

a b
c

Abstract—Previous research proposed notions of CLCA and
MCLCA to answer keyword query in XML document. The notions
are implemented in its proposed algorithms and the result, namely
MCCTree, is ranked with its proposed ranking method. The
algorithms transform the XML tree into a compact global tree called
CGTree, and select the MCCTree from the CGTree. The resulted
MCCTree is in a compact structure; however the calculation in the
ranking method requires the original structure as in the XML tree.
Thus, this paper presents a new algorithm that implements the same
notions with different approach. The MCCTree is returned in a
structure as required by the ranking method. This algorithm, called
XMCCTree, improve the efficiency of producing a set of MCCTree in
answering keyword query in XML document.

Keywords— XMCCTree, algorithm, MCLCA, CLCA,

MCCTree, XML, keyword query.

I. INTRODUCTION

HE information retrieval research in XML intends to
find the best approach on accessing data from XML

document. This intention is strengthen by a yearly workshop
organized by INEX [1] to analyze the approaches that have
been introduced. The research in XML information retrieval
(IR) has sets out some important requirements that must be in
an XML IR system. The research in [2] stated that an XML IR
system requires a query language to specify the component’s
nature in processing the query, a representation strategies that
integrate the relationship between the content and the
structure, and the ranking strategies to rank the results. All of
these three requirements have been considered by the XML IR
researchers. However, research to find the best approach is
still ongoing, especially on the query language.

Manuscript received October 9, 2011. This research was supported by

Fundamental Research Grant Scheme (FRGS), Research Fund Number: 03-
04-10-867FR, under Ministry of Higher Education, MALAYSIA.

Sazaly U.S. Author is a researcher at Faculty of Computer Science and
Information Technology, 43400 Serdang, Universiti Putra Malaysia.
(Corresponding author to provide phone: 603-8647-1720; fax: 603-8946-
6576; e-mail: ummusulaim2311@ gmail.com).

Selamat M.H. is with Universiti putra Malaysia. He is now with the
Department of Computer Science as an Associate Professor, Faculty of
Computer Science and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Malaysia (e-mail: hasan@fsktm.upm.edu.my).

Baharom S. is with the Information System Department, Faculty of
Computer Science and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Malaysia (e-mail: salmi@fsktm.upm.edu.my).

Ab. Jabar M. is with the Information System Department, Faculty of
Computer Science and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Malaysia (e-mail: marzanah@fsktm.upm.edu.my).

Nowadays, almost all applications have accepted XML as a

medium to store data. Thus, research in XML query has
become a major focus in XML IR. Several notions and
algorithms have been introduced to support query for XML.
These approaches vary with the certain requirement restrict to
some application of interest [3]. In processing a query, the
XML document is first presented in a data model. Most
researches modeled XML document in a tree structure. When
the XML document is presented in a tree form, the notion of
Lowest Common Ancestor (LCA) [4] is very suitable to be
used in selecting possible answer for keyword query. As stated
in [5], when a tree is defined in two views of subtree, an
element in each view might be the same element in the tree.
For example, a query with keywords a, b and c exists in a tree
as shown in Figure 1.

Fig. 1 An example of keyword tree with keyword a, b and c

When the query processing considers to return the result

using the approaches of the semantic AND and single
occurrence of the keyword, this query might return two
answers. The AND semantic return a subtree with all the
keywords in it. The single occurrence returned just a single
keyword node c as the answer because the keyword node c is
located far from the subtree of keyword nodes a and b. The
same node c is returned twice when the query processing looks
at the tree from the two different approaches. The research [5]
informally says the two elements are strictly equal if they are
the same element. It is inefficient if the result repeat the same
element as the answer.

Thus, LCA overcomes this factor by allowing an element to
be in only one structure of subtree so that the result is returned
without recurrence element in other subtrees. Many
researchers also provide algorithm to implement their LCA
notions. The XRank [6] used stack in its RDIL Query

Selection, Generation and Extraction of
MCCTree using XMCCTree

Sazaly U.S., Selamat M.H., Baharom S., Ab. Jabar M.

T

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

79

Processing algorithm. The enhance LCA by [7] and [8] used
collection or list to implement their algorithms. Then, stack is
reused in implementing notions of Compact LCA (CLCA) and
Maximal CLCA (MCLCA) [9] in its proposed algorithm. At
the end, the output of the algorithm must satisfy the notion that
they introduced before.
 In this paper, a new algorithm to generate a set of MCCTree
is presented, called XMCCTree (eXtended MCCTree).
Theoretically, the proposed algorithm is more efficient
compared to the previous algorithms, the CGTreeGenerator
and the MCCTreeGenerator. The XMCCTree is an
enhancement of the previous algorithms which produce a set of
MCCTree in a form that can be used directly as input for the
ranking method. Section 2 discusses about several approaches
proposed in previous research. Section 3 explains the
concepts, steps and pseudocode of the XMCCTree. Section 4
presents comparisons between XMCCTree and
CGTreeGenerator+MCCTreeGenerator with an example.
Finally, conclusions were presented in Section 5.

II. THE PREVIOUS APPROACH

 In the beginning of the XML IR, the researcher adapts the
concept of query from the previous relational database and
Object-Oriented database. The concept of query is using a
query language. Among the earliest XML query language is an
XML-QL proposed in [10]. The XML cannot adapt the
existing query language because it cannot directly capture the
relationship between the tag and its content. The research led
to the introduction of a path notation in making a query. A
query needs to presents a ‘URL’ of the searched data in
navigating through the structure of the XML document. The
used of path regression are implemented in Xpath 1.0 [11],
XQuery [12] and XPath 2.0 [13].
 Besides the path regression, the researcher also used the
traditional clause based from relational query language, SQL,
which provide a pattern in restructuring the data, and notions
of functional language adapted from Object-Oriented query
language, OQL. These concepts are adapted in Quilt [14]
which realize the potential on querying exchange between
documents and databases. The initial proposed query
languages will be easier if the user knows the exact location of
the data. A query is based on the route path provided by the
user. However, the problem will arise if the user does not have
knowledge of the XML or the underlying structure.
 The implementation of keyword query proposed in [15] is
intended to support a novice user to make a query without the
knowledge of the XML structure. Many researches try to
enhance the quality of the XML keyword query processing.
The XKeyword [16] performed 2 stages of query processing.
The preprocessing stage stores the keyword’s elements and
creates a set of connection relations using inline fragments.
This schema is then retrieved in the query processing stage,
connects between them and passed to the query optimizer to
display the results.
 Several researches proposed a formatted query which allow

user to input the keyword based on specification and features
provide in the proposed system. The XSearch [17] format its
keyword query by combining query semantics and path
regression. The CTree [18] method received a keyword query
after the XML tree is transformed into compact tree, Ctree,
and indexed. The tree and the scanned data are then presented
to the user. User can define the query processing features in
making a query. Note that the formatted query still requires
user to have knowledge on defining or selecting the query’s
features.
 The XML tree presents the ancestor-descendant relationship
or the parent-child relationship. The hierarchical level in the
tree makes the notion of Lowest Common Ancestor (LCA) is
the suitable method in processing the XML keyword query.
This notion has been used in XRank [6]. Then, Yu and Yannis
[7] introduced a Smallest LCA (SLCA) to avoid returning a
tree with overlap keyword in it. The enhanced SLCA proposed
by Chong et al. [8] introduced Multiway-SLCA (MSLCA).
This MSLCA adds disjunctive semantic (OR) in processing
the query. The MSLCA simplified the SLCA algorithm and
optimized the intention to avoid redundant in the returning
tree.
 When the query processing has returned a set of query
result, the needs to sort the answers is required. The XXL
Search Engine [19] proposed the ranking method by matching
the patterns similarities between paths. The XXL Search
Engine still use path regression in its query which is not
suitable to support keyword query. The ranking method in
keyword query has been proposed in XRank [6]. The XRank
used the LCA method in its query processing. Its ranking
method calculates keyword specificity, keyword proximity and
a new proposed method to cater the hyperlink awareness of the
element called ElemRank. Unfortunately, the XRank only used
a conjunctive semantic and a single occurrence of the keyword
to process the query. Research in [9] stated that the use of both
conjunctive and disjunctive semantics can produce a better
number of results.
 The keyword query processing finds the nodes that contain
keyword(s) in XML tree. Then, it will be processed to find the
LCA depending on the location of the nodes. The notion of
LCA is an approach to identify the relevancy of the answer and
the keyword. When it is used in a structured data like in XML,
the relevancy is consistent with the research in [20]. The
research stated that the conformity analysis of the contents in a
structured data is in accordance to the nearest-neighbor
similarity. Moreover, it can establish a scale for the data which
can help in the ranking calculation.
 Most algorithms in LCA research use Dewey indexing
method in their approaches. It indexes the node with numbers
based on its structure. This indexing method can be easily
manipulated in processing the query using existing functions
such as sorting and defining between the lowest and the
highest level of the node.
 Algorithms proposed in [9] implement notions of CLCA and
MCLCA with Dewey indexing method. It generates a Compact

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

80

Global Tree (CGTree) and selects a set of compact Maximal
Compact Connected Tree (MCCTree) to answer XML
keyword query. These notions from the previous research
have been proven that the accuracy and the relevancy of the
produced results outperform the existing approaches. These
approaches proposed in [9] have been compared with the
existing XRank [6], XSearch [17] and Multiway-Smallest-
LCA (MSLCA) [8]. The notion implemented in XRank only
covers a conjunctive semantic. In this approach, the
conjunctive semantic allows only LCA that has all of the
keywords to be return as the answer which makes the number
of the returned result is less. However, the notions in [9] and
MSLCA still perform well in conjunctive semantic in
compared with XRank. The difference between MSLCA and
CLCA+MCLCA is apparent when the disjunctive semantic is
applied. On the other hand, the performance for XRank in
supporting the disjunctive semantic is not accurate since it
only covers the conjunctive semantic.
 Both XSearch and MSLCA cover the semantic relationship
when answering keyword query in XML. Research in [9]
stated that the performance of XSearch when executing more
keywords in a huge document is not as efficient as the
CLCA+MCLCA performance. The process of maintaining the
index connectivity in XSearch makes it inefficient when

executing more keywords as well as executing query in a large
file. Furthermore, the XSearch use a related fragment as its
processing method instead of the LCA which is the focus of
this research. Meanwhile, the MSLCA is an extended research
of Smallest-LCA [7] which support the disjunctive semantic
and optimized the process of selecting the LCA. But the
process of matching between the anchor nodes is too complex
which increases the processing time when selecting the result.
 The notions of CLCA and MCLCA with Dewey indexing
method performs very well than the compared approaches. The
resulted compact MCCTree is then ranked with its ranking
method which focusing on the structural compactness and the
text similarities. Unfortunately, the structural compactness in
the ranking method calculates the distance of nodes and levels
of MCCTree using the original structure from the XML tree.
We assume that there is another process to retrieve the actual
structure of the MCCTree before it can be used in the ranking
method. Therefore, this paper proposes an algorithm to
produce MCCTree in incompact structure. The output from
this algorithm can be used directly as an input for the ranking
method. Table 1 summarized all the approaches described in
this chapter.

Table 1 Summary of research and part of approaches in XML query

XML Query

Approach Proposed Method

Path Regression XPath 1.0[11], XQuery [12], XPath 2.0 [13]

Traditional Clause, SQL + OQL Quilt [14]

XML keyword query

Approach Proposed method

Pattern, Predicate, Connection
Relation

Entended XML-QL [15], XKeyword [16]

Formatted Query XSEarch [17], CTree [18]

Lowest Common Ancestor (LCA) XRank [6], SLCA [7], MSLCA [8], XSemantic [21], CLCA & MCLCA [9]

Ranking Method

Proposed in Focus

XXL Search Engine [19] Path Similarities

XRank [6]
Keyword Specificities, Keyword Proximity, ElemRank (Hyperlink
Awareness)

CLCA & MCLCA [9] Structural Compactness, Textual Similarities

III. THE XMCCTREE ALGORITHM

A. The concept of XMCCTree

XMCCTree is developed with intended to generate the
MCCTree in incompact structure. XMCCTree uses the
concept of set or collection. The three steps that can describe
the XMCCTree are select, generate and extract. XMCCTree
starts with selecting a node that contains keywords in it. This

node is determined whether it can be a possible root node of
the resulted subtree. Once determined, XMCCTree will
generate the subtree of the node until it reaches the deepest
node that contains the keyword. When the subtree has been
generated, the subtree will be extracted from the tree as
MCCTree if it satisfies some rules in line 36 to line 39 as
shown in the algorithm in section 2.3.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

81

B. The steps of XMCCTree

XMCCTree needs three types of inputs to be processed. The
inputs are an indexed XML tree, a set of indexes of the
keyword nodes, K, sorted by index, and a variable named
CMSet, which is declared as a node root. This root node then
will be assigned to the variable T, a variable to hold the
generated tree. The selecting steps define whether T has child
by reading the set K and detect the child, ci, which has a
starting index with root T. Then, ci, is added as child for T.

Before generating the subtree of each ci under T,
XMCCTree will get a number of keyword(s) in each ci stored
in CKti, and a number of keyword(s) in T stored in CKT.
Then, ci will be sorted in descending order of the number of
keyword(s) contain in its subtree. If the CKT is equal with the
CKti, the ci will be eliminated from T and added into CMSet.
Otherwise, the T is possibly a MCCTree. Now, the
XMCCTree will generate the complete tree of T. The
XMCCTree will generate a subtree of each ci under T one-by-
one by searching the index of keyword K, which has a starting
index at ci. The indexes are sorted in ascending order and
stored in Kci. For each ci, a new node will be added as ci’s
child and indexed using the Dewey index path until it reaches
the deepest node that contains the keyword in the branch. This
keyword node has the same index value with the first value of
Kci. A variable node follows the generated child. Then, the
first value of Kci is pop out. If Kci still has an index, it means
that the subtree rooted at ci still has another branch to be
generated. The variable node travel back through the branch
until it reaches node with index same with the starting index of
the first value in Kci. The node is the ancestor of the first value
in Kci. The XMCCTree continue generating another branch
from this node to complete the subtree ci. The process will be
repeated until each ci in T is completely generated.

The last step is to select the MCCTree. If the tree T has only
a subtree, the subtree of T is selected as MCCTree. Otherwise,
the tree T itself will be MCCTree. All the steps continued until
the CMSet is empty. The XMCCTree will return a set of
MCCTree to be used in ranking method proposed by [9] to
answer XML keyword query.

C. The algorithm of XMCCTree

The XMCCTree is a part of process in keyword query
processing. Before the XMCCTree can be executed, the XML
document must be parsed to read the data. After parsing the
document, the XML data must be transformed into an XML
tree and indexed using the Dewey indexing method. The
methods on performing all these procedures are independent,
depends on the programmer’s choice on how to implement it.
The XMCCTree requires an input of indexed XML tree and a
set of indexes of keyword nodes sorted in ascending order.
The algorithm of the XMCCTree is as follows:

1 Begin

2

3 XMCCTreeSet � null;

4 CMSet = 0; //node root

5 while CMSet is not empty do

6 {

7 r = root (T Є CMSet);

8 CMSet = CMSet - { T };

9 ci =read_keyword();

10 foreach ci

11 { add ci as child for T

12 //get |CK (ci)| ();

13 foreach ci Є children(r) //(in descending

14 order by |CK(ci)|)
15 { ti = ci;

16 if | CK (T)| == | CK (ti)| then

17 T = T - ti ;

18 CMSet = CMSet ∪ { ti };

19 else

20 break;

21 }

22 if | CK (T) | > 0 then

23 foreach ci of T

24 { Kci = getKeyword(ci); // keywords

 with ci as ancestor

25 node = ci ;
26 while(node == ancestor of Kci first()

 && Kci first() != node)

27 { tci = tci ∪ child; // add child

 to subtree rooted at ci
28 node = child;

29 if (node == Kci.first())

30 Kci pop();

31 if Kci eol()

32 break;

33 else

34 while (node != ancestor of

 Kci.first())

35 { node = node.parent; }

 } }

36 if T has only 1 subtree

37 XMCCTreeSet=XMCCTreeSet ∪ {ti};

38 else

39 XMCCTreeSet=XMCCTreeSet ∪ {T};

40 }

41 return XMCCTreeSet;

42 end

The following example illustrates the execution of the

XMCCTree algorithm. The query has 3 keywords; k1, k2 and
k3. Assume that we have an indexed XML tree and a set of
keyword-node indexes, K = {0000, 0001, 001, 011, 020,
02100, 02101, 02111, 030, 031}, as shown in Fig. 2. Node
index [0] is assigned as a value in CMSet. The algorithm starts
when the value in CMset is assigned as a node root. Then, the
assigned value is eliminated from the CMSet.

The XMCCTree detects a number of the children for node
[0] from K = {0000, 0001, 001, 011, 020, 02100, 02101,
02111, 030, 031}. Then, the child-nodes [00], [01], [02], [03]

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

82

[01]

[0]

[03]

[011]

[01]

[0]

[03]

[030]

[011]

Keyword under [03] = {030, 031}

[01]

[0]

[03]

 [030] [011]

Keyword under [03] = {030, 031}

[01]

[0]

[03]

 [030] [011] [031]

Keyword under [03] = {030, 031}

 [02] [01]

[0]

[00]

 3

1
3

3
 CMSet = { [00] }

[03]
2

[02] [01]

[0]

[00]

 3
1

3

3

[03]

2

[02] [01]

[0]

1
3

3

[03]

2

[01]

[0]

1

3

[03]

2

CMSet = { [00] , [02] }

are added under [0]. For each child, XMCCTree detects
number of unique keywords that they have and sort it in
descending order. Based on the XML tree, the [00] have 3
keywords, [01] has only a keyword, [02] have 3 keywords and
[03] have 2 keywords.

Fig. 2 An example of XML tree with keyword k1, k2 and k3

The sorted list will be [00], [02], [03] and [01]. Then,
comparison between the child and the root will be done to
select the possible MCCTree. When the number of unique
keyword contains under root is equal with number of unique
keyword contain under child ci, ci will be eliminated from the
tree and added into CMSet. The graphical views of these steps
are shown in Fig. 3. Children with index [00] and [02] are
eliminated from the tree.
 When the next child (in descending order), [03] has a
number of keywords less than root (refer Fig. 3), the tree
rooted at root which consists of its remaining children (node
[03] and node [01]) is possibly a MCCTree. Next, XMCCTree
will generate this tree.

Fig. 3 Comparison between child and root

Node that contain keyword under ci is listed, Kci [01] =
{011}. Index of ci is compared with the first value of Kci.
XMCCTree generates node by node until the index of
generated node is equal to the first value in Kci. Then, Kci
eliminate that value and start the comparison and generating
nodes again until the same index in Kci is reached. If the next
index of Kci does not have the same ancestor with the current
generated subtree (means that the nodes must not be in the
same branch), the pointer will reverse through the ancestor
until reach a node with the same ancestor with value in Kci.
The steps can be visualized as in Fig. 4 as below:

Fig. 4 illustrates part of steps in generating a tree

When all the nodes under all children have been completely

generated, the tree is added into a list of MCCTree. If the tree
has only a branch of child, then the subtree rooted at the child
will be extracted as MCCTree. Otherwise, the tree rooted at
root is returned as MCCTree.

IV. XMCCTREE VS PREVIOUS ALGORITHM

As an enhancement of the previous algorithms, XMCCTree
maintains the notions that have been used before. In this paper
we used the term CGTreeMCCTreeGen to indicate a
combination of the previous algorithms, the CGTreeGenerator
and the MCCTreeGenerator. XMCCTree produce the same
result of MCCTree as CGTreeMCCTreeGen but differ in
terms of the structure of the MCCTree.

[021]

[02]

[030]

[0210]

[02100] [02101]

[001]

[01]

[020]

[0000]

[000]

[0]

[00]

k3

[031]

[0001]

[03]

[011] [010]

[0211]

[02110] [02111]

k1

k1

k1

k1

k2

k2

k2

k3
k3

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

83

n21

n22

n24

2

n6

n8

n7

n9

n10

n12

n13

n14 n15

n16

n18

n19

n20

n4

n3

n2

n0

n1

k1

k3

k4

k1 k1

k1 k3 k4

k4

k4

n21 n24

n6

n8

n7

n9 n12

n13

n14

n16

n18

n19

n20

n4

n2

n0

n1

k1

k3

k4

k1 k1

k1 k3 k4

k4

k4

n21

n22

n24

2

n6

n8

n7

n9

n10

n12

n13

n14 n15

n16

n18

n19

n20

n4

n3

n2

n0

n1

k1

k3

k4

k1 k1

k1 k3 k4

k4

k4

n21 n24

n6

n8

n7

n9 n12

n13

n14

n16

n18

n19

n20

n4

n2

n0

n1

k1

k3

k4

k1 k1

k1 k3 k4

k4

k4

b) CGTree a) XML Tree with keyword k1,
k3, k4

c) Set of MCCTree in incompact structure d) Set of MCCTree in compact structure

CGTreeGenerator

XMCCTree
MCCTreeGenerator

CGTreeGenerator transform XML tree into a compact
global tree by eliminating linked nodes (nodes with only one
subtree). Therefore, the structure of the compact global tree is
in the compact structure. The process begins from the deepest
nodes on the left in XML tree; which have the lowest Dewey
index number. It is then inserted into a stack. The algorithm
computes the LCA through travelling the nodes and the stack.
At the end, a set of index node remaining in the stack construct
the compact global tree.

The compact global tree is then used as an input for the
MCCTreeGenerator. MCCTreeGenerator will select
MCCTree in a top-down manner. Starting from root,
CCTreeGenerator will define numbers of each keyword
contains in each child. Child which has the same keywords and
numbers of keyword with root will be eliminated from the tree
to be another potential MCCTree. The remaining tree and its
nodes will be a potential MCCTree. Then,
MCCTreeGenerator will travel through the subtree of each
child to identify the structure of the tree. After that, it will

return the tree as MCCTree. Note that the structure of the
returned MCCTree is in a compact structure because it is
define from a compact global tree.
 XMCCTree can be defined as an enhanced
MCCTreeGenerator. XMCCTree starts generating tree from
root with index [0], and identify its child from the keyword
list. Then, the XMCCTree add the identified child and
compute number of each keyword in each child. Similar to
MCCTreeGenerator, a child that contains the same number of
keyword is eliminated from the tree as a potential MCCTree.
After that, XMCCTree will start generating the descendant of
each child until it reaches the keyword node.
 Research in [22] stated that the keyword query algorithm
traverse all nodes begin from root, to find the target nodes.
The traversing process makes the overhead of the algorithm is
very high. However, both XMCCTree and
CGTreeMCCTreeGen algorithms use the list of keyword node
index as a limit in constructing the tree. It is used to avoid the
algorithm travelling the nodes and paths that are not related to

Fig. 5 Example of the XML keyword query with XMCCTree and CGTreeMCCTreeGen

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

84

the keyword.
The differences between both algorithms are:
- The XMCCTree is faster than CGTreeMCCTreeGen by

avoiding the generating of compact global tree to find
the lowest LCA.

- The CGTreeMCCTreeGen produce a set of MCCTree in
a compact structure, while XMCCTree produce a set of
MCCTree in an incompact structure.

- The XMCCTree is more efficient since the resulted
MCCTree can be use directly in the ranking method
proposed by Feng et al. [9].

 Comparison between the output of the XML keyword
query using XMCCTree and CGTreeMCCTreeGen is shown in
Fig. 5.

In order to verify the efficiency of the XMCCTree, the
mathematical theory is presented. As the focus of this paper,
the algorithm is in the second level of the
computational/communication process as stated in [23]. The
computational time or the time complexity is the most related
to the efficiency aspect. Therefore, we will use the time
complexity as the mathematical theory to proof the efficiency
of the algorithm and discuss the time complexity of the
previous algorithms as stated in [9].

The selection of the minimal node from the XML tree
requires O(log m) and the push and pop activities in the stack
make the complexity is O(d). These processes are merge to
construct the CGTree which make the time complexity for the
CGTreeGenerator is O (d*log m*Σ(i=1 to m) | Ti |) where m is
the number of keywords; d is a depth of the XML document;
and | Ti | is the number of nodes that contain keyword i.

The counting and sorting process at the beginning of the
MCCTreeGenerator needs O(m*CN), where m is the number
of keywords and CN is the number of the children of n. In
generating a MCCTree, the complexity is O(m*Ni). Ni is a
total number of nodes in the CGTree. Since Ni < 2*Σ(i=1 to

m) |Ti|), the complexity of the MCCTreeGenerator is
O(m*Σ(i=1 to m) |Ti|). Since the CGTreeGenerator and the
MCCTreeGenerator is a step by step algorithm, the total
complexity is an addition of these two complexities. Thus, the
CGTreeMCCTreeGen’s time-complexity is O (d*log m*Σ(i=1

to m) |Ti|) + O(m*Σ(i=1 to m) |Ti|).
In XMCCTree, each node n needs to sort its children with

respect to the number of keywords contains in it, m, and for
each child, algorithm needs to generate descendant into some
level, d, until it reach the keyword nodes. Hence, the total
complexity is O (m*Σ(i=1 to m) |Ti|*d).

V. CONCLUSION

In this paper, a new algorithm to select MCCTree from
XML document is presented called XMCCTree. The
XMCCTree is an enhancement of CGTreeGenerator and
MCCTreeGenerator algorithms proposed in [9]. The
algorithm enhanced the way to select and produce MCCTree
in a way that can be use directly in the ranking method.

Previous algorithms produce MCCTree in a compact structure
but the XMCCTree produce MCCTree in incompact structure.
The XMCCTree maintains the notions and ranking methods
used to answer XML keyword query but modify its algorithm
to enhance the query process.

In a worst case, previous algorithms use O (d*log m*Σ(i=1
to m) | T i |) + O (m*Σ(i=1 to m) | T i |), whereas XMCCTree
takes O (m*Σ(i=1 to m) | T i |*d).

We plan to develop a prototype of both algorithms and run
an experiment to prove that the proposed algorithm,
XMCCTree, is more efficient than the previous algorithm in
producing MCCTree from XML document.

REFERENCES

[1] N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, "INEX: INitiative
for the Evaluation of XML Retrieval," Proceedings of the SIGIR

2002 Workshop on XML and Information Retrieval, vol. 2006, pp.
1-9, 2002.

[2] M. Lalmas, XML Information Retrieval: Taylor and Francis Group,
2009.

[3] K.-D. Schewe, B. Thalheim, S. Hartmann, H. Köhler, S. Link, T.
Trinh, and J. Wang, "On the Notion of an XML Key," in
Semantics in Data and Knowledge Bases, vol. 4925, Lecture Notes

in Computer Science: Springer Berlin / Heidelberg, 2008, pp. 103-
112.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "On finding lowest
common ancestors in trees," in Proceedings of the fifth annual

ACM symposium on Theory of computing. Austin, Texas, United
States: ACM, 1973.

[5] G. Buratti and D. Montesi, "Full-Text Capabilities for Querying
XML Repositories: a Formal Model," presented at Proceedings of
the 10th WSEAS International Conference on COMPUTERS,
Vouliagmeni, Athens, Greece, 2006.

[6] G. Lin, S. Feng, B. Chavdar, and S. Jayavel, "XRANK: ranked
keyword search over XML documents," in Proceedings of the

2003 ACM SIGMOD international conference on Management of

data. San Diego, California: ACM, 2003.
[7] X. Yu and P. Yannis, "Efficient keyword search for smallest LCAs

in XML databases," in Proceedings of the 2005 ACM SIGMOD

international conference on Management of data. Baltimore,
Maryland: ACM, 2005.

[8] S. Chong, C. Chee-Yong, and K. G. Amit, "Multiway SLCA-based
keyword search in XML data," in Proceedings of the 16th

international conference on World Wide Web. Banff, Alberta,
Canada: ACM, 2007.

[9] J. Feng, G. Li, J. Wang, and L. Zhou, "Finding and ranking
compact connected trees for effective keyword proximity search in
XML documents," Information Systems, vol. 35, pp. 186-203,
2010.

[10] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, "A
query language for XML," Computer Networks, vol. 31, pp. 1155-
1169, 1999.

[11] J. Clark and S. DeRose, "XML path language (XPath)
recommendation.," vol. November 1999, 1999.

[12] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M.
Stefanascu., "XQuery: A query language for XML," in Technical

Report, vol. February 2001: World Wide Web Consortium, 2001.
[13] A. Berglund, S. Boag, D. Chamberlin, M. FernÃ¡ndez, M. Kay, J.

Robie, and J. r. m. SimÃ©on, "XML Path Language (XPath) 2.0
(W3C Recommendation)," 2007.

[14] G. Goos, J. Hartmanis, J. van Leeuwen, D. Suciu, G. Vossen, D.
Chamberlin, J. Robie, and D. Florescu, "Quilt: An XML Query
Language for Heterogeneous Data Sources," in The World Wide

Web and Databases, vol. 1997, Lecture Notes in Computer

Science: Springer Berlin / Heidelberg, 2001, pp. 1-25.
[15] D. Florescu, D. Kossmann, and I. Manolescu, "Integrating

keyword search into XML query processing," Computer Networks,
vol. 33, pp. 119-135, 2000.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

85

[16] H. Vagelis, "Keyword Proximity Search on XML Graphs,"
presented at 19th International Conference on Data Engineering
(ICDE'03), Bangalore, India, 2003.

[17] C. Sara, M. Jonathan, K. Yaron, and S. Yehoshua, "XSEarch: a
semantic search engine for XML," in Proceedings of the 29th

international conference on Very large data bases - Volume 29.
Berlin, Germany: VLDB Endowment, 2003.

[18] Z. Qinghua, L. Shaorong, and W. C. Wesley, "Ctree: a compact
tree for indexing XML data," in Proceedings of the 6th annual

ACM international workshop on Web information and data

management. Washington DC, USA: ACM, 2004.
[19] C. Jensen, S. Šaltenis, K. Jeffery, J. Pokorny, E. Bertino, K. Böhn,

M. Jarke, A. Theobald, and G. Weikum, "The Index-Based XXL
Search Engine for Querying XML Data with Relevance Ranking,"
in Advances in Database Technology — EDBT 2002, vol. 2287,
Lecture Notes in Computer Science: Springer Berlin / Heidelberg,
2002, pp. 311-340.

[20] I. Liiv, R. Kuusik, and L. Vohandu, "Conformity Analysis with
Strcutured Query Language," presented at Proceedings of the 6th
WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases, Corfu Island, Greece, 2007.

[21] U. Supasitthimethee, T. Shimizu, M. Yoshikawa, and K. Porkaew,
"XSemantic: An Extension of LCA Based XML Semantic
Search," IEICE TRANSACTIONS on Information Systems, vol.
E92-D, pp. 1079-1092, 2009.

[22] X. Lin, D. Xu, and N. Wang, "NNQM: a novel non-navigating
XML query model," in Proceedings of the 7th Conference on 7th

WSEAS International Conference on Multimedia, Internet \&

Video Technologies - Volume 7. Beijing, China: World Scientific
and Engineering Academy and Society (WSEAS), 2007.

[23] M. Burgin, "Mathematical Theory of Information Technology,"
presented at Proceedings of the 8th WSEAS Int. Conf. on Data
Networds, Communications, COmputers, Baltimore, USA, 2009.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 6, 2012

86

