
 

 

 

Abstract— Due to the possibility of unexpected situations, the 

authorities feel the necessity of keeping certain sub systems or 

components of aircraft under continuous scrutiny. Accordingly, 

sensors in flight control systems are considered as one of the crucial 

components of the system. The failure to detect sensor faults is quite 

likely to cause very serious problems, which makes it vital to carry 

out effective fault detection and isolation processes. Through the 

determination of the size of the fault, it might be possible to make use 

of this information in the realization of the repair. In this study, the 

detection and isolation of sensor faults are carried out through bank 

of Unknown Input Observers. Additionally, a structure using fuzzy 

logic is suggested in order to have an idea about the size of the fault. 

When this suggested structure is used, it might be possible to choose 

the most suitable control type to remove the effects of the fault by 

control reconfiguration following fault detection and isolation. To 

use some reliability maintenance procedures reduces the number of 

the catastrophic failures. 

 

Keywords—Fault diagnosis, fuzzy logic, reconfiguration, 

observers 

I. INTRODUCTION 

he detection, isolation, identification and reconfiguration 

of a fault involves [1, 2]:  

The detection of the fault: Determining the problem when 

something goes wrong in the system, 

Isolating the fault: Determining the exact location and the 

type of the fault, 

Identification of the fault: Determining the size of the fault 

and its intensity, 

System Reconfiguration: The realization of control activities 

which allow the system to function despite low performance. 

A fault can be defined as the deviation of at least one 

characteristic function from standard, acceptable and usual 

functioning of a system. Fault occurs within a system and can 

lead to lower or even no performance of a component of the 

system responsible for a specific task. There are various types 

of faults resulting from the following situations; faulty design 

and production, inappropriate use, maintenance procedures, 
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software, operator, and environmental condition. Some of 

these faults can also be classified as “errors”. In this respect, 

there is a great human effect in these processes. When no 

intervention is applied in case of a fault, it can lead to a bigger 

fault and consequently system disfunctioning (failure). 

On the other hand, a failure refers to permanent interruption 

in the functioning of a system fulfilling a certain task under 

predetermined working conditions. One or more faults may 

lead to a system failure. 

Any deviation in the system should not be considered as a 

fault. Deviations can be categorized into three types; 

temporary, intermittent and permanent. Temporary deviations 

are due to the effects of external disturbance and last a certain 

time and turns back to normal functioning with no intervention 

required. Intermittent deviations are generally due to unstable 

device and tool functions. Permanent deviations can be caused 

by component faults, physical damage and design fault. It is 

quite difficult to detect the cause leading to temporary and 

intermittent deviations since deviations exist when the cause 

leading to deviations are present and they end when the cause 

is not present anymore [3]. 

The methods used for fault detection can be examined in 

two groups in general sense; those that are not based on a 

model and those that are based on a model. The methods 

which are not based on a model do not require the process to 

make use of a mathematical model. 

The simplest and the most commonly used method in fault 

detection is to check the limit of measurable variable. In this 

technique, two limit values are assigned for a measurable 

variable Y(t). When the value of this variable exceeds the 

upper limit defined as Ymax and is lower than the lower limit 

Ymin, it might be concluded that a problem exists in the system. 

The disadvantage of this method is the changes in working 

limits. 

Another that might be applied in fault detection method is 

based on physical redundancy that is the comparison of output 

values of system components [4]. 

In addition to the methods that are not based on a model 

mentioned above, faults can also be detected by making 

spectrum analyses of system measurements or making use of 

the structures allowing logical deductions. 

The fault detection methods based on modeling involve 

residual production and decision making processes. They also 

require the use of a mathematical model as analytical 

redundancy. The most common model based fault detection 
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methods are based on observers in deterministic systems and 

Kalman Filter in stochastic systems. 

Savanur et al. have shown through simulations the sensor 

fault detection, isolation and reconfiguration in an aircraft 

model by using fuzzy logic In their studies, the faults are first 

detected and isolated through Kalman Filter, and then an 

appropriate control input is established through a rule database 

formed by means of fuzzy logic [5].  

By using simulations, Kiyak et al. have shown how sensor 

faults for different scenarios of VTOL aircraft were detected 

[6]. 

Similarly, the method used by Kulkarni et al. for fault 

detection in hydraulic systems by using fuzzy logic is shown 

through simulations. In fuzzy logic controller, residuals and 

cumulative residuals are used as input, and the intensity of the 

fault as output. The studies by Kulkarni et al., in short, 

emphasize not only the detection of the faults but also their 

size [7]. 

Kiyak et al. carry out the detection and isolation of aircraft 

sensor and actuator faults through unknown input observers. 

The reconfiguration suggests by them allowed the aircraft to 

function normally again [8]. 

In this study, the detection and isolation of sensor faults in a 

flight control system are carried out through observers based 

on modeling. In addition, a fuzzy logic structure is suggested 

to have an idea about the size of sensor fault. When this 

suggested structure is used, it might be possible to choose the 

most suitable control type to remove the effect of the faults 

efficiently during the phase of reconfiguration following the 

detection and isolation of the fault.  

II. MAINTENANCE AND FAULT DIAGNOSIS 

Maintenance applications can be classified as planned 

maintenance and unplanned maintenance [9]. 

Unscheduled maintenance in aviation is not wanted. To 

reduce the number of unexpected downtimes, fault diagnosis 

methods and reliability centered maintenance can be used to 

address dominant causes of equipment failure. This allows 

maintenance personnel to fix failures before aircraft damage or 

crash [10]. 

 

 
 

Fig. 1 Types of maintenance 

 

Corrective maintenance activities are conducted by four 

important steps [11] as shown in detail in Figure 1:  

 1. Fault detection. 

 2. Fault isolation. 

 3. Fault elimination. 

 4. Verification of fault elimination.  

In the fault elimination step several actions could be taken 

such as adjusting, aligning, calibrating, reworking, removing, 

replacing or renovation. 

Corrective maintenance has several prerequisites in order to 

be carried out effectively [11]: 

1. Accurate identification of incipient problems. 

2. Effective planning which depends on the skills of the 

planners, the availability of well developed 
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maintenance database about standard time to repair, a 

complete repair procedures, and the required labour 

skills, specific tools, parts and equipment. 

3. Proper repair procedures. 

4. Adequate time to repair. 

5. Verification of repair.  

Maintenance Objectives are [11]: 

 Maximising production or increasing facilities 

availability at the lowest cost and at the highest 

quality and safety standards. 

 Reducing breakdowns and emergency shutdowns. 

 Optimising resources utilisation. 

 Reducing downtime. 

 Improving spares stock control 

 Improving equipment efficiency and reducing scrap 

rate. 

 Minimising energy usage. 

 Optimising the useful life of equipment. 

 Providing reliable cost and budgetary control.  

 Identifying and implementing cost reductions 

The maintenance can be improved if an efficient procedure 

for the prediction of failures is implemented. The primary 

source of information on the health of the engines comes from 

measurement during flights. Several variables such as the core 

speed, the oil pressure and quantity, the fan speed, etc. are 

measured, together with environmental variables such as the 

outside temperature, altitude, aircraft speed, etc [12]. 

Teranishi and Stubberud monitored each blade position into 

an aircraft engine using eddy-current data to detect potential 

damage to a turbine engine. A hierarchical neural network was 

used to track changes in the position of the blades [13].  

Fuzzy logic or other decision support tools could be used 

for maintenance by designers and managers [14]. Intelligent 

computer systems that can solve problems and adapt to new 

situations [15, 16]. 

If decision support systems are used, it is useful to identify 

parts/spares critical to the operation of a training aircraft in 

terms of both their prices and quantities and application of 

reliable and robust forecasting method to predict the future 

demand requirements, thereby optimizing the logistic supply 

chain and aircrafts operational performance over the life cycle 

[17]. 

Because of the dynamic process, aircraft maintenance’s 

work is unpredictable. An electronic based of work in progress 

system is apparently required [18]. Such system would be to 

reduce the number of delays and cancellations and the number 

of unnecessary parts removal, which add significant costs to 

airline and military airplane maintenance operations [19]. 

III. MODEL-BASED FAULT DETECTION AND ISOLATION (FDI) 

It is quite disadvantageous to have at least two spares to 

detect one fault. For instance, it is not convenient to have two 

spares for each component (sensor, actuator and control 

surfaces) in such a complex system like aircraft since they 

might cause extra weight and cost as well as space problems. 

Therefore; this method should be used for simpler systems 

where above mentioned disadvantages do not cause 

considerable problems. 

As for fault detection, it would be more advantageous to use 

analytical redundancy (computer, microprocessors or 

software) in which a mathematical model is used and various 

computations are made rather than using software excess 

through special sensors, physical excess and limit control that 

are not based on modeling. 

The basic principle of observers is that the predictions of 

state variables of a dynamic system are closer to the 

predictions of state variables of another system called 

“observer”. The same principle is applicable to unknown input 

observers (UIO), which is insensitive to disturbance (unknown 

input). 

Consider a continuous linear time invariant state space 

model of the system [20, 21]: 

 

 
Cx(t)y(t)

Ed(t)Bu(t)Ax(t)(t)x




 (1) 

 

A, B, C, E, x, u, y, and d represent the system coefficient 

matrix, the input coefficient matrix, the output coefficient 

matrix, the unknown input distribution matrix, the state vector, 

the input vector, the sensor output and the unknown input 

vector respectively. 

The structure of the unknown input observer is described as 

[22, 23] 

 

 
Hy(t)z(t)(t)x̂

Ky(t)TBu(t)Fz(t)(t)z




 (2) 

 

F , z, and x̂  represent the observer dynamics matrix, the 

observation vector, and the estimated state vector respectively. 

T , K  and H  are defined below. 

The error vector is defined by: 

 

 (t)x̂x(t)e(t)   (3) 

 

Using Equation (1) and (2), error vector is rewritten as 

 

 

z(t)HC)x(t)(I

HCx(t)z(t)x(t)

Hy(t)z(t)x(t)(t)x̂x(t)e(t)







 (4) 

 

Using Equation (4), the derivative of the error vector is 

obtained as 

 

 

HC)Ed(t)(I-HC)]Bu(t)-(I-[T-

C)H]y(t)K-HCA-(A-[K-

C)]z(t)K-HCA-(A-[F-C)e(t)K-HCA-(A(t)e

12

11





 (5) 

 

If the following relations hold true and 21 KKK  ; 
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 0I)E(HC   (6) 

 HCIT   (7) 

 CKHCAAF 1  (8) 

 FHK2   (9) 

derivative of the error vector will be [24]: 

 

 Fe(t)(t)e   (10) 

  

and, then the solution of the error vector is e(0)ee(t) Ft . If F  

is chosen as a Hurwitz matrix, the solution of the error 

equation goes to zero asymptotically. So, x̂  converges to x . 

Once the fault is detected, locating the component where the 

fault occurs is called the isolation of the fault.  

The fault isolation is to locate the fault. One method is 

called “Dedicated Observer Scheme” (DOS) in the related 

literature. Here, each residual signal is designed to be sensitive 

to one fault but is insensitive to others. These properties make 

isolation possible. However; it is quite demanding to obtain 

such a situation. To make maximum design freedom, another 

method called a generalized observer scheme (GOS) is used. 

Here, each residual signal is designed to be sensitive to faults 

in all but one sensor. The relationship between residuals and 

the fault in this structure is as follows:  

 

 

n...,1j,1j...,1kε(t)r

ε(t)r

kk

jj





 (11) 

 

In this situation, any fault in sensor (j) can be detected and 

isolated by checking the norms of the residuals as in Equation 

(11). Here, ɛ
j
 and  ɛ

k
  are defined as threshold values. 

During the identification and reconfiguration phase, fuzzy 

logic is used. The fuzzy process consists of three main units; 

namely fuzzifier unit; rule processing unit, and defuzzifier 

unit. 

Fuzzifier unit is the first unit in fuzzy system. The data 

entered into this unit as certain and feedback results are 

fuzzified through some scale changes. In other words, each 

piece of information is assigned a membership value, and sent 

to rule processing unit after they are converted into a linguistic 

structure. The data that reach the rule processing unit are 

combined with rule processing data (‘if … and … then … 

else’) that are based on a database available as stored in the 

rule processing unit. The logical propositions mentioned here 

can be formed with numerical values as well depending on the 

structure of the problem. In the last step, the results obtained 

by using appropriate logical decision propositions are sent to 

defuzzier unit. When Fuzzy set relationships that are sent to 

defuzzifier unit are considered, fuzzy data are converted into 

real numerical values following another change of scale [25, 

26]. 

IV. DETECTION OF AIRCRAFT SENSOR FAULT AND 

DETERMINING ITS SIZE 

Figure 2 displays the block diagram of the FDI and 

reconfiguration scheme. 

 

 
 

Fig. 2 Block diagram of the FDI and reconfiguration scheme. 

 

As seen in Figure 2, the faults regarding the sensors during 

the overall process are determined through residuals by using 

unknown input observer structure. During decision making 

process, fault detection and isolation are carried out by 

evaluating the produced residuals. Later, fuzzy logic is used to 

obtain information concerning the size of the fault. Depending 

on the result of the evaluation, the generating corrective 

control signal or the generation of the signal switching on the 

spare sensor are realized.  

Lateral state variables and input vector in an aircraft can be 

defined as: 
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A  and B  matrices obtained from stability derivatives are 

described as: [27, 28]: 
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  is side-slip angle; p  is roll rate; r  is yaw rate;   is roll 

angle; a  is aileron deflection; r  is rudder deflection; and 

R
Y,N,N,N,L,L,L,Y rprpv 


  ,
RA

L,L   , 
A

N , 
R

N  

are stability derivatives. 

Fault detection, isolation and reconfiguration are evaluated 

according to sensor fault related scenario. While these 

scenarios are produced, the values with Gauss distribution are 

applied in random time intervals within [5 10] closed range as 

unknown input (d). The system input is u = [1 1]
T
 and the 

observer dyanamic matrix is F = diag [-10 -10 -10 -10]. 

Unknown inputs might be non-measurable external 

disturbances, unknown control effects or unmodelled system 

dynamics.  

The system matrices are as follows: 
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1.0

1.0

1.0

1.0

E  (14c) 

 )4x4(IC   (14d) 

 

fa represents the fault effect due to sensor fault The fault 

vector used in the simulations is as follows:  

 

 
T

a ]0x00[f   (15) 

 

where x is defined as x < 20 degrees/s. The effects under 

various scenarios are investigated in the simulations.  

The output effects in Figure 3 are obtained by using the 

system matrices given above. As a requirement of the scenario, 

the fault is generated at any time between the [0, 1000] range. 

Figure 3 displays the effect of the fault on outputs. 1, 2, 3, and 

4 refer to side-slip angle, roll rate, yaw rate and, and roll angle 

respectively.  

 

 
 

Fig. 3 Outputs 

 

In Figure 3, the effects of unknown inputs are observed after 

the 200
th

 second. After the 400
th

 second, there is a sharp 

increase in yaw rate (number 3). Since it is quite difficult to 

determine whether the sudden change that occurred at 200
th

 

seconds, is due to disturbance or a fault, it is more convenient 

to use GOS for fault detection. 

The norms of the residuals to be used in fault detection 

through UIO are obtained as in Figure 4. 

 

 
 

Fig. 4 The detection and isolation of sensor fault through the norms 

of residuals 

 

In the GOS scheme, a total of four residual norms are 

obtained. It is observed that a small increase occurs due to the 

disturbance in residual norms after the 200
th

 second. After the 

400
th

 second, on the other hand, there is a considerable 

increase in every residual norm except the residual norm that 

belongs to the yaw angle; the 3
rd

 state variable. In our case, the 

fault in the sensor that belongs to yaw angle state has been 

detected and isolated. For the purpose of not evaluating the 

small increases due to unknown inputs as faults by mistake, 
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faulty sensor has been detected by determining a threshold 

value.  

After the detection and isolation of the faulty sensor, the 

size of the fault is identified by using a fuzzy logic approach, 

which has one input and one output. In order to determine the 

size of the fault, the multiplication of residual norms might be 

considered as a function of the residual norms, and is 

evaluated as an input parameter. Based on the GOS scheme, 

fault detection is carried out due to the increase in a total of 

three residuals. Naturally, these increases in residual norms 

make it possible to use residual norms multiplication in a 

clearer way. 

The output and input functions of the fuzzy logic are chosen 

as very small, small, medium, big and very big. The functions 

that belong to controller are formed as shown in Figure 5 and 6 

with the help of expert knowledge and observing the 

relationships between fault size and the multiplication of 

residue norms. 

 

 
 

Fig. 5 Membership functions belonging to residual norms 

multiplication (Input) 

 

 
 

Fig. 6 Fault Size (Output) 

 

The Truth table for the determination of the fault size is in 

Table 1. 

 

Table 1 Truth Table 

 

I VS S M B VB 

O VS S M B VB 

 

Based on the suggested fuzzy controller and centroid 

method, the fault sizes given in Equation (15) are successfully 

detected as shown in Figure 7 and Figure 8.  

 

 
 

Fig. 7 The determination of the fault size, x=5 through fuzzy logic 

 

 
 

Fig. 8 The determination of the fault size, x=10 through fuzzy logic 

 

After the detection, isolation of the fault, and the 

determination of the size, the outputs displayed in Figures 9 

and 10 are obtained through reconfiguration phase for two 

different scenarios. 

 

 
 

Fig. 9 The reconfiguration for the size, x=5 
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Fig. 10 The reconfiguration for the size, x=10 

 

After the 200
th

 second, a sharp increase is observed due to 

unknown input into the system. The FDI scheme is insensitive 

to the disturbance. On the other hand, a fault occurred at the 

400
th

 second can be detected as soon as it occurs. During the 

reconfiguration phase, a corrective control signal is generated 

according to the fault size. The corrective control signal is the 

negative value of the identified fault size. Instead of forming a 

corrective control signal, different methods can be used for 

reconfiguration when relatively larger scale faults occur. 

V. CONCLUSION 

In this study, the detection and the isolation of sensor faults 

in an aircraft model have been carried out through the use of 

unknown input observers to detect the fault despite the 

presence of unknown inputs. 

The suggested method has been successful in detecting and 

isolating sensor faults occurred randomly at any time. At this 

point, in order to have an opinion about the upcoming system 

reconfiguration process, a structure with the rules based on 

fuzzy logic has been designed to identify the sensor fault size. 

The objective of these attempts has been to provide the choice 

and implementation of an appropriate control structure on a 

certain basis. It has been found that fuzzy logic mechanism 

determines different fault sizes, which have been presented 

through simulations under different scenarios. System 

reconfiguration process has been established by forming a 

corrective control signal and the desired performance has been 

obtained. 
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