subsequently a prediction algorithm basing on this method. 

A. Dynamic Systems and Properties 

In the case of discrete time, a dynamic system can be 
described by a system of difference equations 
 

( )1i i+ =x F x   with 
,1
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i m
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x
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In the continuous case, a dynamic system can be described by 
an autonomous system of ordinary differential equations of 
first order 
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The vector x  (or respectively ix  in the discrete case) denotes 

the state of the system at the time t  (at time event i  ) and F
denotes a slope vector.  

In the following, we will refer to the continuous case. A 

reduction to differential equations of first order in the 
continuous case is no restriction since every ordinary system 
of higher order can be transformed into a system of first order 
by introducing new variables. Moreover, every non-
autonomous ordinary system can be converted into an 
autonomous by introducing a new variable 1mx t+ =  and the 

trivial condition 1 1.mx + =ɺ  The components of the state vector 

x  span an m-dimensional space that is called the phase space
mM ⊂ ℝ . A point x  in phase space represents a state of the 

dynamic system. The dynamic evolution of a state over time is 
described by the flow, a mapping 
 
 : M MΦ × →ℝ  (3) 
 
with the properties 
 

 ( )0,Φ =x x  for all M∈x  (4) 

 ( ) ( ), ( , ) ,t tτ τΦ Φ = Φ +x x  for all ,t τ ∈ℝ , .M∈x  (5) 

 

In the following, we will write ( )tΦ x  instead of ( ), .tΦ x  The 

velocity field of this evolution is characterized by .F  A 
mapping 
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        t

M

t
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Φ

x
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ℝ

֏
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that illustrates the system state’s evolution over time in phase 
space is called a trajectory [25]. The dynamic system is 
defined as totally deterministic. This means that a trajectory is 
uniquely defined by a state vector x  and thus, any two 
trajectories in phase space cannot intersect. Through every 
point x  in phase space M  there exists a unique trajectory 
with x  as the initial condition [25], [35]. 

Dynamic systems can be classified into the dissipative 
systems and the non-dissipative systems. Dissipation means 
that a phase space volume containing initial conditions is 
contracted under the dynamics [25]. Within non-dissipative 
systems no frictional-losses occur. In order to model states and 
evolutions according to production systems, a use of 
dissipative dynamic systems is more reasonable than a use of 
non-dissipative [36], [37]. For that reason, only dynamic 
systems with dissipation are considered within this article. In 
such systems, after a certain time, a set of initial conditions 
will be attracted to a subset A M⊂  of the phase space which 
is called the attractor of the system. By a definition of Lanford 
[38], an attractor A  has the following properties: 

 
• (Invariance under the flow) For A∈x  it follows that 

( ) .t AΦ ∈x  

• (Attractiveness) It exists an open environment U  with 

A U⊂  so that ( )t U UΦ ⊂  for 0t >  and 

  ( )
0

.t
t

A U
>

= Φ∩  (7) 
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• (Indecomposability) A  cannot be divided into two 
nontrivial closed invariant pieces. 

 
The set of initial conditions for which the trajectories converge 
against the attractor is called the basin of attraction [25]. In 
general, the space that contains the attractor A  has a smaller 
dimension than the whole phase space .M  This smaller space 
contains the relevant dynamic properties of the system. 
Therefore, attractors are of particular interest for an 
investigation on dissipative dynamic systems. 

If all dependencies within the dynamic system are known, 
trajectories can be illustrated in the phase space M  which is 
spanned by the known components of the state vector x . The 
analysis of a trajectory’s movement in phase space allows 
investigating its properties and characterizing its dynamic 
structure.  

Commonly, not all dependencies are known. In many cases, 
only a scalar time series of measurements on the system is 
available. Here, more complicated methods have to be used in 
order to reconstruct the system’s dynamic properties. It is 
possible to embed the original unknown phase space M  into 
another room ,E  the embedding room, without losing the 
dynamic properties. An embedding is a one-to-one mapping 
that maps a manifold M  onto another manifold E  with 
dim( ) dim( ).E M≥  In the following, the terms smoothness 

and diffeomorphism are needed within an embedding theorem. 
A smooth mapping is an at least two times continuously 
differentiable mapping. A diffeomorphism is a smooth 
mapping with smooth inverse mapping. The following 
theorem is a result by Takens [39]: 

 
(Takens’ Embedding Theorem)  

Let M  be a compact manifold of dimension ,m  let 

:t M MΦ →  be the flow on ,M  let :g M → ℝ  be a 

scalar measurement function of some quantity on the 
system, and let x  be the vector of the system’s state. If 

tΦ  is a diffeomorphism and g  is a smooth mapping, 

then the mapping 2 1: mM E +→ ⊆h ℝ  with 

( ) ( ) ( ) ( ) ( )1 2 2, ( ) , ( ) , , ( )mg g g g= Φ Φ Φ  h x x x x x…  (8) 

is an embedding of M  into 2 1.mE +⊆ℝ  
 
By embedding a phase space M  into an embedding room 

E  the dynamic properties of M  can be reconstructed. In this 
process, the topological and differential characteristics of the 
attractor A  in M  are invariant which means that they are also 
reconstructed in .E  According to Takens’ theorem, an 
embedding dimension of 2 1n m≥ +  for m∈ℕ  is sufficient 
for this reconstruction. In addition, Sauer, Yorke, and Casdagli 
[35] proved an extension of this theorem. They showed that it 
also holds if n  is bigger than two times the box-counting 
dimension, a generalized fractal dimension that needs not to 
be an integer value. 

Applying one of the mentioned embedding theorems, a 
system’s state in the original phase space can be reconstructed 

in the embedding space by the mapping .h  A well-known 
method to find a suitable measurement function g  to define 

the embedding h  is the delay time embedding method. 

B. Delay Time Embedding 

Given a time series of past customer orders, a forecasting 
company attempts to extrapolate in order to predict future 
customer demands. Local prediction models of nonlinear 
dynamics firstly need information about qualitative structures 
within the time series on hand. Thus, the dynamic properties 
of a complex dynamic system that considers time evolutions 
within the considered production and delivery network have to 
be reconstructed. Therefore, the theoretical state vector x  
whose components are unknown has to be replaced by a 
concrete vector based on the available time series data. Let the 
components of the given time series of length N  
 

 
{ }0 1 1

0

, , ,

( ),     ,     
N

k j k k S k

y y y

y x t t t k yτ
−=

= = + ∈
y …

ℝ
 (9) 

 
be successive equidistant measurements (starting at 0t ) of the 

component jx  of the state vector [ ]T

1, , .mx x=x …  Sτ  is 

called the sampling time. In order to apply Takens’ embedding 
theorem, the scalar measurement function g  of some quantity 

on the system in (8) can be chosen as 
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Thus, the given time series can also be written as 
 

 

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 1

0 1 1

0 0 0

, ( ) , , ( )

, , ,

, , , ( 1) .

N

j j j N

j j S j S

g g g

x t x t x t

x t x t x t Nτ τ

−

−

= Φ Φ

=

= + + −

y x x x…

…

…

 (11) 

 
Applying Taken’s theorem, a state x  in the original phase 
space M  can be embedded into an embedding room 

2 1mE +⊆ℝ  by the mapping h  in (8). Thus, define 
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This vector is called a delay coordinate vector of length n  

starting at .k  Lτ  is called the delay time or lag time and is a 

multiple of the sampling time .Sτ  The delay coordinate vector 

can also be displayed as 
 

 
T,

, , ( 1), , , .L

L L

n
k g k k k ny y yτ

τ τ+ + − =  xh …  (14) 

 
The original time series y  consists of N  measurements of the 

component jx  of the state vector x  with successive distance 

Sτ  between each two measurements. The vector ,
, ,

Ln
k g

τ
xh  is a 

segment of the original time series containing n  of the N  

components of y  with a delay time ,  ,L Sc cτ τ= ∈ℕ  between 

each two components. The length n  of the vector ,
, ,

Ln
k g

τ
xh  is 

called the embedding dimension.  

By the vector ,
, ,

Ln
k g

τ
xh  one original state vector x  can be 

reconstructed. The set of all these reconstructed vectors 
 

 { },
, , : 1, ,Ln

k gH k Nτ= =xh …  (15) 

 
describes a discrete trajectory ψh  in the embedding room E  

that is a unique and invertible mapping of the original 
trajectory ϕx  in the original phase space .M  For the 

applicability of one of the embedding theorems, it is required 
that tΦ  is a diffeomorphism and g  is a smooth mapping. 

Hence, ψh  has the same topological and differential properties 

as .ϕx  In addition, all geometric and stability properties of the 

original attractor A  can be calculated out of the 
reconstruction. 

Two important parameters to choose for the embedding are 
the embedding dimension n  and the delay time .Lτ  These 

parameters have to be adjusted suitably in order to keep all 
essential information on the one hand and to leave out 
unnecessary information on the other hand.  

The embedding dimension n  has to be chosen as the 
smallest dimension for that all dynamic properties of the 
original attractor are kept. According to a theorem of Whitney 
[40] and according to Taken’s embedding theorem [39] an 
embedding dimension of 2 1n m≥ +  is sufficient for 
embedding where m is the dimension of the original phase 
space. A weaker condition is given by Sauer, Yorke, and 
Casdagli [35] who take the box-counting dimension as upper 
bound for .n  In general, also smaller values of n  can be 
sufficient for embedding. In order to apply these suggested 
upper bounds for ,n  the dimension m  of the original phase 
space has to be known. In practice, this dimension is 
unknown. Hence, an algorithm to calculate a reasonable 
embedding dimension is needed. This can be achieved by the 
method of false nearest neighbors which was introduced by 

Kennel, Brown, and Abarbanel [30]. A point NNh  in the 

embedding space is called the nearest neighbor of the point h  
if it has the shortest distance to this point. The term of distance 
is subjected to the dimension n  of the embedding room. If 

two points are nearest neighbors in a room of dimension 1n  

but the distance between them grows noticeable for a 
dimension 2 1n n>  then they are called false nearest neighbors. 

The reason for this increasing distance is a too small 
embedding dimension 1n  in which the reconstructed attractor 

cannot unfold its full dynamic properties. Now, an embedding 
room which includes none of such false nearest neighbors has 
a sufficient embedding dimension. The algorithm calculates 
the number of false nearest neighbors for an arbitrary chosen 
start value n  of the embedding dimension and increases n  
successively by one as long as all false nearest neighbors have 
vanished. In this way, an appropriate value of the embedding 
dimension n  is calculated. 

The second parameter to choose for a good embedding is 
the delay time .Lτ  If this parameter is too small then 

successive elements of the delay vectors can be almost equal. 
Probably a reconstructed attractor cannot unfold its whole 
dynamic properties and no structure is visible. If it is too big 
then successive elements of the delay vectors are almost 
independent [25]. This leads to a connection of areas in the 
reconstructed attractor that are far apart from each other in the 
original phase space. For instance, reasonable values of the 
delay time can be determined by using the first root of the 
autocorrelation function [41] or the first minimum of the 
mutual information [42]. By taking the first root of the 
autocorrelation function as value for Lτ  it is assured that 

successive components of the delay vectors are linear 
independent. The mutual information function was used by 
Fraser and Swinney [42]. It is a measure for the information a 
measurement at time t  contains about a measurement at time 

.Lt τ+  

Altogether, the delay time embedding method can be used 
to reconstruct the dynamic properties for a state x  in an 

unknown phase space M  by a vector ,
, ,

Ln
k g

τ
xh  in an embedding 

space E  if a time series of equidistant measurements of one 
component jx  of x  is available. The course of action within 

this reconstruction algorithm is illustrated in Fig. 3.  

C. Prediction 

After the reconstruction of the dynamic properties of a 
dynamic system by methods of nonlinear time series analysis, 
this information can be used in order to achieve better 
forecasts into the future of a time series. Here, several 
methods can be applied. We now deal with a prediction 
algorithm that was introduced by Sauer [43]. This algorithm is 
based on local models and has the ability to use the available 
information from delay time embedding. For reasons of 
convenience, we define equivalent versions of the given time 
series 
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and a delay coordinate vector 
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For an unknown present state x  of the dynamic system at 

time ,t  a measured quantity ( )g x  of one component jx  of x  

is available. By the assumption of a deterministic system, the 
state x  contains all information to extrapolate the state r  time 

units into the future by calculating ( ).rΦ x  The reconstructed 

state h  is used instead of the unknown original state .x  Now, 
a prediction function  

 

 ( ) ( ): ( )r rP g= Φh h  (18) 

 
has to be found. 

Denote the available time series in (16) as training set. Let 
h  represent the state of the system at time .t  In order to 

evaluate the function ( )rP h  that extrapolates the time series 

r  time units into the future, the training set is inspected for 

the z  nearest neighbors NN,1 NN,, , zh h…  of h  in .n
ℝ Here, the 

q -th nearest neighbor of h  is defined as the point NN,qh  in 

the reconstructed phase space that has the q -th shortest 

distance to h  in terms of a defined distance like for example 
the n -dimensional squared Euclidian distance. For the 

prediction, only one nearest neighbor is chosen from each 
nearby trajectory. Since every nearest neighbor NN,qh  is an 

element of the known training set, the value ( )NN,r qP h  is also 

known. Thus, a prediction ( )rP h  can be achieved by using the 

knowledge of the ( )NN,r qP h , 1, , .q z= …  On that account, 

firstly, the center of mass c  of the nearest neighbors 

NN,1 NN,, , zh h…  is calculated. For a fixed dimension ,l n≤  the 

linear subspace l
ℝ  of n

ℝ  has to be found that passes through 
the point c  and minimizes the squared distances to the 
neighbors. This is achieved by computing the singular value 
decomposition. For that reason, calculate  

 

 
NN,1

T

NN,z

− 
  = Σ 
 − 

h c

U V

h c

⋮  (19) 

 
where Σ  is a diagonal matrix with non-increasing non-
negative entries and U  and V  are orthogonal matrices [43]. 

The first l  columns of V  span the desired space lℝ  that 
minimizes the squared distances to the neighbors. Define a 

projection : .n lΠ →ℝ ℝ  Now, the prediction can be achieved 
by linear or nonlinear models. We describe an approach by 
Sauer [43] with a local linear model.  

The affine model : lL →ℝ ℝ  which best fits the points  
 

 ( ) ( )( ) ( ) ( )( )NN,1 NN,1 NN, NN,, , , ,r z r zP PΠ − Π −h c h h c h… (20) 

 
is formed by projecting the points NN,1 NN,, , z− −h c h c…  onto 

.l
ℝ  The model has the form  
 

 ( )L d= ⋅ +h a h  (21) 

 
with an l -dimensional vector a  and a constant scalar .d  In 
order to extrapolate a given time series with present state h  r  
time units into the future, the following prediction function 
results: 
 

 ( ) ( )( ).rP L= Π −h h c  (22) 

 
Concluding, this prediction algorithm uses information of 

neighboring trajectories in order to predict the future evolution 
of an unknown trajectory. This approach is illustrated in Fig. 4 
where the arrow constitutes the present state of the system and 
the dashed curve depicts a prediction into the future. 

Helpful extensions of the described prediction algorithm 
can be filtration and interpolation. In a filtration step, the delay 
coordinate vector is transformed into a filtered delay 
coordinate vector  

 

 

Fig 3 Course of Action in Delay Time Embedding 
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( 1): ( ) , , ( ) , .
L Lwg g gτ τ− − −

 = Φ Φ h W x x x…  (23) 

 
W  is an n w× -matrix of rank n  with .w n≥  So, h  remains 
an n -dimensional vector. W  is defined to be a composition 
of three linear operations: 3 2 1.=W W W W  Here, 1W  is a 

discrete Fourier transform of order ,w  2W  sets all but the 

lowest 2
n  frequency contributions to zero, and 3W  is an 

inverse Fourier transform of order n  using the remaining 2n  
frequencies. The three applied matrix operations yield to a 
low-pass filtration of the length w  window of the time series 
and, as a result, to a low-pass embedding. The use of a filtered 
delay coordinate vector instead of an unfiltered leads to a 
reduction of noise within the data. In the absence of noise, a 
filtration still has the effect of decimating the data set [43]. 

In addition, an interpolation can also improve prediction 
accuracy if the available data set is sparse and there are too 
few neighbors in an appropriate neighborhood of the present 
state. In this case, without an interpolation, too distant 
neighbors are used to fit the model and low prediction 
accuracy results. This deficit can be overcome by an 
interpolation of the time series. Here, different types of 
interpolation can be used. For example, a section of the given 
time series is fit with a Fourier polynomial and the polynomial 
is sampled s  equidistant times each sampling period of the 
original time series. By an interpolation of the given time 
series it can be assured that the direction from a present state 
to the nearest point on a neighboring trajectory is 
perpendicular [43]. 

Thus far, we have described the different steps of the 
prediction algorithm. Now, we detail the process of its 
application. Given a scalar time series 

 

 { }0 1 1, , , Ny y y −=y …  (24) 

 
of measurements of one component jx  of the state vector ,x  

future values of the underlying dynamic system can be 
estimated by using the prediction algorithm of Sauer [43]. For 
the prediction, five parameters have to be chosen ahead of 

time. These are the number s  of interpolation steps per 
sample period, the length w  of the input window for filtered 
embedding, the low-pass embedding dimension ,n  the model 

dimension ,l  and the number of neighbors z  to calculate in 
order to fit a one-dimensional linear model. Sauer [43] 
outlined that the best results can be obtained by choosing 
w n l≥ ≥  with l  significantly smaller than .n  Furthermore, 
the number z  of nearest neighbors has to be selected 
weighing up the effects of variance and bias. Because of noise 
within the data, a too small number of neighbors can lead to a 
high variance of the model. On the other hand, too high values 
of z  reduce the variance but can lead to bias because of 
considering faraway neighbors [43]. 

The interpolation step leads to a time series of length .sN  
Then, a filtered delay coordinate vector of dimension n  can 
be obtained by filtering each original time series window of 
length .w  Let kh  be a filtered delay coordinate vector that 

represents the state at time .kt  Now, a future time series value 

iy  for 1i N> −  can be estimated by ( ).i k kP− h  In order to 

achieve better predictions, the predictions from the previous 
w  time steps are averaged. This results in the following 
prediction algorithm for an unknown future value iy  of the 

given time series for 1i N> − : 
 

 	 ( )
11

.
i

i i k k
k i w

y P
w

−

−
= −

= ∑ h  (25) 

 
This algorithm can be applied to predict future customer 

demands by using information of time series representing past 
customer orders. In this section, we described a prediction 
algorithm that was introduced by Sauer [43] and the required 
theory of dynamic systems and delay time embedding. This 
prediction algorithm will be applied to forecast future 
customer demands within a production and delivery network. 
This is part of a research project whose course of action is 
presented in the next section. 

V. COURSE OF ACTION  

The result of the research project “Forecasting in 
Production Considering Prediction Models of Nonlinear 
Dynamics” will be a data base containing various time series 
classified into groups of similar characteristics and suitable 
forecasting methods for every group. In order to establish this 
data base, the project follows a specified work scheme that is 
illustrated in Fig. 5. Initially, a discrete-event simulation 
model was developed and implemented that is detailed in Fig. 
6. This model is applied to generate typical and representative 
time series of customer orders in production and delivery 
networks. Within the model, the influence of varying 
production and control concepts on the structure of the time 
series is observed. Therefore, it contains several generic 
elements of production systems with arbitrary numbers of 
suppliers and customers emphasizing variable job-shop 
systems. The variation of diverse system parameters like 

 

Fig 4 Estimation of a Future Trajectory Segment by Using 
Information of Nearest Neighbors 
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priority rules, technical restrictions, order policies, re-entrant 
flows within working plans of different product types, 
different numbers of products or varying delivery times 
creates the opportunity to cover numerous different production 
cases, thus achieving representative results. Various 
production programs cover effects of external dynamics. 
Model input data are product orders of second-level customers 
to a simulated first-level customer of a forecasting company. 
Model output data are the desired time series representing 
demand of a forecasting company’s direct customer. For a 
detailed description of the time series generation by the 
mentioned simulation model see [44]. For more information 
on the modeling of job-shop systems and influencing effects 
see [45], [46]. 

The generated time series will be analyzed in terms of their 
properties applying methods of linear and nonlinear time 
series analysis. Furthermore, these time series will be subject 
to the extensive application of various forecasting methods 
including statistical methods and local models of nonlinear 
dynamics. This step is followed by the assignment of dynamic 
properties within the time series to those forecasting methods 
which deliver significant prediction results.  

In order to consider stochastic effects, the generated time 
series will be combined with a varying signal error 
representing inaccuracy of measurement and non-deterministic 
processes. The predictability of these manipulated time series 
will be determined by the Fokker-Planck-equation [47], [48]. 

Finally, the observed results will be merged into a data base 
applicable to choose suitable forecasting methods for diverse 
different cases and to adjust them in terms of their parameters. 

VI. CONCLUSION AND OUTLOOK 

Due to increasing dynamics, complexity, and volatility of 
today’s markets, the prediction of customer demands often 
turns out to be difficult. The paper at hand described the 
research idea of the project “Forecasting in Production 
Considering Prediction Models of Nonlinear Dynamics”. The 
overall goal of this project is to improve forecasting by 
deriving recommendations considering the choice and 
adjustment of suitable forecasting methods depending on the 
dynamic properties of the incoming time series of past 
customer orders. Here, the paper presented various forecasting 
methods and possibilities to analyze and characterize the 
dynamic properties of time series. In particular, a special 
prediction algorithm applying local models that use results of 
delay time embedding of nonlinear time series analysis was 
described. The project’s overall course of action was 
presented. The simulation-based generation of representative 
time series will be subject to further work. Here, different 
production scenarios will be covered within a generic 
simulation model and a wide variation of several system 
parameters shall ensure adaptability of the results. The created 
time series will be analyzed and characterized by methods 
presented in this paper. The described prediction models will 
be applied to forecast the time series in order to identify 
suitable methods related to the time series’ properties. By 
applying data of real-production scenarios the simulation 
model will be validated and furthermore used to test the 
selected forecasting methods.  

 

Fig 5 Course of Action Within the Research Project (in Accordance to [6]) 
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