

Abstract— This paper deals with the design and implementation

of a virtual opportunistic grid infrastructure that allows taking

advantage of the idle processing capabilities currently available in the

computer labs of a university campus, ensuring local users to have

priority in accessing the computational resources, while

simultaneously, a virtual cluster takes the resources unused by them.

A virtualization strategy is proposed to allow the deployment of

opportunistic virtual clusters which integration provides a scalable

grid solution capable of supplying the high performance computing

(HPC) needs required for the development of e-Science projects. The

proposed solution was implemented and tested through the execution

of opportunistic virtual clusters with customized application

environments for projects of different scientific disciplines,

evidencing high efficiency in result generation.

Keywords— eScience, desktop grid, grid computing, unagrid.

I. INTRODUCTION

RID computing surged as a vanguard technology for

supporting the development of different scientific projects

at a global scale [1]. Grid infrastructures may be classified as

Service Grids, or Desktop Grids and Volunteer Computing

Systems (DGVCSs). The first have been developed to meet the

needs of applications and specific projects within large-scale

environments designed so that a set of organizations can share

a certain amount of dedicated and federated resources through

the use of different standards and middleware grids (Torque

[2], PBS [3], Sun Grid Engine (SGE) [4], LoadLeveler [5],

Globus [6], gLite [7]). These infrastructures provide large

computing capabilities; nonetheless, their implementation

requires large financial investments due to the high costs of,

not only hardware, but also those associated with physical

space, temperature-controlled environment, installation

processes, management, configuration, and maintenance,

Manuscript received May 16, 2011: Revised version received August 10,

2011. This work was supported in part by the EELA-2 and GISELA projects.

H. Castro is with the Systems and Computing Engineering Department,

Universidad de los Andes, Colombia, Carrera 1 Este No 19A-40, Bogotá (e-

mail: hcastro@uniandes.edu.co).

M. Villamizar is with the Systems and Computing Engineering

Department, Universidad de los Andes, Colombia, Carrera 1 Este No 19A-40,

Bogotá (phone: +571 332 43 24; fax: +571 332 43 25; e-mail:

mj.villamizar24@uniandes.edu.co).

E. Rosales is with the Universidad de los Andes, Bogotá, Colombia and

with the CMS (Compact Muon Solenoid) experiment at CERN, Geneva,

Switzerland (e-mail: ee.rosales24@uniandes.edu.co).

making this option unviable in organizations with low financial

resources.

Also known as volunteer computing [8], public resources

computing [9], or opportunistic grids [10], DGVCSs have

emerged as an alternative for obtaining computational

resources at low cost, focused on taking advantage of the

capabilities of existing commodity computing resources. These

infrastructures are based on the benefits of conventional

desktop computers, as those daily used by employees or

university students, and allow adding computational

capabilities of thousands of computers, enabling the

development of e-Science projects that require the execution

of intensive processing, memory and/or storage applications.

These computers are available through Internet or Intranet

environments, have partial availability, are highly

heterogeneous, and are part of independent administrative

domains. DGVCs seek to maximize the efficient use of

partially available computing resources; this includes the non-

exclusive use of computing resources, while ensuring that

interactive users of those shared resources do not perceive any

deterioration in the quality of service. Such strategies are

intended to provide a computing infrastructure at a large scale,

without incurring into additional investments for the purchase

and maintenance of hardware, physical space and controlled

temperature environments of the traditional vertical growth

dedicated infrastructures. These features have allowed the

deployment of Internet scalable computing infrastructure,

composed mainly by economic, heterogeneous, distributed and

partially available computers whose added processing power

has become in the order of the PetaFLOPS (Floating point

Operations per Second) [11].

Taking into account the benefits of DGVCSs, we present a

novel infrastructure known as UnaGrid
1
, which provides the

processing capabilities required by the applications of different

research areas at a university. The infrastructure takes in an

opportunistic way the processing capabilities unused by the

end users at computer labs, avoiding the purchase of dedicated

resources. The infrastructure proposed has been initially

deployed on the campus of the Universidad de los Andes and,

in this work, the design and details of the implementation

deployed are presented along with the results obtained of the

first applications executed. The proposed infrastructure,

1 Project partially funded by ECOS-NORD action C06M02

Supporting e-Science Applications through the

On-Demand Execution of Opportunistic and

Customizable Virtual Clusters

Harold Castro, Mario Villamizar, and Eduardo Rosales

G

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

494

through virtualization tools, allows the deployment of

customized virtual clusters that satisfy the requirements of

different research areas for the execution of specific

applications by reusing physical resources on demand.

The paper is organized as follows: section 2 presents the

related works to virtual and opportunistic grid infrastructures.

The description of the design for the proposed infrastructure is

discussed in Section 3. Section 4 details the implementation

realized on the university campus and the results obtained

from the first applications executed within the infrastructure.

Section 5 concludes.

II. RELATED WORK

An introduction to virtualization technologies paradigm to

taking advantage of heterogeneous computing resources are

shown in [12]; in [13] an exhaustive comparison and

assessment of three virtualization technologies for HPC are put

forth. Opportunistic models for selecting the resources used in

the deployment of virtual clusters and grids are described in

[14]. In [15] solutions for the deployment of virtual cluster and

grid infrastructures are described.

Referring to taking advantage of idle computational

resources, Worm [16] and Condor [17] were the first projects

developed to take advantage of the idle processing capabilities

available in LAN networks. The Worm project was proposed

by Xerox Palo Alto Research Center (PARC) and was

intended to develop Worm applications, which were executed,

replicated and migrated in idle machines connected over a

LAN during night hours, when most computational resources

arranged in Xerox Palo Alto could be considered idle. Idle

machine detection was implemented through a simple protocol

that included the broadcast of a special package, making the

target machines announcing their current status (idle or busy).

Idle machines then received a request to boot from the

network, loading their assigned Worm segment. A Worm

program had several segments, each running on a different

machine. The worm segments were able to communicate

among themselves, so if a segment fails, they were able to

locate another idle machine and run a backup segment there.

The Condor project, begun by the University of Wisconsin-

Madison, has been focused in the development of a specialized

load management system for different types of intensive

computing tasks in LAN networks. This High Throughput

Computing (HTC) project still remains in force and is aimed at

the development, implementation, deployment, and evaluation

mechanisms and policies that support HTC in large sets of

distributed computers including the efficient use of idle

computing resources. Like other batch queuing systems,

Condor provides a mechanism to manage a work queue, policy

planning, priority schemes, monitoring and resource

management. This way, users can send to Condor an individual

job or a set of jobs to be scheduled onto the available

resources. Condor is responsible for placing the jobs in the

work queue, choosing the most suitable resource to run a job

based on a planning policy, resource matching, executing jobs,

monitoring their progress and finally informing the user about

their completion. The Condor architecture is based on the

master/slave model, where the master component manages the

execution of jobs onto a group of slave nodes.

For taking advantage of more idle computing resources,

projects like GIMPS [18] (Great Internet Mersenne Prime

Search) and SETI@home [9] have used distributed resources

through Internet for solving a specific problem. GIMPS is

considered to be the first volunteer computing project in the

world, i.e. the first resource donation project at Internet scale.

The GIMPS project is a distributed computing project

dedicated to the search of Mersenne prime numbers,

developed by Mersenne Research, Inc. One of the major

contributions of GIMPS to the DGVCSs is the use of idle

computing resources through the download and installation of

a thin client that allows people to donate idle computing

resources for the calculation of Mersenne primes on Windows,

Linux, and Mac platforms. This client is developed in the C

programming language and runs as a background process in

the lowest available priority in the host operating system.

The SETI@home [9] project represented the following

success in allowing the scalable participation of millions of

computational resources with the objective of resolving a

unique problem: SETI (Search for Extraterrestrial

Intelligence). The project began at the University of

California, Berkeley and was credited as the project receiving

the greatest computational processing time in history

(University of California). SETI@home focuses on shortwave

radio signals processed from space. A radio signal analysis

process needs an enormous amount of computing capabilities

to cover a broad spectrum with great sensitivity. In addition,

signal analysis can be parallelized and does not require

communication between clients, by which SETI@home

efficiently uses the public resource computational model on

the Internet. Like GIMPS, SETI@home is based on a

lightweight agent developed in the C++ programming

language and supports nearly all existing operating systems.

SETI@home may run as a screensaver which includes

statistical information associated with the opportunistic

processing. One of the major contributions of SETI@home to

DGVCSs was the organization of a strategy-award; rewarding

the contribution of distinguished participants. This viral

marketing strategy is a categorization of participants by the

amount of computational processing contributed to

SETI@home, allowing multiple users grouping to enable the

competition. This categorization became ranked worldwide,

and can be found on the SETI@home official website. It is

backed by a set of incentives that includes personalized

acknowledgement emails and public recognition on the

project’s official website.

Others DGVCSs projects have been developed for

supporting general-purpose distributed computing project at

global scale, Internet. Distributed.Net [19] was the first

general-purpose distributed computing project founded by a

non-profit organization under the GNU FPL (Freeware Public

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

495

License). Its greatest contribution to the DGVCSs was

proposing the implementation of a general purpose distributed

computing system in the world. The project has been oriented

to break encryption algorithms and to search for Optimal

Golomb Rulers (OGR)
2
, that are especially useful for encoding

and combinatorial theories, as well as for the sensor placement

for x-ray crystallography and for the study of radio astronomy

techniques. Both tasks are characterized by the intensive use of

huge processing capabilities and by their natural distribution

into non-dependent work units to generate results.

Distributed.net is also based on the opportunistic execution of

a thin client that was developed in the C++ programming. The

system’s architecture is based on a three tier client/server

model (pyramid architecture) that allows the system to be

highly scalable at the Internet level. The Distributed.net client

communicates directly with a proxy server which is

responsible for assigning the work units obtained from a

centralized server. Once a client has processed a work unit, it

delivers its results to its proxy server, which in turn sends them

to the main centralized server. The architecture provides a

basic fault tolerance mechanism to allow customers to use

round-robin DNS to locate proxy servers, whenever the server

originally assigned is no longer available.

BOINC (Berkeley Open Infrastructure for Network

Computing) [20] represents an evolvement of SETI@home

since this proposes a system for creating and operating public-

resource computing projects. BOINC aims to use computing

resources for the development of multipurpose scientific

projects, hiding the complexities associated with the creation,

operation and maintenance of public-resource computing

projects by providing a set of tools for building a secure

infrastructure with autonomous domain administrative servers

and high scalability on the Internet. BOINC architecture is

based on a client/server model, which gives clients the

responsibility for requesting work units for scientific

applications and for delivering results to the principal server.

BOINC supports the execution of parallel applications

allowing a slight communication and synchronization between

clients; implements basic fault tolerance mechanisms through

checkpoints while offering the possibility of integrating multi-

purpose projects among which some related to Grid

Computing. BOINC depends on a robust central infrastructure

capable of managing the multiple operations carried out by

clients and lacks general support for parallel applications. The

project includes all viral marketing strategies originally

implemented in SETI@home, but extends them in a layout for

the participation of multiple projects. Additionally, it

implements a better security mechanism to protect files

containing credits, granted to users for their voluntary

contribution of computing resources. BOINC has led the

scalable DGVCSs Internet multipurpose approach, allowing

the development of multidisciplinary projects, including

2 In mathematics, the term "Golomb Ruler" refers to a set of non-negative

integers such that no two distinct pairs of numbers from the set have the same

difference.

research on climate prediction, astronomy and high energy

physics as well as grid computing projects.

New DGVCS projects have been specialized in grid

computing projects of variable scalability which require the

deployment of grid middleware for work unit processing that

requires large computational capacities, particularly large

processing capabilities beyond those offered by a single

administrative domain [21] [22]. Bayanihan Computing .NET

[23] is a generic framework for grid computing based on

Microsoft .NET. Bayanihan implements volunteer computing

by providing a PoolService Web service associated with

computers that act as clients and providers (volunteers) of

computing resources. The main Web service allows

computation clients to create sets of tasks that are sent to

volunteers for its execution and subsequent return of results.

The files are downloaded by volunteers, implementing basic

security mechanisms that are provided by the Microsoft .NET

platform. Bayanihan allows the execution of general purpose

applications. One of the major contributions of Bayanihan is

the use of Web services as a platform, representing an

alternative to the middleware used by all of its predecessor

projects; however, Bayanihan has a coupled architecture which

limits its scalability to Internet environments.

The Condor project also has been focused in the

development of a framework to share and lever computing

resources among different administrative domains, which has

been called Condor-G [24]. Condor-G allows taking full

advantage of Condor characteristics, particularly those related

to the use of idle resources in an administrative domain, to the

availability of tools and mechanisms for resource management

and discovery, as well as to the security measures in multi-

domain environments provided by Globus, the standard grid

middleware. Condor-G combines Globus Toolkit’s multi-

domain resource management protocols and Condor´s intra-

domain resource management, allowing users to take

advantage of idle computing resources from different

administrative domains as if all of these belong to a single

domain. Condor-G can handle thousands of works to be

executed on multiple distributed sites, providing features such

as monitoring and task management, resource selection,

notices, policies, security credentials management, fault

tolerance and management of complex dependencies between

tasks. Condor-G can be used directly by end users from high

level interfaces (brokers) or Web portals. Condor-G

implements a new mechanism called GlideIn, with which it is

possible to execute jobs by starting a Condor daemon on a

remote computer without requiring Condor installation

binaries to be in such computers. This allows remote

computers to be part of an existing Condor pool because the

Condor-G scheduler is informed of these resources’ existence.

InteGrade [25] is a GNU LGPL (Lesser General Public

License) grid middleware infrastructure, based on the

opportunistic use of idle computing resources. The main

contribution of InteGrade to the DGVCSs is the

implementation of a computing-resource usage-pattern

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

496

analysis-component, capable of collecting statistical data and

of probabilistically determining the availability of a machine

[26], as well as the convenience of assigning a specific job to

such a machine. This execution evolves in time, because of the

permanent data collection, able to determine new prevailing

patterns. Based on this component, InteGrade supports

sequential, parametric (Parameter Sweep Applications) and

parallel (Bulk Synchronous Parallel) applications with

communication and synchronization requirements between

nodes.

OurGrid [10] in an Open Source resource sharing system

based on a P2P network that makes it easy to share resources

equitably to form grid computing infrastructures. In OurGrid

each peer represents a whole site in a different administrative

domain. OurGrid offers a complete solution for the

construction of opportunistic grids without human intervention

for new administrative domains to make part of a grid

infrastructure used for running bag-of-tasks (BoT) applications

[27] [28]. The process of sharing resources is based on the

principle of donating idle computing cycles in order to have

access to a greater amount of computing power provided in

cooperation with other participants of the grid. The OurGrid

community participants should consider two fundamental

assumptions; the first of these is the effective contribution of

computing resources to the system by at least two peers (so

one can always get resources from a different provider within

the community). The second relates to the lack of QoS

guarantees offered to applications deployed on OurGrid. This

latter characteristic reduces the complexities associated with

traditional grid economy models [29], [30], prevents

negotiations between resource providers and promotes a

culture of equitable resources sharing, following a best-effort

strategy. The main contribution of OurGrid was the

incorporation of the concept of Network of Favors [31], a

partial solution to the problem of non-reciprocal participants in

resources sharing system (free-riding peers) [32], to do this,

each OurGrid Peer use mechanisms for locally saving

information about participants that have made previous

donations, allowing prioritizing requests from participants with

greater credit history data. OurGrid uses an approach based on

virtual machines for solving potential security problems, so it

restricts an execution environment with limited hardware and

software resources of the physical machine (those assigned by

a type II hypervisor [33]). OurGrid also provides robust

security mechanisms based on private and public keys to

certify the authenticity of messages sent using OurGrid

protocols. These mechanisms are seeking to prevent denial of

service attacks caused by malicious participants.

Finally, the LHC (Large Hadron Collider) project proposed

the use of some DGVCSs to tackle the huge computing

requirements from the different experiments (ATLAS, CMS

ALICE, LHCb, TOTEM y LHCf) currently in execution.

Initially the LHC developed a solution for using the

underutilized computers of the CERN infrastructure; this

solution is called Compact Physics Screen Saver (CPSS) [34].

The CPSS system uses a modular lightweight screensaver

installed in the desktop CERN computers for taking advantage

of their computing capabilities, in a non-intrusive manner.

CPSS uses a centralized Web application server which

contains the whole tasks to be executed and the applications

used by the clients. CPSS have been deployed in hundreds of

computers; however its scalability is limited to the number of

desktop computers available at CERN. To take advantage of

more computing capabilities, the LHC began to use the

BOINC platform in a project called LHC@home [35]. This

project uses the processing capabilities of millions of

computers distributed through Internet provided by the

BOINC project. These capabilities have been used for running

different types of application with low data transfer. In the

LHC@home several approaches were developed for

integrating opportunistic and dedicated infrastructures.

In CPSS and LHC@home projects, each application used

by CERN must be ported, in the case of CPSS project to the

operating system where the screensaver is executed and in the

case of LHC@home to the BOINC platform, this involves

major efforts and it is not a scalable solution. A new solution,

called CernVM [36] using virtualization technologies to solve

the problem of portability of applications was developed. In

CernVM, each volunteer downloads a virtual machine image

which has a CERN customizable environment with the

required application. The use of virtual machines allows that

the same application to be executed on heterogeneous

operating systems and hardware. Two new problems arose due

to the use of virtual machines, the first associated with the size

of the virtual machines (between 8-10 Gigabytes), and the

second with the virtual machine and application updates. For

solving these problems, a new and innovative solution was

developed to manage virtual machines and applications. The

volunteers initially download a lightweight virtual machine (of

around 100 MB), called thin appliance, whose size is

incremented the first time that is configured (until 1 o 2

Gigabytes). The virtual machines do not contain the LHC

software or grid middleware; on the contrary, the software and

its dependencies are accessed from one or several servers.

CernVM has published several virtual machine images that can

be downloaded by volunteer users with different hypervisors

(VMware, Virtual Box, KVM (Kernel-based Virtual

Machine), Microsoft Hyper-V, Parallels [37], Xen y Amazon

EC2) and architectures (32 y 64 bits).

Taking into account the benefits of DGVCs for taking

advantage of idle processing capabilities and the DGVCS

projects that have already been developed, in this paper we

present a novel infrastructure that allows the creation and

execution of customized execution environments that do not

impose any restriction on the grid or cluster middleware

(described above), applications, configurations, or parallel

programming technology to be used. UnaGrid also uses

virtualization technologies that allow users, with basic IT

knowledge, to autonomously deploy customized virtual

clusters on the same physical infrastructure that is shared

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

497

through an opportunistic approach. The virtual infrastructure

proposed seeks to efficiently take advantage of the idle

processing capabilities available in computer labs on a

university campus to forming a scalable opportunistic virtual

infrastructure, totally available for the development of e-

Science projects with different middleware, application and

configurations requirements.

III. UNAGRID ARCHITECTURE

The main requirement of the UnaGrid architecture is to

flexibly take advantage of the idle processing capabilities

available in computer labs on a university campus. Thus,

making the development of projects within different research

areas possible, through the deployment of an opportunistic

infrastructure that allows the execution of applications with

high processing and customized execution environments on

demand. In order to achieve this objective, the opportunistic

infrastructure must allow the execution of a wide variety of

applications with specific requirements (versions,

dependencies, middleware, etc.) due to relevance of

facilitating the execution of applications within its native

environments, guaranteeing high usability for end users. What

we call Customized Virtual Cluster (CVC) is introduced within

this context as a set of commodity and interconnected desktop

workstations executing coordinated virtual machines through

virtualization technologies. All of these virtual machines on

execution make up a processing cluster.

Virtual machines take advantage of the unused physical

resources by end users while they carry out their daily

activities without perceiving any loss in the quality of the

service. This is achieved by executing the virtual machines as

low-priority background processes, guaranteeing that the end

user has available all of the computational resources (if such is

required), while the virtual machine only consumes the

resources that the end user is not using (or all of these in the

case of unused computers). Each CVC can be deployed on

hundreds or thousands of commodity desktop computers in

which a virtual machine image is stored and roles as a CVC

slave; using a single dedicated machine for each CVC to

support the master role.

A distributed file system such as NFS or AFS for handling

the data of a CVC may be used. Regarding the integration of

dedicated processing resources to the opportunistic

infrastructure, all what is required is the installation of a

dedicated cluster or grid which communication infrastructure

and configurations must be interconnected with the virtual

infrastructure.

Taking advantage of the facilities provided by the

virtualization technologies allows each research group to

establish and configure CVCs on virtual machines and deploy

them on different computer labs. The deployment of a CVC

requires that the virtual machines have a specific configuration

regarding applications to be used by the research group and

cluster or grid middleware such as Condor, Sun Grid Engine,

PBS, Globus, gLite, etc. The idea is to recreate as exact as

possible the environment a researcher is used to have in a real

cluster (something similar to what it is achieved in Grid5000

[38] or cloud computing approaches like Open Nebula [39],

but in dedicated machines). Our strategy facilitates the

different research groups to deploy several CVCs by using the

same physical infrastructure. This is achieved by storing an

image of each one of the possible CVCs that may be executed

on each physical computer, thus facilitating the reutilization of

resources and guaranteeing better quality of service to CVC

users. The solution is focused on the exclusive execution of a

virtual machine for each physical computer with the objective

of avoiding resources competing among different virtual

machines.

Our strategy solves the problems associated with the lack or

sub-utilization of preexisting computer labs thus promoting the

sharing of resources and the collaborative work among

research groups. Nonetheless, the need exists to schedule and

control the CVC deployment on demand. To solve this

problem, a Web Portal called ¨GUMA – Grid Uniandes

Management Application¨ was developed, which allows end

users of different research groups to deploy on demand CVCs

on physical infrastructures shared, for specific periods,

allowing the virtual machines to execute as long as they are

being used. Administration tools are also provided in this

portal for analyzing and visualizing the status of the physical

and virtual resources of the computer labs.

Some applications require non-conventional processing

capabilities, which may exceed the capabilities, offered by an

individual CVC, to solve this, the CVC addition becomes

necessary, which process is viable through three alternatives:

the first alternative consists in the configuration of CVC

images within a computer laboratory to make up part of

another existing CVC; the second alternative is focused on

taking advantage of the aggregate capabilities of computer

resources offered by some schedulers such as Condor and

SGE; the third alternative is focused on installing a grid

middleware on master nodes, which allows the execution of

applications on different CVCs or a mix of a CVC and a

dedicated infrastructure.

The first two alternatives are focused on taking advantage of

the capabilities offered by the schedulers; the first requires less

effort for its deployment. However, these alternatives require

the installation of the same scheduler in all CVCs, which limits

the flexibility of the solution. In order to solve this, the third

alternative (which requires more effort in configuring and

administrative agreements) allows the addition of the CVC

processing capabilities with different schedulers. For instance,

Globus allows this functionality and additionally allows the

use of other tools and protocols that are very useful for

creating grid solutions such as: management mechanisms for

security, management, transference, replication, data

management, among others. This type of solution, for sharing

processing resources among different CVCs, requires the

implementation of different security mechanisms. The

infrastructure proposed makes use of the Globus Toolkit 4.2

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

498

Security Infrastructure. The installation of a certificate

authority (CA) on the university campus became necessary for

the interaction and utilization of clusters (CVCs or dedicated)

between the different research groups.

In order to use the CVCs, the users may send jobs to the

queue scheduler and/or to the grid middleware installed on the

CVC master machine. With regard to solutions involving

Globus, this middleware facilitates users to submit jobs to

different clusters because they only need to learn the Globus

syntax, which allows them to use the different clusters in a

transparent manner. The proposed scheme is illustrated in Fig.

1.

The opportunistic infrastructure proposed allows taking

advantage of the idle power processing in a 24x7 scheme and,

additionally, can be deployed on desktops that have Windows,

Linux and Mac as their operating systems, since the entire

deployment is based on the use of virtual machines.

Fig. 1 architecture of the proposed opportunistic virtual grid

infrastructure

IV. IMPLEMENTATION

The proposed infrastructure has been deployed in three

computer labs (Wuaira 1, Wuaira II and Turing) at the

Universidad de los Andes; those computers have Windows XP

as their base operating system. This deployment has allowed

providing processing capabilities to projects within different

research areas (see Section 4.2). Each laboratory has 35

computers which have an Intel Core 2 Duo (1.86GHz)

processor and 4GB of RAM memory. For the network

interconnection, all CVC slave nodes are in a Gigabit Ethernet

LAN network and the master nodes run on a dedicated server

outside the computer labs (for stability reasons). For

communication between the master and the slave nodes, a

multilayer switch of Gigabit Ethernet links is used. Four

different CVCs have been deployed on this physical

infrastructure. To support the demand for superior processing

capabilities to those provided by an individual computer lab,

some CVCs master nodes, located on a VMware ESX

dedicated server, have installed the Globus Toolkit 4.2

middleware.

The VMware virtualization software has been used for the

deployment of the virtual infrastructure. Virtual machines

playing the slave role of the virtual clusters have assigned both

cores and 1GB of RAM memory, while the master node has

assigned two cores and 2GB of RAM memory. Another virtual

machine was additionally configured and it operates as the CA

for some CVCs. This CA generates the digital certificates for

master nodes and CVC users. NFS is used for data

management within each CVC which server is located in a

NFS-NAS server solution; this provides sufficient storage

capacity for storing the files shared with all the slave nodes.

The process for submitting jobs to the opportunistic

infrastructure consists in the entry of users to the CVC master

machine through SSH (some application deployed provide

Graphical User Interfaces GUIs for sending jobs to UnaGrid

infrastructure), the jobs may be sent by the users to the cluster

scheduler or Globus. In the first case, the jobs are executed

with the machines available in the CVC, which the master

node makes part, while in the second case the user may utilize

the processing capabilities of the grid infrastructure built

through the addition of several CVCs.

The deployment of CVCs is executed on demand through a

Web portal known as GUMA, in which open technologies are

used, such as Java Server Faces (JSF), Enterprise Java Beans

(EJB), GlassFish, and MySQL. Regardless the administrative

domain, this application executes and manages the CVCs.

Multiple execution tests, supported by the active directory

services of two domain controllers (Windows 2003 and 2008

Server) have evidenced high level of performance in the CVC

execution, such as the launching of 35 virtual machines in less

than 5 seconds and their afterward shutdown in less than 4

seconds. GUMA manages the remote execution of the

instances of the virtual machines executor (VMware

Workstation) in the computer resources available, allowing the

CVC deployment on demand. This application utilizes the

client-server scheme that, through authentication,

authorization, and confidentiality mechanisms, provides

multiple services for managing the grid from light clients,

hiding the complexities associated to location, distribution,

and heterogeneousness of the computer resources, facilitating

the autonomy of the involved administrative domains and

offering an intuitive graphic interface to end users.

Administration services include the selection, startup,

shutdown, and remote monitoring of the physical and virtual

machines as well as query of all instances in execution by the

different users. The scheme for the infrastructure deployed is

illustrated in Fig. 2 and a GUMA GUI is shown in Fig. 3.

V. CVCS DEPLOYED

The infrastructure has been used in projects of different

research areas such as chemical engineering, industrial

engineering, bioinformatics and dedicated grid infrastructures;

all applications executed are bag-of-tasks style.

A. Chemical Engineering CVC

In the chemical engineering area we developed the BSGrid

application [40] to simulate the Bacillus thuringiensis

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

499

bacterium. Bacillus thuringiensis (B. thuringiensis) is a gram

positive spore forming bacterium widely known by its capacity

to synthesize δ-endotoxins which are used as biopesticides

representing 90% of the total biopesticide market in the world

due to its high affinity, no harm to other species (including

vertebrates) and low environmental impact. For instance, in

Colombia they can be used for a typical problem in the insect

control of maize crops. However, these biopesticides only

participate in the 5% of the total pesticide market in the world;

due to industrial-scale fermentation cannot obtain a high

concentration of the δ-endotoxins, so the production of

biopesticides has a high cost. Several computational methods

and approaches have been developed to simulate the behavior

of these bacteria, which allows analyze the behavior of this

organisms along the time without involve the high cost

associated with experimental tests; however they require large

processing capabilities.

Fig. 2 opportunistic virtual grid infrastructure deployed

To support large processing capabilities a CVC has been

deployed in one computing room (Wuaira 1) and several

BSGrid simulations have been executed on it for determinate

the optimal conditions under which the B. thuringiensis δ-

endotoxins are produced (the chemical results of the

simulations are described in [41] and [42]). The CVC has

configured the Condor scheduler version 6.7.1 and Debian 4.0

operating system. Each simulation is executed for a bacterium

population which model is defined by a user through a GUI.

Once defined the model, a complete simulation is executed as

a batch process in the CVC, each bacterium of the population

is executed as an independent job in a CVC virtual machine,

and the simulation results are stored in a relational database.

Once all the population has been executed, the users can query

the database results through GUIs. The architecture of the

infrastructure deployed for this project is shown in the Fig. 4.

Fig. 3 GUMA graphical user interface

Fig. 4 chemical engineering CVC

B. Bioinformatics CVC

Bioinformatics research projects require the use of diverse

heterogeneous types of applications and computational tools

for different analyses, which demands technical expertise of

commands and specific parameters of tens or even hundreds of

applications, as well as the management commands of

distributed infrastructures and the manual coordination for

executing bioinformatics workflows. These tasks require each

researcher has to spend a significant time and effort learning

the technical utilization of all these computational tools. To

facilitate the use applications, the transparent use of high

performance computing infrastructures and the automatic

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

500

management of workflows, we have been configured and

adapted, the LONI Pipeline application, developed by the

Laboratory of Neuro Imaging (LONI) of the University of

California Los Angeles (UCLA) [43] [44]. LONI use a client-

server model and a GUI that allows the easy creation,

validation, execution and monitoring of workflows, allowing

researchers to focus on the analysis of data generated by the

workflows and not on technical issues of computer systems.

Any suite of applications that can be executed through line

command can be integrated to a LONI Pipeline installation;

each application is integrated as a LONI module.

A CVC with several bioinformatics application, the Sun

Grid Engine (SGE) 6.2u5 scheduler, and Debian 5.0 operating

system has been configured. Two computer rooms (Wuaira 1

and Wuaira 2) and a dedicated cluster with 5 servers are used,

in total 180 cores are available for processing, 140 from

UnaGrid infrastructure and 40 from the dedicated cluster. The

LONI Pipeline server and the SGE master have been installed

in the same dedicated machine. From its installation, we have

developed the LONI Pipeline modules for several

bioinformatics application like HMMER, BLAST, Mr. Bayes

and InterPro Scan, which are compute-intensive. A user

authentication module were created and configured in the

LONI server and now the bioinformatics researchers use the

LONI Pipeline client as a tool for creating, implementing and

managing workflows in bioinformatics projects, which are

executed in the CVC. This application has been used in the

development of several projects of genomic related to coffee

and yucca, which seek genomic analysis to improve coffee,

potato and yucca production affected by different biological

organisms that decrease the production [45] [46]. The

infrastructure deployed in the LONI Pipeline installation is

shown in Fig. 5.

Fig. 5 bioinformatics CVC

C. Industrial Engineering CVC

In the industrial engineering area, we developed two

different frameworks for solving optimization problems: JG2A

[47] and pALS [48]. Java Grid-enabled Genetic Algorithm

(JG2A) is a new generation of the Java Genetic Algorithm

(JGA) framework for rapid prototyping of evolutionary

algorithms that exploits parallelism in genetic algorithms in

two ways: first, it allows the execution in parallel of a large set

of instances (instances parallelization); and second, it provides

parallelization of the population evaluation (population

evaluation parallelization). The instances parallelization has

been used in different parameter tuning experiments of vehicle

routing and route design problems. The population evaluation

parallelization is particularly useful for hard black-box

optimization problems where the fitness function evaluation

embeds a discrete-event or finite-element analysis simulation.

pALS acronym for parallel Adaptive Learning Search is a

computational object oriented framework for the development

of parallel and cooperative metaheuristics for solving complex

optimization problems. The library exploits the parallelization

allowing the deployment of mainly two models: the parallel

execution of operators and the execution of separate instances

or multi-start models. pALS also allows to include in the

design of the problem’s solution cooperation strategies such as

the islands model for genetic algorithms or the parallel

exploration of neighborhoods in metaheuristics derived from

local searches, including a broad set of topologies associated

with these models. pALS has been successfully used in

different optimization problems and has proven to be a

flexible, extensible and commanding library to promptly

develop prototypes offering a collection of ready to use

operators that encompass the nucleus of many metaheuristics

including hybrid metaheuristics. Due to the large processing

capabilities required for solving these optimization problems,

JG2A and pALS can be deployed in a heterogeneous

computational environment enabled by a grid solution based

on Globus as the middleware grid, and Condor as the local

resource manager.

For running JG2A/pALS simulations a CVC have been

deployed in a computing room (Turing). A dedicated machine

have been used for the CVC master, this machine has installed

Globus Toolkit 4.0 and Condor 7.0. All machines have Debian

4.0 operating system. The tasks are sent by users through a

JG2A/pALS interface to GRAM (Grid Resource Allocation

Manager) and then GRAM send the tasks to Condor scheduler

which distribute them among the Condor slaves. The

infrastructure deployed for running JG2A/pALS tasks is shown

in Fig. 6.

D. GISELA CVC

Universidad de los Andes participates in the EELA-2 (E-

science grid facility for Europe and Latin America) project and

we have an EELA-2 certified site (VO Uniandes) [49]. The

last CVC deployed has been used for the integration of the

UnaGrid infrastructure with a service grid infrastructure, as

EELA-2. The EELA-2 sites use the gLite middleware for their

operation, and they use several gLite components installed and

configured in dedicated servers. As the number of such servers

is limited, a project has been developed to integrate the

UnaGrid processing capabilities to the EELA-2 local

infrastructure on demand. The EELA-2 site is managed by the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

501

DTI (University Technology Office). This site is currently a

Resource Centre (RC) certified for using the gLite

middleware. This RC currently offers 5 services guaranteeing

the correct operation of the entire system: Information and

monitoring service (BDII – RGMA), Security Service (CA-

VOMS), Data Service (SE – LFC), Job Management Service

(CE – WMS – UI) and Registration Service (RA).

Fig. 6 industrial engineering CVC

The integration has been achieved by creating a CVC with

the gLite middleware installed and configured [50]. This

scheme has the basic components of the gLite infrastructure

for job execution which are the Computer Element (CE) which

is the point of entry to the local queue system (PBS, LSF,

condor), and the Worker Nodes (WNs) which are in charge of

job execution. The CE is installed within an ESXi server; and

the WNs (35 total) are installed in a computer room with the

PBS scheduler. The CE and the WNs are virtualized and they

are executed on demand, by DTI staff, through GUMA. The

CE is connected to the WMS (Workload Management System)

belonging to the VO Uniandes from where jobs may be sent to

be executed. In Fig. 7, the integration architecture of the

opportunist virtual cluster to the VO Uniandes service

infrastructure is shown.

Fig. 7 GISELA CVC

VI. PERFORMANCE EVALUATION

Table I summarizes the execution time benefits of using

Unagrid. Although these results are important as they show the

gain in time that can be easily obtained by researchers, we

were more interested on measuring the impact of sharing a

physical machine between an end user and a CVC’s node. To

do this, we executed four types of tests: i) measuring the

impact on end users when a CVC executes intensive

processing applications (Fig. 8.a - 8.c). ii) Measuring the

impact on the end users when they execute storage intensive

applications (I/O) (Fig. 8.d - 8.f). iii) monitoring the processor

usage from both the end user processes and the virtual machine

executed in background, while this last had two cores

assigned, and iv) comparing the job execution time on a CVC

with the execution time on a dedicated cluster with the same

hardware resources.

Table I results obtained in the use of the UnaGrid infrastructure

Application

Name

Infrastructure

Used

CPU

Number

Job

Number

Time by

job (sec)

Exec. Time

(days)

PC 2 2880 3000 50,10
JG2A

Ind. Eng. CVC 70 2880 3120 1,50

PC 2 150000 35 30,38 BSGrid

Model A Chem. Eng. CVC 70 150000 85 2,11

PC 2 150000 63 54,69 BSGrid

Model B Chem. Eng. CVC 70 150000 111 2,75

PC 2 4200 11700 284,40

HMMER
Bioinform. CVC 140 4200 12900 4,50

Fig. 8 performance evaluation tests executed

Table II and Table III summarize the results of impact on

end users. As it is shown, regular users do not perceive (less

than 3% degradation in the worst case) the execution of a

virtual machine in his/her desktop machine. In these tables

test1 to test4 refer to different sizes (cpu/file load) of the

executed application on the desktop computer.

Table II results of the impact on intensive CPU end users
Processing Task Completion Time (s)

Environment/Test
Test 1 Test 2 Test 3 Test 4

Without VM 53,94 81,01 108,05 134,99

With a VM (1 Core) 54,16 81,42 108,39 135,58

With a VM (2 Cores) 54,21 81,46 108,58 135,60

Table III results of the impact on intensive I/O end users
I/O Task Completion Time (s)

Environment/Test
Test 1 Test 2 Test 3 Test 4

Without VM 104,10 259,85 521,16 1041,42

With a VM (1 Core) 105,66 262,43 526,63 1060,75

With a VM (2 Cores) 106,02 263,03 527,06 1063,07

A third set of tests were executed with the objective of

monitoring the processor usage from both the end user

processes and the virtual machine executed in background,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

502

while this last had two cores assigned; for such, intensive

processing tasks were executed within both environments. The

results are shown in Fig. 9.

Fig. 9 CPU usage for virtual machine and end user process

In the test, after measuring CPU use with no virtual machine

running, we initiate (time 3) a virtual machine using nearly

50% of the CPU, and at 5, we increase its computational

requirements to something close to the 100%. We then modify

the CPU need from the end user. Between 7 and 8 the user

demands a 50% of the CPU and the virtual machine load

automatically decreases to 50%. Between 9 and 10 the user

increases the consumption to about 100% and the virtual

machine automatically reduces their consumption to a

minimum. Between 11 and 12 the end user goes back to a 50%

demand, and after 12, the user leaves alone the physical

machine. According to the results shown in Fig. 9, the virtual

machine only uses idle processor cycles, guaranteeing a very

low impact on the performance perceived by end users.

Finally Table IV shows an average overload of less than

17% of the time required for executing the jobs on the

opportunistic infrastructure when compared to the time

required on a dedicate infrastructure.

Table IV time execution comparison between an opportunistic and a

dedicated infrastructure

Application Infrastructure
Average Execution Time

by Job (Minutes)

Overload

(%)

Dedicated 164,0
HMMER

Opportunistic 184,3
12,4

Dedicated 10,2
BSGrid

Opportunistic 11,9
16,7

Dedicated 302,6
BLAST

Opportunistic 330,7
9,3

VII. CONCLUSIONS

The proposed opportunistic infrastructure has shown

promising results with regard to offering new low-cost

opportunities to meet the very specific processing capabilities

required in the execution of applications of different research

groups at Universidad de los Andes. CVCs breaks the

limitations on size, accuracy and time currently experimented

by our researchers. These results show the solution proposed

as an opportunistic virtual infrastructure that can take

advantage of the processing capabilities of the resources

available in computer labs on a university campus, while users

carry out their conventional activities, utilizing a key

virtualization strategy in a non-intrusive manner.

New challenges will have to be faced in order to improve

the processing capabilities offered: a requirement is to analyze

how to guarantee quality of service, improving the best effort

scheme currently in use, to define a storage system to obtain

storage capacities in an opportunistic way, and to define a job-

submit portal to make easier the use of the infrastructure.

ACKNOWLEDGMENT

This work presents software developed and tested by a team

of which the authors are only a small part. The authors thank

and acknowledge the support provided by the EELA-2 and

GISELA projects. Both projects are co-funded by the

European Commission under the Seventh EU Framework

Programme.

REFERENCES

[1] Ian Foster and Carl Kesselman, The Grid 2: Blueprint for a future

computing infrastructure., 2003.

[2] TORQUE Resource Manager. [Online].

http://www.clusterresources.com/products/torque-resource-manager.php

[3] R. Henderson and D. Tweten, "Portable batch system: External

reference specification," in Technical report, NASA, Ames Research

Center, 1996.

[4] Sun Microsystems. Sun Grid Engine. [Online].

http://www.sun.com/software/sge/

[5] IBM. Tivoli Workload Scheduler LoadLeveler. [Online]. http://www-

03.ibm.com/systems/clusters/software/loadleveler/index.html

[6] The Globus Alliance. Globus Toolkit Homepage. [Online].

http://www.globus.org/toolkit/

[7] EGEE. gLite. [Online]. http://glite.web.cern.ch/glite/

[8] David Toth and David Finkel, "Characterizing resource availability for

volunteer computing and its impact on task distribution methods," in

Proceedings of the 6th WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems, Wisconsin, 2007, pp.

107-114.

[9] David Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer, "SETI@home An Experiment in Public-Resource

Computing," Communications of the ACM, vol. 45, pp. 56-61,

November 2002.

[10] Francisco Brasileiro and Rodrigo Miranda, "The OurGrid Approach for

Opportunistic Grid Computing," in Proceedings of the First EELA-2

Conference, Bogotá D.C., 2009.

[11] David P. Anderson and Gilles Fedak, "The computational and storage

potential of volunteer computing," in In CCGRID ’06, 2006, pp. 73–80.

[12] L. Kroeker, "The Evolution of Virtualization," in Communications of

the ACM, vol. 52, New York, 2009, pp. 18-20.

[13] V. Chaudhary, J. P. Walters, S. Guercioa, and S. Gallo, "A Comparison

of Virtualization Technologies for HPC," in 22nd International

Conference on Advanced Information Networking and Applications,

New York, 2008, pp. 861-868.

[14] S. Yamasaki, N. Maruyama, and S. Matsuoka, "Model-Based Resource

Selection for Efficient Virtual Cluster Deployment," in 3rd Int.

Workshop on Virtualization Technology in Distributed Computing,

New York, 2007.

[15] I. Foster et al., "Virtual Clusters for Grid Communities," in Sixth IEEE

International Symposium on Cluster Computing and the Grid, New

York, 2006, pp. 513-520.

[16] Shoch, John F.; Hupp, Jon A., "The "Worm" Programs Early Experience

with a Distributed Computation," Communications of the ACM, vol. 25,

no. 3, marzo 1982.

[17] Dana Petcu and Marius Petcu, "Distributed Jess on a Condor pool," in

Proceedings of the 9th WSEAS International Conference on

Computers, Wisconsin, 2005, article 11, 5 pages.

[18] GIMPS: Great Internet Mersenne Prime. [Online].

http://www.mersenne.org/

[19] Distributed.Net. [Online]. http://www.distributed.net

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

503

[20] David Anderson, "BOINC: A System for Public-Resource Computing

and Storage," in Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, Washington, 2004.

[21] Shahram Amin and Mohammad Ahmadi, "Distributed resource

scheduling in grid computing using fuzzy approach," in Proceedings of

the 12th WSEAS international conference on Computers, Wisconsin,

2005, pp. 820-825.

[22] Shahram Amin and Mohammad Ahmadi, "A balanced scheduler for

grid computing," in Proceedings of the 8th WSEAS conference on

Simulation, modelling and optimization, Wisconsin, 2005, pp. 59-64.

[23] L. Sarmenta et al, "Bayanihan Computing.NET: Grid Computing with

XML Web Services," in Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, Berlin,

2002, pp. 434.

[24] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve

Tuecke, "Condor-G: A computation management agent for multi-

institutional grids," in Proceedings of the 10th IEEE International

Symposium on High Performance Distributed Computing, San

Francisco, 2001, pp. 55-63.

[25] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, Marcelo Finger, and

Germano Capistrano Bezerra, "InteGrade: object-oriented Grid

middleware leveraging the idle computing power of desktop machines,"

Concurrency and Computation: Practice and Experience, vol. 16, no.

5, pp. 449 - 459, 2004.

[26] Rafael Fernandes and Francisco Da Silva, "Migration transparency in a

mobile agent based computational grid," in Proceedings of the 5th

WSEAS international conference on Simulation, modelling and

optimization, Wisconsin, 2005, pp. 31-36.

[27] J. Smith and S.K. Shrivastava, "A system for fault-tolerant execution of

data and compute intensive programs over a network of workstations,"

in In Lecture Notes in Computer Science, vol. 1123, 1996.

[28] Walfredo Cirne et al., "Grid computing for Bag-of-Tasks applications,"

in In Proceedings of the I3E2003, 2003.

[29] David Abramson, Rajkumar Buyya, and Jonathan Giddy, "A

computational economy for grid computing and its implementation in

the Nimrod-G resource broker," in Future Generation Computer

Systems (FGCS) Journal, 2002, pp. 1061-1074.

[30] R. Wolski, J. Plank, J. Brevik, and T. Bryan, "Analyzing market-based

resource allocation strategies for the computational grid," in

International Journal of Highperformance Computing Applications,

2001.

[31] Andrade Nazareno, Brasileiro Francisco, Cirne Walfredo, and Mowbray

Miranda, "Automatic Grid Assembly by Promoting Collaboration in

Peer-to-Peer Grids," in Journal of Parallel and Distributed Computing,

vol. 68, 2007.

[32] N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray, "Automatic grid

assembly by promoting collaboration in peer-to-peer grids," in Journal

of Parallel and Distributed Computing, vol. 67, 2007, pp. 957- 966.

[33] Xen. How are Hypervisors Classified? [Online].

http://www.xen.org/files/Marketing/HypervisorTypeComparison.pdf

[34] Eric McIntosh and Andreas Wagner, "CERN MODULAR PHYSICS

SCREENSAVER OR USING SPARE CPU CYCLES OF CERN’S

DESKTOP PCS," 2002.

[35] CERN. LHC@home. [Online]. http://lhcathome.cern.ch/

[36] CERN. CernVM Home. [Online]. http://cernvm.cern.ch/cernvm/

[37] Parallels. Parallels. [Online]. http://www.parallels.com/

[38] F. Cappello et al., "Grid'5000: a large scale and highly reconfigurable

grid experimental testbed," in The 6th IEEE/ACM International

Workshop on Grid Computing, Seattle, 2005, p. 8.

[39] OpenNebula.org. The Open Source Toolkit for Cloud Computing.

[Online]. http://www.opennebula.org

[40] Mario Villamizar, Harold Castro, and Andres González,

"BacteriumSimulatorGrid (BSGrid) - Tool for Simulating the Behavior

of the Bacillus thuringiensis (B. thuringiensis) Bacterium in Cluster and

Grid Infrastructures," in HIBI '09. International Workshop on High

Performance Computational Systems Biology, Trento, 2009, pp. 3-12.

[41] González A., Castro H., Villamizar M., Cuervo N., Lozano G., Orduz S.

and Restrepo S., "Mesoscale Modeling of the Bacillus thuringiensis

Sporulation Network Based on Stochastic Kinetics and Its Application

for in Silico Scale-down," in HIBI '09. International Workshop on High

Performance Computational Systems Biology, Trento, 2009.

[42] N. Cuervo et al., "Modelamiento a mesoescala de la red de esporulación

de Bacillus thuringiensis usando cinética estocástica y su aplicación

para scale down in silico," in IV Simposio sobre biofábricas, Medellín,

2009.

[43] David E. Rex, Jeffrey Q. Ma, and Arthur W. Toga, "The LONI Pipeline

Processing Environment," NeuroImage, vol. 19, no. 3, pp. 1033-1048,

July 2003.

[44] Ivo Dinov et al., "Efficient, distributed and interactive neuroimaging

data analysis using the LONI Pipeline," in Frontiers in

Neuroinformatics, 2009.

[45] Vargas A.M., Ocampo L.M.Q., Cespedes M.C., Carreno N., Gonzalez

A., Rojas A., Zuluaga A.P., Myers K., Fry W.E. and Jimenez P.,

"Characterization of Phytophthora infestans Populations in Colombia:

First Report of the A2 Mating Type," in Phytopathology, 2009, pp. 82-

88.

[46] S. Restrepo et al., "Computational Biology in Colombia," PLOS

Computational Biology, vol. 5, no. 10, 2009.

[47] Bernal A., Ramirez M.A., Castro H., Walteros J.L. and Medaglia, A.L.,

"JG2A: A Grid-enabled object-oriented framework for developing

genetic algorithms," in IEEE Systems and Information Engineering

Design Symposium SIEDS'09, Virginia, 2009.

[48] A. Bernal and H. Castro, "pALS: An Object-Oriented Framework for

Developing ParallelCooperative Metaheuristics," in 24th IEEE

International Parallel & Distributed Processing Symposium (IPDPS),

Atlanta, 2010, pp. 1-8.

[49] H. Castro et al., "EELA: una infraestructura para e-ciencia en

Latinoamérica," Revista de Ingeniera de laUniversidad de los Andes,

vol. 1, no. 23, pp. 26-32, May 2009.

[50] Artur Miller, Harold Castro, Mario Villamizar, and Eduardo Rosales,

"Integrating a virtual Opportunistic Infrastructure to an EELASite," in

2nd EELA-2 Conference, Choroní, 2009, pp. 209-216.

Harold Castro was born in Bogota, Colombia, in 1967. He graduated in

computing and systems engineering at Universidad de los Andes in Bogota,

Colombia in 1989, he got a D.E.A (MSc) from the Institut National

Polytechnique de Grenoble (INPG), in Grenoble, France in 1991 and since

1995 he holds a Ph.D. in computer science from INPG also.

 Since 2005 he is associate professor at the Computing and Systems

Department at Universidad de los Andes. He is the director of the COMIT

(Communications and Information Technology) research group which main

research focus are distributed systems. Dr. Castro personally leads

institutional and national grid initiatives, and his interest areas are: distributed

systems, grid and cloud computing, and mobile computing.

Mario Villamizar was born in Cúcuta, Colombia, in 1985. He received the

BS degree in Systems Engineering at the Universidad Francisco de Paula

Santander (Norte de Santander, Colombia) in 2007, and the MS degree in

Systems and Computing Engineering at the Universidad de los Andes

(Bogotá, Colombia) in 2010.

 Since 2010 he has been an Instructor Professor of the Department of

Systems and Computing Engineering at the Universidad de los Andes. He has

more than 15 publications (including papers, journals and book chapters) that

show the research results of his participation in different national and

international grid and cloud projects such as EELA, GISELA, Grid Colombia,

UnaGrid, Bio-UnaGrid and UnaCloud. His research interests lie mainly in

cluster/grid/cloud computing technologies, in particular: opportunistic

grids/clouds, grid/cloud resource management and scheduling, load

balancing, and configuration and deployment of virtual machines on-demand.

Eduardo Rosales was born in Pasto, Colombia, in 1983. He received the BS

degree in Systems Engineering at the Universidad Católica de Colombia

(Bogotá, Colombia) in 2007, and the MS degree in Systems and Computing

Engineering at the Universidad de los Andes (Bogotá, Colombia) in 2010.

 Since 2008, he has been participating in the COMIT (Communications

and Information Technology) research group, specifically in the UnaGrid and

UnaCloud projects. He also worked as an IT Solution Architect. Since 2011,

he has been working as a DQM Offline Engineer at the CMS (Compact Muon

Solenoid) experiment at CERN (Geneva, Switzerland). He has more than 10

publications including papers, journals and book chapters. His research

interests include cluster, grid and cloud computing, in particular solutions

based on opportunistic and volunteer computing systems.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 5, 2011

504

