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underestimation of the customer demand can lead to capacity
Abstract—Due to growing dynamics and complexity of today’soverloads, followed by delayed deliveries and even out-of-
markets, customer demands are often highly volatile. In order $tock-situations which can cause a loss of customers in an
achieve a well-founded forecast of customer demands, a company gareme case. Therefore, forecasting methods are required
to consider several dynamic influences. Classical simple statisti%hich achieve high-quality predictions on future customer

prediction methods are mostly easy to apply but are not able to regct LS : . . L
on dynamic behavior. More complex statistical methods achie eémands considering all available information within the data

better forecasts but also do not include dynamic means. Predict@hhand.

methods of nonlinear dynamics consider qualitative in addition to The incoming data of customer demands can be regarded as
quantitative information within time series of past customer orders time series. In order to grasp the dynamic evolution one can
order to achieve better forecasts into the future. In partiCUlar, IO(&ls“ngLush between external and internal dynam|c influences

models use the information fostered by delay time embedding (fa impact on the time series and accordingly on a customer’s
nonlinear time series analysis. In this paper, a research approach Is d. Th infl ilustrated in Eid. 1. Ext |
presented that has the goal of outlining suitable prediction metho gmand. ese influences are flustrated in Fig. 1. Externa

for future customer demands of a forecasting company in dynamic influencgs are given by general market trends,_ €.0.
production and delivery network. seasonal fluctuations, changes of currency rates, political

issues or personal relationships. These factors and their
Keywords— demand forecast, forecasting methods, nonlineatependencies are boosted by the continuing globalization and

dynamics, time series analysis. its impact on complexity and volatility. From a forecasting
company’s point of view, the external dynamic influences are
. INTRODUCTION superposed by internal dynamic influences which arise from

ODAY’'S markets are characterized by a strongs direct customers. Here, the internal settings of a customer’s
competition among globally dispersed companies. Alongroduction system and its control, e.g. considering the
with the continuing trends of outsourcing and the companiesystem’s organization, order policies etc., are of eminent
concentration on their core competences these markets i@nportance for the impressed dynamics on the time series of
highly complex. In addition, mutual dependencies within thi¢gs demand. Generally, each production system can be
related production and logistics processes as well as changinigrpreted as a dynamic system [3], [4], [5]. Information on
conditions in the economic, political, and ecologidhe system’s structure, capacities, operational rules, and
environment foster the development of dynamics on all tingueuing policies determine the system’s dynamics. This
scales. These conditions entail volatile markets complicatimgsight is instructive for the prediction of its demand as it
the accurate forecast of future customer demands [Hccounts for deterministic and qualitative properties within the
However, a well-founded prediction of upcoming custometelated time series which can be considered in addition to
demands is highly important for a company’s long- and midiuantitative information.
term planning, especially considering procurement strategiesin the following, we present the research approach of the
and production resources. Here, low-quality data on futupgoject “Forecasting in Production Considering Prediction
customer demands in combination with limited flexibility inModels of Nonlinear Dynamics” which is funded by German
reaction can implicate undesirable consequences. In the cBssearch Foundation. The main goal of the research project is
of overestimation, low efficiencies can result. Vice versa, @0 improve forecasting considering customer demands in
production systems. It bases on the assumption that the

analysis of dynamic properties within the time series
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Fig. 1 Dynamic Influences on Demand Forecasts Within a Production and Delivery Network (in Accordance to [2])

selection and application of forecasting methods. Within thiprediction methods. As an example, the Box-Jenkins-method
time series analysis as a tool for characterization is linked wighovides improved forecasting results while requiring
prediction methods, especially emphasizing methods bitensified computation capacity [8].
nonlinear dynamics. In particular, prediction by local models Other computational intensive procedures are con-
of nonlinear dynamics is considered. These models usamporary methods of soft computing. These are characterized
gualitative data from the reconstruction of dynamic propertidsy a strongly increased model complexity and are currently
by delay time embedding in order to improve forecastingather of academic interest than applicable for a forecasting
results. company. Examples of these models are expert systems [9],
artificial neural networks [10], methods of fuzzy logic [11] or
Il. FORECASTINGMETHODS genetic programming [12], [13]. Furthermore, the indicated

Over the vyears diverse forecasting methods have be@gthods allow th_e_ir_combination to hybrid systems, e.g. expert
developed. In the course of the twentieth century, theS¥St€ms a_mq artificial neural networks were used in order to
methods have been adapted and furthered with the aid of @& Predictions of outward stock movement [14]. Equally, a
arising powerful computers. There are three main classestmpined Neuro-Fuzzy system was applied to the daily sales
which the forecasting methods can be grouped: statisticaf€ Prediction of newspapers [15]. However, although the
methods, methods of soft computing, and methods gpplication of soft computing methods provides the capability
nonlinear dynamics, Fig. 2. to achieve high-quality prediction results when applied

In general, classical statistical methods, e.g. movirg;rea'y- they are still in the period of development and
average, exponential smoothing or linear regression, split ture various potentials for |.mpr0vem.ent. In ad'dltlon,.the_se
observed time series based on past values into component8'gflels are rather complex which complicates their application
trend, season, and random noise. After that, the resultifgd interpretation by non-experts, e.g. the application of
model is applied to extrapolate the time series into the futufgural networks requires the.ch0|ce, training, and optimization
[7]. Most of the methods are quite simple and applicable ff Networks and their underlying functions [10].
non-experts. Associated with the introduction of computers D€2ling with a time series which represents a customer’s
they were advantageous because of entailing low computifi§mand influenced by his production system, the question
efforts. However, an application of the mentioned simpl@ses whether the applied prediction method considers
statistical methods is only reasonable to receive Vaggélalita_tive structures of the time series obtained.bytime series
estimations of future demands. The increased power of toda@d@lysis. Here, methods of nonlinear dynamics offer the
computers allows the adaptation of more sophisticaté’d)te”“a| to take deterministic as well as quantitative and
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supported by qualitative information on a time series’
Statistical Methods evolution. Methods of linear and nonlinear time series analysis
are applicable to analyze and characterize a time series in
terms of its structure and patterns. Linear methods are capable
of giving a preliminary estimate of the time series’ properties.
In terms of stationarity the mean and the variance can be used
to derive first indications. However, being indexes of the

» Moving Average » Box-Jenkins-Method
» Exponential Smoothing > ...
» Linear Regression

Methods of Soft Computing statistical overall-properties, an application of these methods
> Expert Systems > Gentic Programming does not provide sufficient information about the time series’
> Neural Networks > Hybrid Models structure. In order to deal with the related characteristics,
> Fuzzy Logic > ... Fourier analysis as a measure of power spectrum or the

autocorrelation function which observes the self-similarity of
the time series are adaptable. These methods are appropriate to

Methods of Nonlinear Dynamics characterize time series arisen out of linear processes. In order
» Local Models > . to deal with nonlinear effects, e.g. originating from
> Global Models interdependent production and logistics processes, methods of
» Hybrid Models nonlinear time series analysis have to be adapted as well.

The state of a system is determined uniquely by a set of
variables which span the phase space. The time series’
evolution over time is described by a sequence of points
within phase space, a so-called trajectory. The analysis of a
trajectory’s movement in phase space allows investigating the

stochastic properties of observed time series into accoulif?® series’ properties and characterizing their dynamic

These methods enable to include dynamic effects ructure [25], [26], [27]. Over the years, several methods to

production and logistics systems which have been studiedqﬂa:yze a?d charqcterLze thg prozertic—lrs a(r;d Adynartuicg t0f
various publications [3], [5], [16], [17], [18]. Suitable methodd'O"™'N€ar UMme seres have been developed. A method 1o
for this challenge are found among local, global, and hybrICHOVIOIe vectors Fhat span a reconstrl_Jcted phase space 1s the
models. Local models create individual prediction function@Odel of delay time embedding that is described in the next

for each single point within the time series [19]-[21]. Aspeciaﬁecttizor:j [2f8]]; IHere, 'tTweb box countlnlg (;||metn5|ont. an(tj t?ﬁ
prediction algorithm that uses local models is described ethod of Talse neignbors are appiicable 1o estimate the

section IV. Global models strive to describe the whole timg HeNsion of the reconstructed phase space and the delay time

series in terms of a polynomial as a basis for predictions [2 _9]t,. [30]. Pos.tutlatllng s||qm|lar future et\;]olutlontsh f(rjomftv;/ol
Hybrid models are a combination of both, local and glob ntiguous points 1n phase space, the method -of 1aise
models [23]. Besides, approaches were developed to combﬂ?éghbors allows determining whether these points are true
methods  of nonline;ar dynamics with methods of SOﬁ!elghbors or if their neighborhood originates in a projection of
computing [24]. Indeed, these approaches of Combingdhigher-dimen;ional_space. Countin_g these false _ngighbors
application are in development and have potentials to e sys.tems dimension can be e.st|mated. Iq add!tlon, the
specified and extended. cz_':llculatlon of Lyapunov-exponents is a way to _mvespgate the
In contrast to the before mentioned forecasting methods, tﬂlé(erlgence _?_r _tcor_lve:gence ?f i:o?_tlguous dt_rtgjectorlesf. tA s a
methods of nonlinear dynamics are applicable to real systeFr"?gllJ t sensiivi )t/) n elrms do IS arting tlﬁont ! !onts on ; ur.et
even without a previous idealization. Moreover, they have t o |onf] C‘;? € ana_fyfﬁ " T (I:asei € trajec orlels evt|r?e
potential to predict the future more precisely without th om each other even It the inftial values are very close, the

necessity of splitting the time series into its components Fhawor s called C_haOt_'C' Theref_o_re, the calculation O.f
trend, season, and random noise. However, equally to apunov-exponents implies the ability to separate areas in

methods of soft computing, the application of methods ich the trajectory acts chaotic from those showing regular

nonlinear dynamics requires expert knowledge especia namic movement [27].

considering the choice of parameters associated with t eA prpcedure_ of approximating a complex anq mgltl-
|£nen5|onal trajectory by a sequence of discrete points is the

methods. On that account, an understanding of the time seri led Poi . . B ving thi thod
properties facilitates adequate adjustments of the mO(feq—(:ale q oncare Tapplng.b y gpp )(/jlntg IS rr|1fe do ,da
parameters. These properties can be inspected by method§90fP X dynamic system can be reduced to a simpliied and a

linear and nonlinear time series analysis. Thus, the n Frl?rtchoer?rzgerzer':ﬁgeczr::ﬂlez:ltirggczinljsihustration of recurrence
section describes suitable methods for analysis ar&j '

characterization of time series. _ots rt_epresents a trajectory’s recurrences vv_lthm a high-
dimensional phase space on a two-dimensional squared
matrix. This can be instructive for future developments of a

] ] ) time series and recurrence quantification analysis [31], [32],
Generally, the choice of suitable forecasting methods (83]. Finally, entropy as a term of physics or information

Fig 2 Forecasting Methods (in Accordance to [6])

IlIl.  ANALYSIS AND CHARACTERIZATION OF TIME SERIES
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theory can be adapted to measure a system’s level of dynangiduction to differential equations of first order in the
disorder and indicate its predictability [34]. In order to deatontinuous case is no restriction since every ordinary system
with stochastic and deterministic effects within a time seriesf higher order can be transformed into a system of first order
the signal-noise-ratio characterizes to which extend a givey introducing new variables. Moreover, every non-
signal is overlaid by a noise-signal, determining the ratio @utonomous ordinary system can be converted into an
stochastic to deterministic influences. autonomous by introducing a new variabtg,, =t and the

Our approach Is to :’:malyze an incoming time Sergg ;o congition X... =1. The components of the state vector
representing a customer's demand in terms of its dynamic

characteristics and link these with suitable forecasting SPan anm-dimensional space that is called the phase space
methods. The next section details a usage of local predictidh O R™. A point X in phase space represents a state of the
models after a dynamic reconstruction by delay tim@ynamic system. The dynamic evolution of a state over time is
embedding of nonlinear time series analysis. described by the flow, a mapping

IV. LocAL MODELS OFNONLINEAR DYNAMICS ®:RxM - M (3

In the wide range of different forecasting methods for time
series, models of nonlinear dynamics promise high forecasti\’i’éI
accuracy because of considering qualitative in addition to
quantitative data information. For instance, local models of ®(0,x)=x forall xOM (4)
nonlinear dynamics use the delay time embedding method of dJ(r,dJ(t,x)) :¢(t+r,x) forall t,rOR, xOM.  (5)
nonlinear time series analysis to build a reconstructed phase
space in which the attractor is equivalent to the attractor in the . o ]
unknown original phase space. Based on this qualitatiV the following, we will write ®, (x) instead of®(t,x). The
information about the time series structure, the time seriesvislocity field of this evolution is characterized by. A
extrapolated into the future by using a nearest neighbgrapping
prediction algorithm. In the case when a time series on hand
represents customer demands in production and delivery g R~ M
networks, the described procedure is applied in order to s @ (x)
identify deterministic structures within past customer orders t
and subsequently to achieve better forecasts of future
customer demands. In this section, firstly, we give a shdhat illustrates the system state’s evolution over time in phase
overview of dynamic systems and its properties. Afterwaragpace is called a trajectory [25]. The dynamic system is
we describe the method of delay time embedding aftgfined as totally deterministic. This means that a trajectory is

subsequently a prediction algorithm basing on this method. uniquely defined by a state vectot and thus, any two
trajectories in phase space cannot intersect. Through every

h the properties

(6)

A. Dynamic Systems and Properties point X in phase space/l there exists a unique trajectory
In the case of discrete time, a dynamic system can fdgth X as the initial condition [25], [35].
described by a system of difference equations Dynamic systems can be classified into the dissipative
systems and the non-dissipative systems. Dissipation means
X F, that a phase space volume. containing' iqitial con.diti.ons. is
X|+1:F(Xi) withx, =| @ |,F=|:|,i0Z. ) contracted undgr the dynamics [25]. Within non-dissipative
systems no frictional-losses occur. In order to model states and
Xim Fon evolutions according to production systems, a use of

dissipative dynamic systems is more reasonable than a use of
In the continuous case, a dynamic system can be describechby-dissipative [36], [37]. For that reason, only dynamic
an autonomous system of ordinary differential equations efstems with dissipation are considered within this article. In
first order such systems, after a certain time, a set of initial conditions
will be attracted to a subs&¥0 M of the phase space which
X, F, is called the attractor of the system. By a definition of Lanford
%x(t) - F(x(t)) with x=| : | . F=| : |, tOR. @) [38], an attractorA has the following properties:

Xm Fr * (Invariance under the flow) Fox O A it follows that

o, (x)OA
* (Attractiveness) It exists an open environméht with
AOU so that®, (U)OU for t>0 and

The vectorx (or respectivelyx; in the discrete case) denotes

the state of the system at the timdat time eveni ) and F
denotes a slope vector.

In the following, we will refer to the continuous case. A A=, (V). )
t>0
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* (Indecomposability) A cannot be divided into two in the embedding space by the mapping A well-known
nontrivial closed invariant pieces. method to find a suitable measurement functgnto define
the embeddingh is the delay time embedding method.

The set of initial conditions for which the trajectories converge
against the attractor is called the basin of attraction [25]. InB- Delay Time Embedding
general, the space that contains the attragtdnas a smaller ~ Given a time series of past customer orders, a forecasting
dimension than the whole phase spate This smaller space company attempts to extrapolate in order to predict future
contains the relevant dynamic properties of the systegustomer demands. Local prediction models of nonlinear
Therefore, attractors are of particular interest for aflynamics firstly need information about qualitative structures
investigation on dissipative dynamic systems. within the time series on hand. Thus, the dynamic properties

If all dependencies within the dynamic system are knowRf a complex dynamic system that considers time evolutions
trajectories can be illustrated in the phase spdcavhich is  Within the considered production and delivery network have to
spanned by the known components of the state vectdfhe be reconstructed. Therefore, the theoretical state vextor
analysis of a trajectory’s movement in phase space allow$0ose components are unknown has to be replaced by a
investigating its properties and characterizing its dynamgoncrete vector based on the available time series data. Let the

structure. components of the given time series of lenbth
Commonly, not all dependencies are known. In many cases,
only a scalar time series of measurements on the system is y:{yO, YVireeos yN_l}

available. Here, more complicated methods have to be used in 9)
order to reconstruct the system’s dynamic properties. It is
possible to embed the original unknown phase spacénto

another roomE, the embedding room, without losing thebe successive equidistant measurements (startig af the
dynamic properties. An embedding is a one-to-one mapp”&Bmponentx of the state vectox =[x,,.. Xm] is

that maps a manifoldM onto another manifold ith
P tfoldM oldE wi called the sampling time. In order to apply Takens’ embedding

dim(E)=dim(M). In the following, the terms smoothness
) i theorem the scalar measurement functiprof some quantity
and diffeomorphism are needed within an embedding theorem
RP the system in (8) can be chosen as

A smooth mapping is an at least two times continuous
differentiable mapping. A diffeomorphism is a smooth

Ye =X (L), L=t+ks, YyOR

mapping with smooth inverse mapping. The following 9:M-R (10)
theorem is a result by Takens [39]: g(®.(x) =¥ = x(1)
(Takens’ Embedding Theorem) Thus, the given time series can also be written as
Let M be a compact manifold of dimensiom, let
®,:M - M be the flow onM, let g:M - R be a { (x),g ® (x)) g(® N_l(x))}
scalar measurement function of some quantity on the
system, and leX be the vector of the system’s state. If {XJ (tO)’X' ( ) (T"‘l)} (11)
®, is a diffeomorphism andy is a smooth mapping, ={x; (). % J(t0+r ) % (b + (N=12yrg)}
then the mappind: M - E OR*™" with
Applying Taken's theorem, a state in the original phase
[g ¢ (X)) (qJZ(X))""’g(q)m (X))] ®) space M can be embedded into an embedding room
is an embedding ok into E OR*™, E OR?™* by the mappingh in (8). Thus, define
By embedding a phase spatk into an embedding room h:M - EOR"
E the dynamic properties d#i can be reconstructed. In this - (12)
process, the topological and differential characteristics of the h ( ) higx

attractor A in M are invariant which means that they are also
reconstructed in E. According to Takens’ theorem, anwhere for 7, OR,,, 7, =cTg, cON, the vector h'h, s
embedding dimension ofi=2m+1 for mON is sufficient defined as
for this reconstruction. In addition, Sauer, Yorke, and Casdagli
[35] proved an extension of this theorem. They showed that it T
also holds ifn is bigger than two times the box-counting  higx :[g(tbk(x)),g(dbkm (X)),-~~,9(¢k+( " (X))J
dimension, a generalized fractal dimension that needs not to [x ( _ T

(8% (1) x (E+(n-2r )] (13)

be an integer value.
[ (1) % (4 + @) e x (14 (P D) @) ]

Applying one of the mentioned embedding theorems, a
system'’s state in the original phase space can be reconstructed
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Kennel, Brown, and Abarbanel [30]. A poirtt,, in the

This.vector is cglled a delay coordi.nate vector. of Iength embedding space is called the nearest neighbor of the ppoint
starting atk. 7, is called the delay time or lag time and is af it has the shortest distance to this point. The term of distance

multiple of the sampling timg,. The delay coordinate vector iS subjected to the dimension of the embedding room. If

can also be displayed as two points are nearest neighbors in a room of dimensjon
but the distance between them grows noticeable for a
- i dimensionn, > n, then they are called false nearest neighbors.
hE;x - I:yk' yk+rL [ARRS] yk+(n71)rL:| (14) 2 nl y 9

The reason for this increasing distance is a too small
embedding dimensiom, in which the reconstructed attractor

cannot unfold its full dynamic properties. Now, an embedding
room which includes none of such false nearest neighbors has
T between each two measurements. The vebfdy is a a sufficient embedding dimension. The algorithm calculates
segment of the original time series containingof the N the number of false nearest neighbors for an arbitrary chosen
start valuen of the embedding dimension and increases
successively by one as long as all false nearest neighbors have
each two components. The length of the vectorhy'¢, is  vanished. In this way, an appropriate value of the embedding
called the embedding dimension. dimensionn is calculated.

By the vectorhﬂjgﬁx one original state vectoX can be The second parameter to choose for a good embedding is

the delay timer . If this parameter is too small then

successive elements of the delay vectors can be almost equal.
H :{hE';Lx :kzl,...,N} (15) Probaply a recqnstructed attractor cannot unfol_d its whqle
> dynamic properties and no structure is visible. If it is too big
_ _ _ _ _ then successive elements of the delay vectors are almost
describes a discrete trajectogy, in the embedding roont  independent [25]. This leads to a connection of areas in the
that is a unique and invertible mapping of the originaleconstructed attractor that are far apart from each other in the
trajectory @, in the original phase spacé. For the original phase space. For instance, reasonable values of the
applicability of one of the embedding theorems, it is require%e'ay time can be determined by using the first root of the

that ®, is a diffieomorphism andy is a smooth mappin autocorrelation function [41] or the first minimum of the
t P PPING- 1\ tual information [42]. By taking the first root of the

Hence, ¢, has the same topological and differential propertiegtocorrelation function as value far, it is assured that

as ¢,. In addition, all geometric and stability properties of thguccessive components of the delay vectors are linear
original attractor A can be calculated out of theindependent. The mutual information function was used by
reconstruction. Fraser and Swinney [42]. It is a measure for the information a

Two important parameters to choose for the embedding areasurement at time contains about a measurement at time
the embedding dimension and the delay timer,. These t+r,.

parameters have to be adjusted suitably in order to keep allAltogether, the delay time embedding method can be used
essential information on the one hand and to leave out reconstruct the dynamic properties for a statein an

unnecessary information on the other hand. unknown phase spadd by a vectorh!™ in an embedding

. . . k,g.x
The embedding dimensiom has to be chosen as thes,paceE if a time series of equidistant measurements of one

smallest dimension for that all dynamic properties of the . . . .
- . . componentx. of X is available. The course of action within

original attractor are kept. According to a theorem of Whitney~ P _ o T

[40] and according to Taken’s embedding theorem [39] dhis reconstruction algorithm is illustrated in Fig. 3.

embedding dimension ofn=2m+1 is sufficient for C. Prediction
embedding wherem s the dimension of the original phase After the reconstruction of the dynamic properties of a

space. A weaker condition is given _by S_auer,_ Yorke, aqﬂ/namic system by methods of nonlinear time series analysis,
Casdagli [35] who take the box-counting dimension as UPPfis information can be used in order to achieve better
bound for n. In general, also smaller values of can be foracasts into the future of a time series. Here, several
sufficient for embedding. In order to apply these suggestgfbthods can be applied. We now deal with a prediction
upper bounds fom, the dimensionm of the original phase jgorithm that was introduced by Sauer [43]. This algorithm is
space has to be known. In practice, this dimension ffased on local models and has the ability to use the available
unknown. Hence, an algorithm to calculate a reasonahiformation from delay time embedding. For reasons of

embedding dimension is needed. This can be achieved by #a@venience, we define equivalent versions of the given time
method of false nearest neighbors which was introduced Bgries

The original time seriey consists ofN measurements of the
componentX; of the state vectok with successive distance

components ofy with a delay timer, =crg, cUN, between

reconstructed. The set of all these reconstructed vectors
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prediction, only one nearest neighbor is chosen from each

Measure Scalar Time Series : : . .
nearby trajectory. Since every nearest neighbgg, is an

y ={ Yor Yire-e yN—l} element of the known training set, the vaIBe(hNN,q) is also

known. Thus, a predictiof, (h) can be achieved by using the

Choose Embedding Dimensiom knowledge of theR(hNqu), g=1...,z. On that account,

> Method of False Nearest Neighbors firstly, the center of massc of the nearest neighbors
Nuna--- N, 1S calculated. For a fixed dimensidren, the

linear subspac®' of R" has to be found that passes through
the point ¢ and minimizes the squared distances to the
neighbors. This is achieved by computing the singular value
decomposition. For that reason, calculate

Choose Delay TimeT
» 1st Root of Autocorrelation Function
» 1st Minimum of Mutual Information

Build Delay Coordinate Vector Ry —C
oo u =uUsVv’ (19)
hE,;L,X - I:yk’ yk+rL (AR yk+(n—1)rL:|
hNN,z -C
Fig 3 Course of Action in Delay Time Embedding where X is a diagonal matrix with non-increasing non-

negative entries and) and V are orthogonal matrices [43].
The first | columns of V span the desired spad®' that

y;:{g(q)_(N_l)(x))’m,g((])_l(x)),g(x)} minimizes the squared distances to the neighbors. Define a
(16)  projection M :R" - R'. Now, the prediction can be achieved
:{Xi (t_(N_l)TS) 'xi(t_ TS) 'Xi(t)} by linear or nonlinear models. We describe an approach by
Sauer [43] with a local linear model.
and a delay coordinate vector The affine modelL: R' — R which best fits the points

00 00).0(, )00
=[x (t=(=1r.) ... x (t=1.) . ( t)]T

(R ) (0. ) 20

is formed by projecting the points,,, —c,...,h,—c onto

For an unknown present state of the dynamic system at R'. The model has the form

time t, a measured quantitg(x) of one componenk; of x

is available. By the assumption of a deterministic system, the L(h) =alh+d (21)
statex contains all information to extrapolate the statéme

units into the future by calculating, (x). The reconstructed With an-dimensional vectom and a constant scalat. In
order to extrapolate a given time series with present btate
time units into the future, the following prediction function

results:

stateh is used instead of the unknown original stateNow,
a prediction function

R (h):= 9 (@, () (18) P (h)=L(N(h-c)). (22)
has to be found. . . - . . .
Denote the available time series in (16) as training set. Let.COﬂClu.dmg’ 'th|s p.red.|ct|on algorlthm uses information .Of
h represent the state of the system at timen order to neighboring trajecFones n orQer to predlcF the future gvolgtlon
] i . of an unknown trajectory. This approach is illustrated in Fig. 4
evaluate the functior, (h) that extrapolates the time sefieSynere the arrow constitutes the present state of the system and
r time units into the future, the training set is inspected fahe dashed curve depicts a prediction into the future.

the z nearest neighbor,,...,hy, of h in R". Here, the Helpful extensions of the described prediction algorithm
can be filtration and interpolation. In a filtration step, the delay
coordinate vector is transformed into a filtered delay
the reconstructed phase space that has dhil shortest ¢oordinate vector

distance toh in terms of a defined distance like for example

the n-dimensional squared Euclidian distance. For the

q-th nearest neighbor ofi is defined as the point, . in
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time. These are the numbey of interpolation steps per
sample period, the lengtiv of the input window for filtered
embedding, the low-pass embedding dimensiprihe model
dimensionl, and the number of neighbots to calculate in
order to fit a one-dimensional linear model. Sauer [43]
outlined that the best results can be obtained by choosing
w=nz21 with | significantly smaller tham Furthermore,
the number z of nearest neighbors has to be selected
/ weighing up the effects of variance and bias. Because of noise
’ within the data, a too small number of neighbors can lead to a
high variance of the model. On the other hand, too high values
of z reduce the variance but can lead to bias because of
considering faraway neighbors [43].
The interpolation step leads to a time series of lergjh
Then, a filtered delay coordinate vector of dimensiorcan
T be obtained by filtering each original time series window of
h:zW[g((D_(W_l),L (x)),...,g(d)_,L (x)),g(x)} - (23) length w. Let h, be a filtered delay coordinate vector that

represents the state at tije Now, a future time series value

Fig 4 Estimation of a Future Trajectory Segment by Using
Information of Nearest Neighbors

W is an nxw-matrix of rankn with w=n. So, h remains
an n-dimensional vectorW is defined to be a composition
of three linear operationsW =W W W . Here, W, is a

discrete Fourier transform of ordev, W, sets all but the
lowest % frequency contributions to zero, and/, is an

inverse Fourier transform of order using the remaining,
frequencies. The three applied matrix operations yield to a ~ 1 i

low-pass filtration of the lengthv window of the time series y == > Ri(h). (25)
and, as a result, to a low-pass embedding. The use of a filtered

delay coordinate vector instead of an unfiltered leads to aThis algorithm can be applied to predict future customer

reduction of noise within the data. In the absence of nOisedgmands by using information of time series representing past
filtration still has the effect of decimating the data set [43]. y 9 P gp

customer orders. In this section, we described a prediction

In addlt_lon, an |r_1terpolat|on can also improve pred'Ctlon(I)%orithm that was introduced by Sauer [43] and the required
accuracy if the available data set is sparse and there areg1

few neighbors in an appropriate neighborhood of the presenFOry of dynamic systems and delay time embedding. This

. . . . . IQrediction algorithm will be applied to forecast future
state. In this case, without an interpolation, too distant I . -
customer demands within a production and delivery network.

accuracy results. This deficit can be overcome by Z‘f]hls is part of a research project whose course of action is

interpolation of the time series. Here, different types (Rresented in the next section.
interpolation can be used. For example, a section of the given
time series is fit with a Fourier polynomial and the polynomial

is sampleds equidistant times each sampling period of the The result of the research project “Forecasting in
original time series. By an interpolation of the given tim&roduction Considering Prediction Models of Nonlinear

series it can be assured that the direction from a present stay@amics” will be a data base containing various time series
to the nearest point on a neighboring trajectory iclassified into groups of similar characteristics and suitable

perpendicular [43]. forecasting methods for every group. In order to establish this
Thus far, we have described the different steps of tgata base, the project follows a specified work scheme that is

prediction algorithm. Now, we detail the process of itdlustrated in Fig. 5. Initially, a discrete-event simulation
application. Given a scalar time series model was developed and implemented that is detailed in Fig.

6. This model is applied to generate typical and representative
time series of customer orders in production and delivery
networks. Within the model, the influence of varying

production and control concepts on the structure of the time
of measurements of one componenqtof the state vectok,  series is observed. Therefore, it contains several generic
future values of the underlying dynamic system can kglements of production systems with arbitrary numbers of
estimated by using the prediction algorithm of Sauer [43]. Fetippliers and customers emphasizing variable job-shop
the prediction, five parameters have to be chosen aheadsg$tems. The variation of diverse system parameters like

y, for i>N -1 can be estimated b®_, (h,). In order to

achieve better predictions, the predictions from the previous
w time steps are averaged. This results in the following
prediction algorithm for an unknown future value of the

given time series for>N -1:

V. COURSE OFACTION

Y ={ Yo Yoo o e} (24)
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Fig 5 Course of Action Within the Research Project (in Accordance to [6])

priority rules, technical restrictions, order policies, re-entrant
flows within working plans of different product types, VI. CONCLUSION ANDOUTLOOK

different numbers of products or varying delivery times pue to increasing dynamics, complexity, and volatility of
creates the opportunity to cover numerous different producti%bayvs markets, the prediction of customer demands often
cases, thus achieving representative results. Variofygng out to be difficult. The paper at hand described the
production programs cover effects of external dynamiCgssearch idea of the project “Forecasting in Production
Model input data are product orders of second-level custometgnsidering Prediction Models of Nonlinear Dynamics”. The
to a simulated first-level customer of a forecasting companyyerall goal of this project is to improve forecasting by
Model output data are the desired time series representifigiving recommendations considering the choice and
demand of a forecasting company’s direct customer. Foragisiment of suitable forecasting methods depending on the
detailed description of the time series generation by ”E!ﬁ/namic properties of the incoming time series of past
mentioned simulation model see [44]. For more informatiogstomer orders. Here, the paper presented various forecasting
on the modeling of job-shop systems and influencing effeGigethods and possibilities to analyze and characterize the
see [45], [46]. . . . . dynamic properties of time series. In particular, a special
The generated time series will be analyzed in terms of thejfegiction algorithm applying local models that use results of
properties applying methods of linear and nonlinear timge|ay time embedding of nonlinear time series analysis was
series analysis. Furthermore, these time series will be subjggkcriped. The project's overall course of action was
to the extensive application of various forecasting methoggesented. The simulation-based generation of representative
including statistical methods and local models of nonlinegme series will be subject to further work. Here, different
dynamics. This step is followed by the assignment of dyna”}ﬁ‘?oduction scenarios will be covered within a generic
properties within the time series to those forecasting methogs, iation model and a wide variation of several system
which deliver signifi.cant predictiqn results. _parameters shall ensure adaptability of the results. The created
In order to consider stochastic effects, the generated tifigie series will be analyzed and characterized by methods
series will be combined with a varying signal erroesented in this paper. The described prediction models will
representing inaccuracy of measurement and non-determinigic applied to forecast the time series in order to identify
processes. The predictability of these manipulated time seriggiaple methods related to the time series’ properties. By
will be determined by the Fokker-Planck-equation [47], [48]. applying data of real-production scenarios the simulation

Finally, the observed results will be merged into a data bagfge| will be validated and furthermore used to test the
applicable to choose suitable forecasting methods for diversgected forecasting methods.

different cases and to adjust them in terms of their parameters.
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