

Developing a New Java Algorithm for Playing
Backgammon

Manuela Panoiu, Caius Panoiu, Ionel Muscalagiu, Anca Iordan and Raluca Rob

Abstract— A computer game is a very convenient way of

recreation. In order to simulate most classical games, many
algorithms have been implemented. The complexity of algorithms
used in implementing the games leads to a continuous increasing of
the computer performance. The application presented in this paper is
able to play backgammon. The software allows a game between two
players and also a game between one player and the computer. A
software package module allows monitoring games in the network.
All software programs were implemented in Java language.

Keywords— Heuristic algorithms, computer games,
backgammon, java..

I. INTRODUCTION
OMPUTER games have concerned many software
developers and also many researchers in artificial

intelligence. Games are also an important application of
heuristic algorithms. Backgammon is a game with the same
chance as Bridge, Scrabble, Poker. Many algorithms for
playing such games have been implemented. Because working
with incomplete and imperfect information such an algorithm
is difficult to implement.

The early computer programs for backgammon were
knowledge based. [1], [2]. In these systems searching
techniques are not very much used. This happens because
backgammon has a large state space (more than 1020 states
[1]) and a branching factor imposed by 21 dice rolls. The first
computer program for backgammon was BKG 9.8 [6]. It was
programmed by Hans Berliner in 1970 on a PDP-10. Early
versions of BKG played badly even against beginner players.
[6]. There are some typical algorithms used for implement
computer programs for playing backgammon. Such an
algorithm is minmax algorithm [7]. Minimax is a
generalization of Alpha-Beta search for minimax trees with
chance nodes. [7]. In case of games with chance a variation of
minmax algorithm can be used. Such an algorithm is
expectiminmax [8]. Other computer programs for
backgammon have used artificial neural networks [3], [4] and
[5]. Such an example is Neurogammon [2] that was trained
with supervised training. An improved version of this program
was TD-Gammon [1] based also on artificial neural networks.

Our computer program is based on searching techniques, a
variant on min-max algorithm. The program has two
components: a component for playing backgammon and a
component for monitoring games in the network. In the next

section the software will be described.

II. BACKGAMMON – A GAME OF CHANCE
Backgammon is a nondeterministic game with chance. In

nondeterministic games, chance is introduced by dice or card-
shuffling. In case of Backgammon the chance is introduces by
dice. Playing backgammon is simple: there are two players
with 15 pieces each. The final goal is to move all pieces off
the board. The rules are: Dice roll determines number of
moves, players move in opposite directions, pieces cannot put
on a point occupied by 2 or more of opponent’s pieces, single
piece can be “hit” if it is put on the same line a piece of the
opponent and hit piece must start a new route. The
backgammon board is shown in figure 1.

Fig. 1 The backgammon board

There are some typical algorithms used for implement

computer programs for playing backgammon. Such an
algorithm is min max algorithm [7]. Minimax is a
generalization of Alpha-Beta search for minimax trees with
chance nodes. [7]. In case of games with chance a variation of
min-max algorithm can be used. Such an algorithm is
expectiminmax. In this algorithm, the outcome depends of a

C

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

119

combination of the player's skill and chance elements such as
dice [8]. The expectiminimax tree is a specialized variation of
a minimax game tree that plays two-player zero-sum games
(such as backgammon). In addition to "min" and "max" nodes
of the traditional minimax tree, this variant has "chance"
nodes, which take the expected value of a random event
occurring [8], [9]. The form of the game tree for backgammon
is shown in fig. 2 [9].

A. Object oriented modeling of the software
The software was design using OOP modeling. Using UML it
was design the use case diagram shown in figure 3.

Object oriented design uses the representation of the static
structure of the backgammon software using classes and the
relationship between them [11].

Fig. 2. Schematic game tree for backgammon position

Fig. 3. Use case diagram

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

120

http://en.wikipedia.org/wiki/Games_of_chance
http://en.wikipedia.org/wiki/Minimax
http://en.wikipedia.org/wiki/Game_tree
http://en.wikipedia.org/wiki/Zero-sum
http://en.wikipedia.org/wiki/Backgammon
http://en.wikipedia.org/wiki/Expected_value

Fig. 4. The component diagram

B. Algorithm for Backgammon playing
Backgammon is a game with chance introduced by dice.

The board implemented using java swing classes is show in
figure 5. As can be seen, the board is very similar with a real
backgammon board. In the right panel dice throwing was
simulating. For doing this probability theory, it was used a
method described in [11] and [12]. So, for each dice was
considered the follow:

()() ()() .16int16*int ++++ randrand (1)

Like is shown in [12], this is the correct way to do the dice
throw simulation instead generating two individual random
numbers.

The algorithm uses three difficulty levels:
− “beginner player”
− “intermediate player”
− “experimented player”

These levels are used for simulate the ability of the second
player (computer algorithm).

For the “beginner player” level we don’t use any intelligent
techniques. This level was designed in order to be useful for

those who want to learn the rules of backgammon. The
algorithm simply picks a random move from the list of all
legal movements and performs it. This option of the software
can be used for the beginner players to learn to play
backgammon.

The “Intermediate player” level uses a heuristic algorithm
to select the next move for the computer. This algorithm uses
a list of allowed movements of the current state of the game.
For all these movements in the list there is assigned an
evaluation function that calculates a numerical value called
“merit factor”. This evaluation function depends on several
conditions such as: the number of pieces of the player that
remain unprotected, stay in pairs, the possibilities to build a
gate. The algorithm is given below.

The method DetMeritFactor returns the merit factor for a
state S1. This method is a variant of the min-max algorithm,
an algorithm frequently used in implementing games. The
algorithm is shown in the follow.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

121

Playing Algorithm
Initialize the board with all 15 white
pieces and 15 black pieces
 While no player has wont yet
 Next_moves←{}
 for each possible move from the
 current state S,
 determines the next state, S1,
 of the board
 next_moves←next_moves ∪S1
 for each state from the next_moves
 list do
 merit_factor←DetMeritFactor(S1)
 MaximMerit←maxim(Merit)

Perform the move for the state with
MaximMerit merit_factor and obtain
NewPosition

 If NewPosition is winning state
 Break
 Read the opposite player’s move
 and modify the board

end

DetMeritFactor(S1)
 If the state S1 is a winning state
 Return the maximum default value
for merit_factor
 For each posible moves of the
opposite player from the
 state S1
 Calculate the merit factor Mi for
each state resulted
 from these moves
 Select the state with the minimum
merit factor Mmin,
 considering that the opposite will
made the most defavorable move
 Return Mmin

End

For this level it wasn’t assigned a better evaluation function
value for the movements that can remove opposite player
pieces from the board. These movements are allowed like any
other movement. The algorithm inspects several moves in
advance to determine the sequence of movements that will
lead to win the game.

The “Expert player” level is not very much different from
the second level. The main difference is that the algorithm for
“computer” in some cases takes the chance and hit a piece of
the opponent even if some of his own pieces remain
unprotected. Moreover, such a movement is preferred by the
“computer” player (algorithm).

C. The software package
In the left panel is shown the board for playing

backgammon; the board is shown like at the beginning of
game.

The software package was implemented in Java
programming language, because of the advantages of this
language: is simple, platform – independent, distributed,
secured and robust. Several classes have been implemented
for modeling the players, the table game, the game, the moves,
a ToolBar class, a class for the left and right panel, etc.

The graphical user interface, shown in figure 5, has a menu
bar with the following options: File, Game, Options and Help.
The “File” option allows through a drop down menu to start a
new game, save a game or load a saved game and to exit the
application. In case of saving a game, actually the current state
of the game is saved (the position of all pieces, the temporary
remove pieces and the next player that will throw the dice).

This information can be anytime recovered when a game is
load. In this case a game can be continued just from the stage
when it was interrupted.

In order to start a game, first of all, the user must select the
players from the “Game” menu. This menu has two options:
one player or two players. In case of selecting two players,
these are human users that will play the game according with
their abilities of playing backgammon. In case of selecting one
player, the first player is the human user and the second player
is a heuristic algorithm that will be described in the following
section.

In order to represent correctly the position of pieces on the
board, the lines were numbered from 1 to 24. So, for a single
piece, their position is stored through the piece color and line
number. The number of pieces from a line is also stored using
“Linie” class.

In figure 6 is shown how the position of a piece is stored. Line
6 is used for temporary removing pieces from the board. For all
legal moves storing a class “MoveDices” was designed. Using
this class was describing a movement. The class contains a
variable array to store dice values and the position for the moved
piece. This variable array has four lines and three columns. The
first two lines store the dice values. The last two lines are used
only in case of double dice movement. For storing a movement
of one piece it was used: the value of the dice, the line of start
and the color of the piece.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

122

.

 Fig. 5. The Backgammon board for playing

Line number: 12
Color: black
Lin.numarPiese: 5

Fig. 6. Representing pieces positions

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

123

There are configurations of the board in association with

certain dice values when it is possible to move a single piece.
For these cases class named “MoveADice” was also
designed and implements. The class is a simplified version of
the previous class MoveDice.

In figure 7 is shown a configuration of a game in case of
using “Intermediate player” level. In the figure 6 is shown the
next configuration. In both, figure 7 and 8, the computer

program software uses black pieces and human users use
white pieces. So, in figure 7 is shown the configuration of a
game in case of 5 – 2 dice values for the white pieces (human
player). It can be observed that the player was taken out an
opponent piece from the board. In figure 8 is shown the next
movement selected by the algorithm in case of 4 – 1 dice
values.

Fig. 7. A configuration of the backgammon board

Fig. 8. A next configuration of the backgammon board for the fig 7.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

124

Obviously, in case of computer user, there are many
possible movements. In this case shown in figure 8, the
maximum merit factor is assigned for that move in which the
removed black piece is re-introduced in the game.

The software has several other options like selecting
language for the menus, viewing or hiding toolbar, and
selecting the aspect of the GUI. For example, in figure 9 are
shown two available aspects. This was made using
UIManager java class and setLookAndFeel method.

Fig. 1. The two aspects of the GUI

D. Algorithm for network playing
The application can by used also for playing in the network.

For this purpose, it was used java package java.net. It was
designed and implemented a class called “ServerJoc”
allowing the connection of two classes “Joc” and thus the
connection of two human users.

This class uses the ServerSocket and Socket classes to

make possible the connection between two users. The
communication is made using a port number. The server
application has the graphical user interface shown in figure
10.

Fig. 10. Graphical user interface for the server application

This module was implemented for monitoring several
games in the network. If users want to play in the network
first of all the server application of the game must be started.
The “Server” class contains a ServerSocket variable and a port
number for performed client server socket communication.

For starting a game in the net, after the server application is
started, the number of players must be two, selected from the

“Game” menu of the previously software module, shown in
figure 11. Then, from the “Option” menu, the IP address and
the port number will be selected and using “Connect” option.
Then the game will be started, like is also shown in figure 8.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

125

Fig. 11. Selecting the options for network play

III. CONCLUSIONS

Our application of new software for playing backgammon
is intuitive and simple to use. It can be used for many
purposes: first at all by the beginners to learn to play
backgammon; then to play between two players in the network
and to play versus computer. In the future we intend to
improve the algorithm for playing versus computer using new
intelligent algorithms.

REFERENCES
[1] G. Tesauro. “Temporal Difference Learning and TD Gammon”,

Communication of the ACM, 38 (3), 1995

[2] G. Tesauro, Neurogammon: “A neural network backgammon learning
program” , Heuristic programming in Artificial Intelligence, pag. 78-80,
1989

[3] Gerald Tesauro, “Programming backgammon using self-teaching neural
nets”, Artificial Intelligence, Elsevier Science, 2002

[4] Yaniv Azaria, Moshe Sipper, “GP-Gammon: Using Genetic
Programming to Envolve Backgammon Players”, Lecture Notes in
Computer Science, pag 132-142, Volume 3447, 2005

[5] G. Tesauro, T.J. Sejnowski, “A Parallel Network that Learns to Play
Backgammon”, Artificial Intelligence, Elsevier Science, 1989

[6] http://www.no-gambling.com/book/computer-backgammon
[7] Hauk, T., Buro, M., Schaeffer, J., “*-Minimax Performance in

Backgammon, Computers and Games” - 4th International Conference,
CG’04, Ramat-Gan, Israel, July 57, 2004, pp. 51-66

[8] http://en.wikipedia.org/wiki/Expectiminimax_tree
[9] Russell, S. J., Norvig, 2003. Articial intelligence: A modern approach,

2nd ed. Prentice Hall.
[10] Jonathan Schaefer, H. Jaap van den Herik, “Games, Computers and

artificial intelligence”, Artificial intelligence 134, 2002, pp. 1-7.
[11] http://www.tinafad.com/dice2.php
[12] http://chandoo.org/wp/2008/08/13/simulate-dice-throws/

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

126

http://www.no-gambling.com/book/computer-backgammon
http://www.tinafad.com/dice2.php

