
 

 

  

Abstract— This paper deals with the design and implementation 

of a virtual opportunistic grid infrastructure that allows taking 

advantage of the idle processing capabilities currently available in the 

computer labs of a university campus, ensuring local users to have 

priority in accessing the computational resources, while 

simultaneously, a virtual cluster takes the resources unused by them. 

A virtualization strategy is proposed to allow the deployment of 

opportunistic virtual clusters which integration provides a scalable 

grid solution capable of supplying the high performance computing 

(HPC) needs required for the development of e-Science projects. The 

proposed solution was implemented and tested through the execution 

of opportunistic virtual clusters with customized application 

environments for projects of different scientific disciplines, 

evidencing high efficiency in result generation. 

 

Keywords— eScience, desktop grid, grid computing, unagrid.  

I. INTRODUCTION 

RID computing surged as a vanguard technology for 

supporting the development of different scientific projects 

at a global scale [1]. Grid infrastructures may be classified as 

Service Grids, or Desktop Grids and Volunteer Computing 

Systems (DGVCSs). The first have been developed to meet the 

needs of applications and specific projects within large-scale 

environments designed so that a set of organizations can share 

a certain amount of dedicated and federated resources through 

the use of different standards and middleware grids (Torque 

[2], PBS [3], Sun Grid Engine (SGE) [4], LoadLeveler [5], 

Globus [6], gLite [7]). These infrastructures provide large 

computing capabilities; nonetheless, their implementation 

requires large financial investments due to the high costs of, 

not only hardware, but also those associated with physical 

space, temperature-controlled environment, installation 

processes, management, configuration, and maintenance, 
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making this option unviable in organizations with low financial 

resources. 

Also known as volunteer computing [8], public resources 

computing [9], or opportunistic grids [10], DGVCSs have 

emerged as an alternative for obtaining computational 

resources at low cost, focused on taking advantage of the 

capabilities of existing commodity computing resources. These 

infrastructures are based on the benefits of conventional 

desktop computers, as those daily used by employees or 

university students, and allow adding computational 

capabilities of thousands of computers, enabling the 

development of e-Science projects that require the execution 

of intensive processing, memory and/or storage applications. 

These computers are available through Internet or Intranet 

environments, have partial availability, are highly 

heterogeneous, and are part of independent administrative 

domains. DGVCs seek to maximize the efficient use of 

partially available computing resources; this includes the non-

exclusive use of computing resources, while ensuring that 

interactive users of those shared resources do not perceive any 

deterioration in the quality of service. Such strategies are 

intended to provide a computing infrastructure at a large scale, 

without incurring into additional investments for the purchase 

and maintenance of hardware, physical space and controlled 

temperature environments of the traditional vertical growth 

dedicated infrastructures. These features have allowed the 

deployment of Internet scalable computing infrastructure, 

composed mainly by economic, heterogeneous, distributed and 

partially available computers whose added processing power 

has become in the order of the PetaFLOPS (Floating point 

Operations per Second) [11]. 

Taking into account the benefits of DGVCSs, we present a 

novel infrastructure known as UnaGrid
1
, which provides the 

processing capabilities required by the applications of different 

research areas at a university. The infrastructure takes in an 

opportunistic way the processing capabilities unused by the 

end users at computer labs, avoiding the purchase of dedicated 

resources. The infrastructure proposed has been initially 

deployed on the campus of the Universidad de los Andes and, 

in this work, the design and details of the implementation 

deployed are presented along with the results obtained of the 

first applications executed. The proposed infrastructure, 
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through virtualization tools, allows the deployment of 

customized virtual clusters that satisfy the requirements of 

different research areas for the execution of specific 

applications by reusing physical resources on demand. 

The paper is organized as follows: section 2 presents the 

related works to virtual and opportunistic grid infrastructures. 

The description of the design for the proposed infrastructure is 

discussed in Section 3. Section 4 details the implementation 

realized on the university campus and the results obtained 

from the first applications executed within the infrastructure. 

Section 5 concludes.  

II. RELATED WORK 

An introduction to virtualization technologies paradigm to 

taking advantage of heterogeneous computing resources are 

shown in [12]; in [13] an exhaustive comparison and 

assessment of three virtualization technologies for HPC are put 

forth. Opportunistic models for selecting the resources used in 

the deployment of virtual clusters and grids are described in 

[14]. In [15] solutions for the deployment of virtual cluster and 

grid infrastructures are described. 

Referring to taking advantage of idle computational 

resources, Worm [16] and Condor [17] were the first projects 

developed to take advantage of the idle processing capabilities 

available in LAN networks. The Worm project was proposed 

by Xerox Palo Alto Research Center (PARC) and was 

intended to develop Worm applications, which were executed, 

replicated and migrated in idle machines connected over a 

LAN during night hours, when most computational resources 

arranged in Xerox Palo Alto could be considered idle. Idle 

machine detection was implemented through a simple protocol 

that included the broadcast of a special package, making the 

target machines announcing their current status (idle or busy). 

Idle machines then received a request to boot from the 

network, loading their assigned Worm segment. A Worm 

program had several segments, each running on a different 

machine. The worm segments were able to communicate 

among themselves, so if a segment fails, they were able to 

locate another idle machine and run a backup segment there. 

The Condor project, begun by the University of Wisconsin-

Madison, has been focused in the development of a specialized 

load management system for different types of intensive 

computing tasks in LAN networks. This High Throughput 

Computing (HTC) project still remains in force and is aimed at 

the development, implementation, deployment, and evaluation 

mechanisms and policies that support HTC in large sets of 

distributed computers including the efficient use of idle 

computing resources. Like other batch queuing systems, 

Condor provides a mechanism to manage a work queue, policy 

planning, priority schemes, monitoring and resource 

management. This way, users can send to Condor an individual 

job or a set of jobs to be scheduled onto the available 

resources. Condor is responsible for placing the jobs in the 

work queue, choosing the most suitable resource to run a job 

based on a planning policy, resource matching, executing jobs, 

monitoring their progress and finally informing the user about 

their completion. The Condor architecture is based on the 

master/slave model, where the master component manages the 

execution of jobs onto a group of slave nodes.  

For taking advantage of more idle computing resources, 

projects like GIMPS [18] (Great Internet Mersenne Prime 

Search) and SETI@home [9] have used distributed resources 

through Internet for solving a specific problem. GIMPS is 

considered to be the first volunteer computing project in the 

world, i.e. the first resource donation project at Internet scale. 

The GIMPS project is a distributed computing project 

dedicated to the search of Mersenne prime numbers, 

developed by Mersenne Research, Inc. One of the major 

contributions of GIMPS to the DGVCSs is the use of idle 

computing resources through the download and installation of 

a thin client that allows people to donate idle computing 

resources for the calculation of Mersenne primes on Windows, 

Linux, and Mac platforms. This client is developed in the C 

programming language and runs as a background process in 

the lowest available priority in the host operating system.  

The SETI@home [9] project represented the following 

success in allowing the scalable participation of millions of 

computational resources with the objective of resolving a 

unique problem: SETI (Search for Extraterrestrial 

Intelligence). The project began at the University of 

California, Berkeley and was credited as the project receiving 

the greatest computational processing time in history 

(University of California). SETI@home focuses on shortwave 

radio signals processed from space. A radio signal analysis 

process needs an enormous amount of computing capabilities 

to cover a broad spectrum with great sensitivity. In addition, 

signal analysis can be parallelized and does not require 

communication between clients, by which SETI@home 

efficiently uses the public resource computational model on 

the Internet. Like GIMPS, SETI@home is based on a 

lightweight agent developed in the C++ programming 

language and supports nearly all existing operating systems. 

SETI@home may run as a screensaver which includes 

statistical information associated with the opportunistic 

processing.  One of the major contributions of SETI@home to 

DGVCSs was the organization of a strategy-award; rewarding 

the contribution of distinguished participants. This viral 

marketing strategy is a categorization of participants by the 

amount of computational processing contributed to 

SETI@home, allowing multiple users grouping to enable the 

competition. This categorization became ranked worldwide, 

and can be found on the SETI@home official website. It is 

backed by a set of incentives that includes personalized 

acknowledgement emails and public recognition on the 

project’s official website. 

Others DGVCSs projects have been developed for 

supporting general-purpose distributed computing project at 

global scale, Internet.  Distributed.Net [19] was the first 

general-purpose distributed computing project founded by a 

non-profit organization under the GNU FPL (Freeware Public 
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License). Its greatest contribution to the DGVCSs was 

proposing the implementation of a general purpose distributed 

computing system in the world. The project has been oriented 

to break encryption algorithms and to search for Optimal 

Golomb Rulers (OGR)
2
, that are especially useful for encoding 

and combinatorial theories, as well as for the sensor placement 

for x-ray crystallography and for the study of radio astronomy 

techniques. Both tasks are characterized by the intensive use of 

huge processing capabilities and by their natural distribution 

into non-dependent work units to generate results. 

Distributed.net is also based on the opportunistic execution of 

a thin client that was developed in the C++ programming. The 

system’s architecture is based on a three tier client/server 

model (pyramid architecture) that allows the system to be 

highly scalable at the Internet level. The Distributed.net client 

communicates directly with a proxy server which is 

responsible for assigning the work units obtained from a 

centralized server. Once a client has processed a work unit, it 

delivers its results to its proxy server, which in turn sends them 

to the main centralized server. The architecture provides a 

basic fault tolerance mechanism to allow customers to use 

round-robin DNS to locate proxy servers, whenever the server 

originally assigned is no longer available.  

BOINC (Berkeley Open Infrastructure for Network 

Computing) [20] represents an evolvement of SETI@home 

since this proposes a system for creating and operating public-

resource computing projects. BOINC aims to use computing 

resources for the development of multipurpose scientific 

projects, hiding the complexities associated with the creation, 

operation and maintenance of public-resource computing 

projects by providing a set of tools for building a secure 

infrastructure with autonomous domain administrative servers 

and high scalability on the Internet.   BOINC architecture is 

based on a client/server model, which gives clients the 

responsibility for requesting work units for scientific 

applications and for delivering results to the principal server. 

BOINC supports the execution of parallel applications 

allowing a slight communication and synchronization between 

clients; implements basic fault tolerance mechanisms through 

checkpoints while offering the possibility of integrating multi-

purpose projects among which some related to Grid 

Computing. BOINC depends on a robust central infrastructure 

capable of managing the multiple operations carried out by 

clients and lacks general support for parallel applications. The 

project includes all viral marketing strategies originally 

implemented in SETI@home, but extends them in a layout for 

the participation of multiple projects. Additionally, it 

implements a better security mechanism to protect files 

containing credits, granted to users for their voluntary 

contribution of computing resources. BOINC has led the 

scalable DGVCSs Internet multipurpose approach, allowing 

the development of multidisciplinary projects, including 

 
2 In mathematics, the term "Golomb Ruler" refers to a set of non-negative 

integers such that no two distinct pairs of numbers from the set have the same 

difference. 

research on climate prediction, astronomy and high energy 

physics as well as grid computing projects. 

New DGVCS projects have been specialized in grid 

computing projects of variable scalability which require the 

deployment of grid middleware for work unit processing that 

requires large computational capacities, particularly large 

processing capabilities beyond those offered by a single 

administrative domain [21] [22]. Bayanihan Computing .NET 

[23] is a generic framework for grid computing based on 

Microsoft .NET. Bayanihan implements volunteer computing 

by providing a PoolService Web service associated with 

computers that act as clients and providers (volunteers) of 

computing resources. The main Web service allows 

computation clients to create sets of tasks that are sent to 

volunteers for its execution and subsequent return of results. 

The files are downloaded by volunteers, implementing basic 

security mechanisms that are provided by the Microsoft .NET 

platform. Bayanihan allows the execution of general purpose 

applications. One of the major contributions of Bayanihan is 

the use of Web services as a platform, representing an 

alternative to the middleware used by all of its predecessor 

projects; however, Bayanihan has a coupled architecture which 

limits its scalability to Internet environments. 

The Condor project also has been focused in the 

development of a framework to share and lever computing 

resources among different administrative domains, which has 

been called Condor-G [24]. Condor-G allows taking full 

advantage of Condor characteristics, particularly those related 

to the use of idle resources in an administrative domain, to the 

availability of tools and mechanisms for resource management 

and discovery, as well as to the security measures in multi-

domain environments provided by Globus, the standard grid 

middleware. Condor-G combines Globus Toolkit’s multi-

domain resource management protocols and Condor´s intra-

domain resource management, allowing users to take 

advantage of idle computing resources from different 

administrative domains as if all of these belong to a single 

domain. Condor-G can handle thousands of works to be 

executed on multiple distributed sites, providing features such 

as monitoring and task management, resource selection, 

notices, policies, security credentials management, fault 

tolerance and management of complex dependencies between 

tasks. Condor-G can be used directly by end users from high 

level interfaces (brokers) or Web portals. Condor-G 

implements a new mechanism called GlideIn, with which it is 

possible to execute jobs by starting a Condor daemon on a 

remote computer without requiring Condor installation 

binaries to be in such computers. This allows remote 

computers to be part of an existing Condor pool because the 

Condor-G scheduler is informed of these resources’ existence.  

InteGrade [25] is a GNU LGPL (Lesser General Public 

License) grid middleware infrastructure, based on the 

opportunistic use of idle computing resources. The main 

contribution of InteGrade to the DGVCSs is the 

implementation of a computing-resource usage-pattern 
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analysis-component, capable of collecting statistical data and 

of probabilistically determining the availability of a machine 

[26], as well as the convenience of assigning a specific job to 

such a machine. This execution evolves in time, because of the 

permanent data collection, able to determine new prevailing 

patterns. Based on this component, InteGrade supports 

sequential, parametric (Parameter Sweep Applications) and 

parallel (Bulk Synchronous Parallel) applications with 

communication and synchronization requirements between 

nodes.  

OurGrid [10] in an Open Source resource sharing system 

based on a P2P network that makes it easy to share resources 

equitably to form grid computing infrastructures. In OurGrid 

each peer represents a whole site in a different administrative 

domain. OurGrid offers a complete solution for the 

construction of opportunistic grids without human intervention 

for new administrative domains to make part of a grid 

infrastructure used for running bag-of-tasks (BoT) applications 

[27] [28]. The process of sharing resources is based on the 

principle of donating idle computing cycles in order to have 

access to a greater amount of computing power provided in 

cooperation with other participants of the grid. The OurGrid 

community participants should consider two fundamental 

assumptions; the first of these is the effective contribution of 

computing resources to the system by at least two peers (so 

one can always get resources from a different provider within 

the community). The second relates to the lack of QoS 

guarantees offered to applications deployed on OurGrid. This 

latter characteristic reduces the complexities associated with 

traditional grid economy models [29], [30], prevents 

negotiations between resource providers and promotes a 

culture of equitable resources sharing, following a best-effort 

strategy. The main contribution of OurGrid was the 

incorporation of the concept of Network of Favors [31], a 

partial solution to the problem of non-reciprocal participants in 

resources sharing system (free-riding peers) [32], to do this, 

each OurGrid Peer use mechanisms for locally saving 

information about participants that have made previous 

donations, allowing prioritizing requests from participants with 

greater credit history data. OurGrid uses an approach based on 

virtual machines for solving potential security problems, so it 

restricts an execution environment with limited hardware and 

software resources of the physical machine (those assigned by 

a type II hypervisor [33]). OurGrid also provides robust 

security mechanisms based on private and public keys to 

certify the authenticity of messages sent using OurGrid 

protocols.  These mechanisms are seeking to prevent denial of 

service attacks caused by malicious participants.  

Finally, the LHC (Large Hadron Collider) project proposed 

the use of some DGVCSs to tackle the huge computing 

requirements from the different experiments (ATLAS, CMS 

ALICE, LHCb, TOTEM y LHCf) currently in execution. 

Initially the LHC developed a solution for using the 

underutilized computers of the CERN infrastructure; this 

solution is called Compact Physics Screen Saver (CPSS) [34]. 

The CPSS system uses a modular lightweight screensaver 

installed in the desktop CERN computers for taking advantage 

of their computing capabilities, in a non-intrusive manner. 

CPSS uses a centralized Web application server which 

contains the whole tasks to be executed and the applications 

used by the clients. CPSS have been deployed in hundreds of 

computers; however its scalability is limited to the number of 

desktop computers available at CERN. To take advantage of 

more computing capabilities, the LHC began to use the 

BOINC platform in a project called LHC@home [35]. This 

project uses the processing capabilities of millions of 

computers distributed through Internet provided by the 

BOINC project. These capabilities have been used for running 

different types of application with low data transfer. In the 

LHC@home several approaches were developed for 

integrating opportunistic and dedicated infrastructures. 

In CPSS and LHC@home projects, each application used 

by CERN must be ported, in the case of CPSS project to the 

operating system where the screensaver is executed and in the 

case of LHC@home to the BOINC platform, this involves 

major efforts and it is not a scalable solution. A new solution, 

called CernVM [36] using virtualization technologies to solve 

the problem of portability of applications was developed. In 

CernVM, each volunteer downloads a virtual machine image 

which has a CERN customizable environment with the 

required application. The use of virtual machines allows that 

the same application to be executed on heterogeneous 

operating systems and hardware. Two new problems arose due 

to the use of virtual machines, the first associated with the size 

of the virtual machines (between 8-10 Gigabytes), and the 

second with the virtual machine and application updates. For 

solving these problems, a new and innovative solution was 

developed to manage virtual machines and applications. The 

volunteers initially download a lightweight virtual machine (of 

around 100 MB), called thin appliance, whose size is 

incremented the first time that is configured (until 1 o 2 

Gigabytes). The virtual machines do not contain the LHC 

software or grid middleware; on the contrary, the software and 

its dependencies are accessed from one or several servers. 

CernVM has published several virtual machine images that can 

be downloaded by volunteer users with different hypervisors 

(VMware, Virtual Box, KVM (Kernel-based Virtual 

Machine), Microsoft Hyper-V, Parallels [37], Xen y Amazon 

EC2) and architectures (32 y 64 bits). 

Taking into account the benefits of DGVCs for taking 

advantage of idle processing capabilities and the DGVCS 

projects that have already been developed, in this paper we 

present a novel infrastructure that allows the creation and 

execution of customized execution environments that do not 

impose any restriction on the grid or cluster middleware 

(described above), applications, configurations, or parallel 

programming technology to be used. UnaGrid also uses 

virtualization technologies that allow users, with basic IT 

knowledge, to autonomously deploy customized virtual 

clusters on the same physical infrastructure that is shared 
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through an opportunistic approach. The virtual infrastructure 

proposed seeks to efficiently take advantage of the idle 

processing capabilities available in computer labs on a 

university campus to forming a scalable opportunistic virtual 

infrastructure, totally available for the development of e-

Science projects with different middleware, application and 

configurations requirements. 

III. UNAGRID ARCHITECTURE 

The main requirement of the UnaGrid architecture is to 

flexibly take advantage of the idle processing capabilities 

available in computer labs on a university campus. Thus, 

making the development of projects within different research 

areas possible, through the deployment of an opportunistic 

infrastructure that allows the execution of applications with 

high processing and customized execution environments on 

demand. In order to achieve this objective, the opportunistic 

infrastructure must allow the execution of a wide variety of 

applications with specific requirements (versions, 

dependencies, middleware, etc.) due to relevance of 

facilitating the execution of applications within its native 

environments, guaranteeing high usability for end users. What 

we call Customized Virtual Cluster (CVC) is introduced within 

this context as a set of commodity and interconnected desktop 

workstations executing coordinated virtual machines through 

virtualization technologies. All of these virtual machines on 

execution make up a processing cluster. 

Virtual machines take advantage of the unused physical 

resources by end users while they carry out their daily 

activities without perceiving any loss in the quality of the 

service. This is achieved by executing the virtual machines as 

low-priority background processes, guaranteeing that the end 

user has available all of the computational resources (if such is 

required), while the virtual machine only consumes the 

resources that the end user is not using (or all of these in the 

case of unused computers). Each CVC can be deployed on 

hundreds or thousands of commodity desktop computers in 

which a virtual machine image is stored and roles as a CVC 

slave; using a single dedicated machine for each CVC to 

support the master role. 

A distributed file system such as NFS or AFS for handling 

the data of a CVC may be used. Regarding the integration of 

dedicated processing resources to the opportunistic 

infrastructure, all what is required is the installation of a 

dedicated cluster or grid which communication infrastructure 

and configurations must be interconnected with the virtual 

infrastructure.  

Taking advantage of the facilities provided by the 

virtualization technologies allows each research group to 

establish and configure CVCs on virtual machines and deploy 

them on different computer labs. The deployment of a CVC 

requires that the virtual machines have a specific configuration 

regarding applications to be used by the research group and 

cluster or grid middleware such as Condor, Sun Grid Engine, 

PBS, Globus, gLite, etc. The idea is to recreate as exact as 

possible the environment a researcher is used to have in a real 

cluster (something similar to what it is achieved in Grid5000 

[38] or cloud computing approaches like Open Nebula [39], 

but in dedicated machines). Our strategy facilitates the 

different research groups to deploy several CVCs by using the 

same physical infrastructure. This is achieved by storing an 

image of each one of the possible CVCs that may be executed 

on each physical computer, thus facilitating the reutilization of 

resources and guaranteeing better quality of service to CVC 

users. The solution is focused on the exclusive execution of a 

virtual machine for each physical computer with the objective 

of avoiding resources competing among different virtual 

machines. 

Our strategy solves the problems associated with the lack or 

sub-utilization of preexisting computer labs thus promoting the 

sharing of resources and the collaborative work among 

research groups. Nonetheless, the need exists to schedule and 

control the CVC deployment on demand. To solve this 

problem, a Web Portal called ¨GUMA – Grid Uniandes 

Management Application¨ was developed, which allows end 

users of different research groups to deploy on demand CVCs 

on physical infrastructures shared, for specific periods, 

allowing the virtual machines to execute as long as they are 

being used. Administration tools are also provided in this 

portal for analyzing and visualizing the status of the physical 

and virtual resources of the computer labs.  

Some applications require non-conventional processing 

capabilities, which may exceed the capabilities, offered by an 

individual CVC, to solve this, the CVC addition becomes 

necessary, which process is viable through three alternatives: 

the first alternative consists in the configuration of CVC 

images within a computer laboratory to make up part of 

another existing CVC; the second alternative is focused on 

taking advantage of the aggregate capabilities of computer 

resources offered by some schedulers such as Condor and 

SGE; the third alternative is focused on installing a grid 

middleware on master nodes, which allows the execution of 

applications on different CVCs or a mix of a CVC and a 

dedicated infrastructure. 

The first two alternatives are focused on taking advantage of 

the capabilities offered by the schedulers; the first requires less 

effort for its deployment. However, these alternatives require 

the installation of the same scheduler in all CVCs, which limits 

the flexibility of the solution. In order to solve this, the third 

alternative (which requires more effort in configuring and 

administrative agreements) allows the addition of the CVC 

processing capabilities with different schedulers. For instance, 

Globus allows this functionality and additionally allows the 

use of other tools and protocols that are very useful for 

creating grid solutions such as: management mechanisms for 

security, management, transference, replication, data 

management, among others. This type of solution, for sharing 

processing resources among different CVCs, requires the 

implementation of different security mechanisms. The 

infrastructure proposed makes use of the Globus Toolkit 4.2 
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Security Infrastructure. The installation of a certificate 

authority (CA) on the university campus became necessary for 

the interaction and utilization of clusters (CVCs or dedicated) 

between the different research groups. 

In order to use the CVCs, the users may send jobs to the 

queue scheduler and/or to the grid middleware installed on the 

CVC master machine. With regard to solutions involving 

Globus, this middleware facilitates users to submit jobs to 

different clusters because they only need to learn the Globus 

syntax, which allows them to use the different clusters in a 

transparent manner. The proposed scheme is illustrated in Fig. 

1. 

The opportunistic infrastructure proposed allows taking 

advantage of the idle power processing in a 24x7 scheme and, 

additionally, can be deployed on desktops that have Windows, 

Linux and Mac as their operating systems, since the entire 

deployment is based on the use of virtual machines.  

 

 
Fig. 1 architecture of the proposed opportunistic virtual grid 

infrastructure 

IV. IMPLEMENTATION 

The proposed infrastructure has been deployed in three 

computer labs (Wuaira 1, Wuaira II and Turing) at the 

Universidad de los Andes; those computers have Windows XP 

as their base operating system. This deployment has allowed 

providing processing capabilities to projects within different 

research areas (see Section 4.2). Each laboratory has 35 

computers which have an Intel Core 2 Duo (1.86GHz) 

processor and 4GB of RAM memory. For the network 

interconnection, all CVC slave nodes are in a Gigabit Ethernet 

LAN network and the master nodes run on a dedicated server 

outside the computer labs (for stability reasons). For 

communication between the master and the slave nodes, a 

multilayer switch of Gigabit Ethernet links is used. Four 

different CVCs have been deployed on this physical 

infrastructure. To support the demand for superior processing 

capabilities to those provided by an individual computer lab, 

some CVCs master nodes, located on a VMware ESX 

dedicated server, have installed the Globus Toolkit 4.2 

middleware.  

The VMware virtualization software has been used for the 

deployment of the virtual infrastructure. Virtual machines 

playing the slave role of the virtual clusters have assigned both 

cores and 1GB of RAM memory, while the master node has 

assigned two cores and 2GB of RAM memory. Another virtual 

machine was additionally configured and it operates as the CA 

for some CVCs. This CA generates the digital certificates for 

master nodes and CVC users. NFS is used for data 

management within each CVC which server is located in a 

NFS-NAS server solution; this provides sufficient storage 

capacity for storing the files shared with all the slave nodes. 

The process for submitting jobs to the opportunistic 

infrastructure consists in the entry of users to the CVC master 

machine through SSH (some application deployed provide 

Graphical User Interfaces GUIs for sending jobs to UnaGrid 

infrastructure), the jobs may be sent by the users to the cluster 

scheduler or Globus. In the first case, the jobs are executed 

with the machines available in the CVC, which the master 

node makes part, while in the second case the user may utilize 

the processing capabilities of the grid infrastructure built 

through the addition of several CVCs. 

The deployment of CVCs is executed on demand through a 

Web portal known as GUMA, in which open technologies are 

used, such as Java Server Faces (JSF), Enterprise Java Beans 

(EJB), GlassFish, and MySQL. Regardless the administrative 

domain, this application executes and manages the CVCs. 

Multiple execution tests, supported by the active directory 

services of two domain controllers (Windows 2003 and 2008 

Server) have evidenced high level of performance in the CVC 

execution, such as the launching of 35 virtual machines in less 

than 5 seconds and their afterward shutdown in less than 4 

seconds. GUMA manages the remote execution of the 

instances of the virtual machines executor (VMware 

Workstation) in the computer resources available, allowing the 

CVC deployment on demand. This application utilizes the 

client-server scheme that, through authentication, 

authorization, and confidentiality mechanisms, provides 

multiple services for managing the grid from light clients, 

hiding the complexities associated to location, distribution, 

and heterogeneousness of the computer resources,   facilitating 

the autonomy of the involved administrative domains and 

offering an intuitive graphic interface to end users. 

Administration services include the selection, startup, 

shutdown, and remote monitoring of the physical and virtual 

machines as well as query of all instances in execution by the 

different users. The scheme for the infrastructure deployed is 

illustrated in Fig. 2 and a GUMA GUI is shown in Fig. 3. 

V. CVCS DEPLOYED 

The infrastructure has been used in projects of different 

research areas such as chemical engineering, industrial 

engineering, bioinformatics and dedicated grid infrastructures; 

all applications executed are bag-of-tasks style. 

A. Chemical Engineering CVC  

In the chemical engineering area we developed the BSGrid 

application [40] to simulate the Bacillus thuringiensis 
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bacterium. Bacillus thuringiensis (B. thuringiensis) is a gram 

positive spore forming bacterium widely known by its capacity 

to synthesize δ-endotoxins which are used as biopesticides 

representing 90% of the total biopesticide market in the world 

due to its high affinity, no harm to other species (including 

vertebrates) and low environmental impact. For instance, in 

Colombia they can be used for a typical problem in the insect 

control of maize crops. However, these biopesticides only 

participate in the 5% of the total pesticide market in the world; 

due to industrial-scale fermentation cannot obtain a high 

concentration of the δ-endotoxins, so the production of 

biopesticides has a high cost. Several computational methods 

and approaches have been developed to simulate the behavior 

of these bacteria, which allows analyze the behavior of this 

organisms along the time without involve the high cost 

associated with experimental tests; however they require large 

processing capabilities. 

 

 
Fig. 2 opportunistic virtual grid infrastructure deployed 

 

To support large processing capabilities a CVC has been 

deployed in one computing room (Wuaira 1) and several 

BSGrid simulations have been executed on it for determinate 

the optimal conditions under which the B. thuringiensis δ-

endotoxins are produced (the chemical results of the 

simulations are described in [41] and [42]). The CVC has 

configured the Condor scheduler version 6.7.1 and Debian 4.0 

operating system. Each simulation is executed for a bacterium 

population which model is defined by a user through a GUI. 

Once defined the model, a complete simulation is executed as 

a batch process in the CVC, each bacterium of the population 

is executed as an independent job in a CVC virtual machine, 

and the simulation results are stored in a relational database. 

Once all the population has been executed, the users can query 

the database results through GUIs. The architecture of the 

infrastructure deployed for this project is shown in the Fig. 4.  

 

 
Fig. 3 GUMA graphical user interface 

 

 

 
Fig. 4 chemical engineering CVC 

B. Bioinformatics CVC 

Bioinformatics research projects require the use of diverse 

heterogeneous types of applications and computational tools 

for different analyses, which demands technical expertise of 

commands and specific parameters of tens or even hundreds of 

applications, as well as the management commands of 

distributed infrastructures and the manual coordination for 

executing bioinformatics workflows. These tasks require each 

researcher has to spend a significant time and effort learning 

the technical utilization of all these computational tools. To 

facilitate the use applications, the transparent use of high 

performance computing infrastructures and the automatic 
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management of workflows, we have been configured and 

adapted, the LONI Pipeline application, developed by the 

Laboratory of Neuro Imaging (LONI) of the University of 

California Los Angeles (UCLA) [43] [44]. LONI use a client-

server model and a GUI that allows the easy creation, 

validation, execution and monitoring of workflows, allowing 

researchers to focus on the analysis of data generated by the 

workflows and not on technical issues of computer systems. 

Any suite of applications that can be executed through line 

command can be integrated to a LONI Pipeline installation; 

each application is integrated as a LONI module.  

A CVC with several bioinformatics application, the Sun 

Grid Engine (SGE) 6.2u5 scheduler, and Debian 5.0 operating 

system has been configured. Two computer rooms (Wuaira 1 

and Wuaira 2) and a dedicated cluster with 5 servers are used, 

in total 180 cores are available for processing, 140 from 

UnaGrid infrastructure and 40 from the dedicated cluster. The 

LONI Pipeline server and the SGE master have been installed 

in the same dedicated machine. From its installation, we have 

developed the LONI Pipeline modules for several 

bioinformatics application like HMMER, BLAST, Mr. Bayes 

and InterPro Scan, which are compute-intensive. A user 

authentication module were created and configured in the 

LONI server and now the bioinformatics researchers use the 

LONI Pipeline client as a tool for creating, implementing and 

managing workflows in bioinformatics projects, which are 

executed in the CVC. This application has been used in the 

development of several projects of genomic related to coffee 

and yucca, which seek genomic analysis to improve coffee, 

potato and yucca production affected by different biological 

organisms that decrease the production [45] [46]. The 

infrastructure deployed in the LONI Pipeline installation is 

shown in Fig. 5. 

 

 
Fig. 5 bioinformatics CVC 

C. Industrial Engineering CVC 

In the industrial engineering area, we developed two 

different frameworks for solving optimization problems: JG2A 

[47] and pALS [48]. Java Grid-enabled Genetic Algorithm 

(JG2A) is a new generation of the Java Genetic Algorithm 

(JGA) framework for rapid prototyping of evolutionary 

algorithms that exploits parallelism in genetic algorithms in 

two ways: first, it allows the execution in parallel of a large set 

of instances (instances parallelization); and second, it provides 

parallelization of the population evaluation (population 

evaluation parallelization). The instances parallelization has 

been used in different parameter tuning experiments of vehicle 

routing and route design problems. The population evaluation 

parallelization is particularly useful for hard black-box 

optimization problems where the fitness function evaluation 

embeds a discrete-event or finite-element analysis simulation.  

pALS acronym for parallel Adaptive Learning Search is a 

computational object oriented framework for the development 

of parallel and cooperative metaheuristics for solving complex 

optimization problems. The library exploits the parallelization 

allowing the deployment of mainly two models: the parallel 

execution of operators and the execution of separate instances 

or multi-start models. pALS also allows to include in the 

design of the problem’s solution cooperation strategies such as 

the islands model for genetic algorithms or the parallel 

exploration of neighborhoods in metaheuristics derived from 

local searches, including a broad set of topologies associated 

with these models. pALS has been successfully used in 

different optimization problems and has proven to be a 

flexible, extensible and commanding library to promptly 

develop prototypes offering a collection of ready to use 

operators that encompass the nucleus of many metaheuristics 

including hybrid metaheuristics. Due to the large processing 

capabilities required for solving these optimization problems, 

JG2A and pALS can be deployed in a heterogeneous 

computational environment enabled by a grid solution based 

on Globus as the middleware grid, and Condor as the local 

resource manager. 

For running JG2A/pALS simulations a CVC have been 

deployed in a computing room (Turing). A dedicated machine 

have been used for the CVC master, this machine has installed 

Globus Toolkit 4.0 and Condor 7.0. All machines have Debian 

4.0 operating system. The tasks are sent by users through a 

JG2A/pALS interface to GRAM (Grid Resource Allocation 

Manager) and then GRAM send the tasks to Condor scheduler 

which distribute them among the Condor slaves. The 

infrastructure deployed for running JG2A/pALS tasks is shown 

in Fig. 6. 

D. GISELA CVC 

Universidad de los Andes participates in the EELA-2 (E-

science grid facility for Europe and Latin America) project and 

we have an EELA-2 certified site (VO Uniandes) [49]. The 

last CVC deployed has been used for the integration of the 

UnaGrid infrastructure with a service grid infrastructure, as 

EELA-2. The EELA-2 sites use the gLite middleware for their 

operation, and they use several gLite components installed and 

configured in dedicated servers. As the number of such servers 

is limited, a project has been developed to integrate the 

UnaGrid processing capabilities to the EELA-2 local 

infrastructure on demand. The EELA-2 site is managed by the 
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DTI (University Technology Office). This site is currently a 

Resource Centre (RC) certified for using the gLite 

middleware. This RC currently offers 5 services guaranteeing 

the correct operation of the entire system: Information and 

monitoring service (BDII – RGMA), Security Service (CA-

VOMS), Data Service (SE – LFC), Job Management Service 

(CE – WMS – UI) and Registration Service (RA). 

 

 
Fig. 6 industrial engineering CVC 

 

The integration has been achieved by creating a CVC with 

the gLite middleware installed and configured [50]. This 

scheme has the basic components of the gLite infrastructure 

for job execution which are the Computer Element (CE) which 

is the point of entry to the local queue system (PBS, LSF, 

condor), and the Worker Nodes (WNs) which are in charge of 

job execution. The CE is installed within an ESXi server; and 

the WNs (35 total) are installed in a computer room with the 

PBS scheduler. The CE and the WNs are virtualized and they 

are executed on demand, by DTI staff, through GUMA. The 

CE is connected to the WMS (Workload Management System) 

belonging to the VO Uniandes from where jobs may be sent to 

be executed. In Fig. 7, the integration architecture of the 

opportunist virtual cluster to the VO Uniandes service 

infrastructure is shown. 

 

 
Fig. 7 GISELA CVC  

VI. PERFORMANCE EVALUATION 

Table I summarizes the execution time benefits of using 

Unagrid. Although these results are important as they show the 

gain in time that can be easily obtained by researchers, we 

were more interested on measuring the impact of sharing a 

physical machine between an end user and a CVC’s node. To 

do this, we executed four types of tests: i) measuring the 

impact on end users when a CVC executes intensive 

processing applications (Fig. 8.a - 8.c). ii) Measuring the 

impact on the end users when they execute storage intensive 

applications (I/O) (Fig. 8.d - 8.f). iii)  monitoring the processor 

usage from both the end user processes and the virtual machine 

executed in background, while this last had two cores 

assigned, and iv) comparing the job execution time on a CVC 

with the execution time on a dedicated cluster with the same 

hardware resources. 

 

Table I results obtained in the use of the UnaGrid infrastructure 

Application 

Name 

Infrastructure 

Used 

CPU 

Number 

Job 

Number 

Time by 

job (sec) 

Exec. Time 

(days) 

PC 2 2880 3000 50,10 
JG2A 

Ind. Eng. CVC 70 2880 3120 1,50 

PC 2 150000 35 30,38 BSGrid 

Model A Chem. Eng. CVC 70 150000 85 2,11 

PC 2 150000 63 54,69 BSGrid 

Model B Chem. Eng. CVC 70 150000 111 2,75 

PC 2 4200 11700 284,40 

HMMER 
Bioinform. CVC 140 4200 12900 4,50 

 

 
Fig. 8 performance evaluation tests executed 

 

Table II and Table III summarize the results of impact on 

end users. As it is shown, regular users do not perceive (less 

than 3% degradation in the worst case) the execution of a 

virtual machine in his/her desktop machine. In these tables 

test1 to test4 refer to different sizes (cpu/file load) of the 

executed application on the desktop computer. 

 

Table II results of the impact on intensive CPU end users 
Processing Task Completion Time (s) 

Environment/Test 
Test 1 Test 2 Test 3 Test 4 

Without VM 53,94 81,01 108,05 134,99 

With a VM (1 Core) 54,16 81,42 108,39 135,58 

With a VM (2 Cores) 54,21 81,46 108,58 135,60 

 

Table III results of the impact on intensive I/O end users 
I/O Task Completion Time (s) 

Environment/Test 
Test 1 Test 2 Test 3 Test 4 

Without VM 104,10 259,85 521,16 1041,42 

With a VM (1 Core) 105,66 262,43 526,63 1060,75 

With a VM (2 Cores) 106,02 263,03 527,06 1063,07 

 

A third set of tests were executed with the objective of 

monitoring the processor usage from both the end user 

processes and the virtual machine executed in background, 
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while this last had two cores assigned; for such, intensive 

processing tasks were executed within both environments. The 

results are shown in Fig. 9.  

 

 
Fig. 9 CPU usage for virtual machine and end user process 

 

In the test, after measuring CPU use with no virtual machine 

running, we initiate (time 3) a virtual machine using nearly 

50% of the CPU, and at 5, we increase its computational 

requirements to something close to the 100%. We then modify 

the CPU need from the end user. Between 7 and 8 the user 

demands a 50% of the CPU and the virtual machine load 

automatically decreases to 50%. Between 9 and 10 the user 

increases the consumption to about 100% and the virtual 

machine automatically reduces their consumption to a 

minimum. Between 11 and 12 the end user goes back to a 50% 

demand, and after 12, the user leaves alone the physical 

machine. According to the results shown in Fig. 9, the virtual 

machine only uses idle processor cycles, guaranteeing a very 

low impact on the performance perceived by end users. 

Finally Table IV shows an average overload of less than 

17% of the time required for executing the jobs on the 

opportunistic infrastructure when compared to the time 

required on a dedicate infrastructure. 

 

Table IV time execution comparison between an opportunistic and a 

dedicated infrastructure 

Application Infrastructure 
Average Execution Time 

by Job  (Minutes) 

Overload  

(%) 

Dedicated 164,0 
HMMER 

Opportunistic 184,3 
12,4 

Dedicated 10,2 
BSGrid 

Opportunistic 11,9 
16,7 

Dedicated 302,6 
BLAST 

Opportunistic 330,7 
9,3 

VII. CONCLUSIONS 

The proposed opportunistic infrastructure has shown 

promising results with regard to offering new low-cost 

opportunities to meet the very specific processing capabilities 

required in the execution of applications of different research 

groups at Universidad de los Andes. CVCs breaks the 

limitations on size, accuracy and time currently experimented 

by our researchers.  These results show the solution proposed 

as an opportunistic virtual infrastructure that can take 

advantage of the processing capabilities of the resources 

available in computer labs on a university campus, while users 

carry out their conventional activities, utilizing a key 

virtualization strategy in a non-intrusive manner. 

New challenges will have to be faced in order to improve 

the processing capabilities offered: a requirement is to analyze 

how to guarantee quality of service, improving the best effort 

scheme currently in use, to define a storage system to obtain 

storage capacities in an opportunistic way, and to define a job-

submit portal to make easier the use of the infrastructure. 
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