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Abstract— Image segmentation is among most often used 

techniques for image analysis and one standard way to do it is 

multilevel tresholding. The selection of optimum thresholds has 

remained a challenge in image segmentation. High computational 

cost and inefficiency of the conventional multilevel thresholding 

methods lead to the use of global search heuristics to find the optimal 

thresholds. The optimal thresholds are often determined by either 

minimizing or maximizing some criterion functions defined on 

images. In this paper, a new swarm intelligence algorithm, modified 

seeker optimization (MSO) algorithm, is presented for image 

segmentation by multilevel thresholding. This algorithm is used to 

maximize the Kapur's and Tsallis' objective functions. Experiments 

have been performed on four test images using various numbers of 

thresholds. The experimental results demonstrate that the proposed 

MSO algorithm can find multiple thresholds that are very close to the 

optimal ones determined by the exhaustive search method. Compared 

to the particle swarm optimization (PSO) algorithm, the MSO 

algorithm performs satisfactory in terms of solution quality, 

robustness and convergence. 

 

Keywords—Maximum entropy thresholding, Image thresholding, 
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I. INTRODUCTION 

MAGE  segmentation is one of the most important operations 

in image analysis and computer vision [1], [2], [3], [4], [5]. 

Thresholding is one of the simplest techniques for 

performing image segmentation and it is very useful in 

separating objects from background image, or discriminating 

objects from objects that have distinct gray-levels. 

Thresholding involves bi-level thresholding and multilevel 

thresholding. For bi-level thresholding the main objective is to 

determine one threshold which separates the pixels into two 

groups, one including those pixels with gray levels above 

certain threshold, the other including the rest. For multilevel 

thresholding the main objective is to determine multiple 

thresholds which divide pixels into several groups. The pixels 

which belong to the same class have gray levels within a 

specific range defined by several thresholds. The global 

thresholding methods [6], belonging to parametric and 
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nonparametric approaches, select thresholds by optimizing 

(maximizing or minimizing) some criterion functions defined 

from images.  

The maximum entropy thresholding has been widely used in 

determining the optimal thresholding in image segmentation 

[7]. Of particular interest is an information theoretic approach 

that is based on the concept of entropy introduced by Shannon. 

The principle of entropy is to use uncertainty as a measure to 

describe the information contained in a source. The maximum 

entropy criterion for image thresholding was first proposed by 

Pun, and later it was corrected and improved by Kapur [6]. 

Basically, the entropy thresholding considers an image 

histogram as a probability distribution, and then selects as an 

optimal threshold value that yields the maximum entropy. 

More precisely, a best entropy thresholded image is the one 

that preserves as much information as possible that is 

contained in the original unthresholded image in terms of 

Shannon's entropy. Recent developments of statistical 

mechanics based on a concept of nonextensive entropy, also 

called Tsallis entropy, have intensified the interest of 

investigating a possible extension of Shannon’s entropy to 

information theory [8], [9]. This interest appears mainly due to 

similarities between Shannon’s and Boltzmann/Gibbs entropy 

functions. The Tsallis entropy is a new proposal in order to 

generalize the Boltzmann/Gibbs traditional entropy to 

nonextensive physical systems.  

Optimization techniques  inspired  by swarm intelligence 

have become very popular during the last decade. Three of the 

most successful examples of optimization techniques inspired 

by swarm intelligence are ant colony optimization [10], 

particle swarm optimization [11] and artificial bee colony 

optimization [12], [13]. Basic versions of these algorithms are 

later enhanced to improve performance in general or for some 

class of the problems [13], [15], [16], [17], [18], [19], [20], 

[21], [22], [23], [24], [25], [26]. Also, swarm intelligence 

algorithms are successfully used for wide range of practical 

problems. Many of these metaheuristics were adopted to 

search for the multilevel thresholds [27], [28], [29]. Yin [30] 

presented a new method that adopts the particle swarm 

optimization to select the thresholds based on the minimum 

cross-entropy. Horng applied the honey bee mating 

optimization (HBMO), the artificial bee colony (ABC) 

algorithm [31] and the firefly algorithm [32] to search for the 

thresholds using the maximum entropy criterion.  In [33] the 

adaptation and comparison of six meta-heuristic algorithms: 

genetic algorithm, particle swarm optimization, differential 

evolution, ant colony, simulated annealing and tabu search 

were presented. The experimental results have shown that the 
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genetic algorithm, the particle swarm optimization and the 

differential evolution outperformed the other algorithms. 

Seeker optimization algorithm (SOA) is a novel swarm 

intelligence algorithm based on simulating the act of human 

searching, which has been shown to be a promising candidate 

of search algorithms for unconstrained function optimization 

[34]. The SOA results for multimodal test functions were not 

very satisfactory and in order to enhance its performance, the 

modified seeker optimization algorithm named MSO was 

proposed [35]. This paper proposes the Kapur and Tsallis 

based MSO algorithm for solving multilevel thresholding 

problem. The PSO algorithm is implemented for purposes of 

comparison. Also, the exhaustive search method is conducted 

for deriving the optimal solutions for comparison with the 

results generated from PSO and MSO algorithms. 

The rest of the paper is organized as follows. In the Section 

2 the problem of the multilevel thresholding is formulated and 

the objective functions treated are presented. In the Section 3 

the SOA algorithm is briefly described. Section 4 presents our 

proposed MSO algorithm for multilevel thresholding problem. 

Section 5 gives comparative results of the implemented MSO 

and PSO algorithms. 

II. MULTILEVEL THRESHOLDING PROBLEM FORMULATION 

Let there be L gray levels in a given image I  having M pixels 

and these gray levels are in the range }1,...1,0{ L . The 

multilevel thresholding problem can be configured as a k-

dimensional optimization problem, for determination of k 

optimal thresholds ],...,,[ 21 kttt  which optimizes an objective 

function. 

Several objective functions devoted to the thresholding have 

been proposed in the literature [6]. Generally, these functions 

are determined from the histogram of the image, denoted by 

the SOA algorithm )(ih , 1...1,0  Li , where )(ih  represents 

the number of pixels having the gray level i. The normalized 

probability at level i is defined by the ratio MihPi /)( . One 

of the most popular objective function is defined by Kapur. 

The aim is to maximize the objective function: 
 
 

kk HHHtttf  ...]),...,,([ 1021          (1) 
 
 

where 
 

0

1

0 0

0 ln
1

w

P

w

P
H i

t

i

i




 , 






1

0

0

1t

i

iPw , 

 

1

1

1

1 ln
2

1
w

P

w

P
H i

t

ti

i




 , 





1

1

2

1

t

ti

iPw , 

 

2

1

0 2

2 ln
3

w

P

w

P
H i

t

i

i




 , 





1

2

3

2

t

ti

iPw ,... 

 

k

i
L

ti k

i
k

w

P

w

P
H

k

ln
1






 , 





1L

ti

iK

k

Pw  

The method similar to the maximum entropy sum method 

of Kapur is Tsallis non-extensive entropy concept. The aim is 

to maximize the objective function: 
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III. SEEKER OPTIMIZATION ALGORITHM 

Seeker optimization algorithm (SOA) mimics the behaviour of 

human search population based on their memory, experience, 

uncertainty reasoning and communication with each other. 

SOA is a population-based heuristic algorithm. The algorithm 

operates on a set of solutions called search population. Each 

individual of the population is called a seeker or agent. The 

total population is equally categorized into K subpopulations 

according to the indexes of the seekers (all the subpopulations 

have the same size, shown as Fig. 1). All the seekers in the 

same subpopulation constitute a neighborhood which 

represents the social component for the social sharing of 

information.  

The main characteristic features of this algorithm are the 

following: 

 

1. The algorithm uses search direction and step length to 

update the positions of seekers 

 

2. The calculation of the search direction is based on a 

compromise among egotistic behaviour, altruistic 

behaviour and pro-activeness behaviour 

 

3. Fuzzy reasoning is used to generate the step length because 

the uncertain reasoning of human searching could be the 

best described by natural linguistic variables and a simple 

if-else control rule: If {objective function value is small} 

(i.e., condition part), then {step length is short} (i.e., action 

part) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 7, 2013 371



 

 

A search direction )(td ij  and a step length )(tij  are separa-

tely computed for each individual i on each dimension j at 

each iteration iter, where 0)iter( ij  and  

}1,0,1{)iter( ijd . At each iteration the position of each seek-

er is updated by: 
 

)iter()iter()iter()1iter( ijijijij dxx     (3) 

 

where DjSNi ,...2,1;,...2,1   (SN is the number of seekers). 

Also, at each iteration, the current positions of the worst two 

individuals of each subpopulation are exchanged for both of 

the best one in each of the other two subpopulations, which is 

called inter-subpopulation learning. 

 

 
Fig.1: Relationship chart of population and subpopulation 

 

Short pseudo–code of the SOA algorithm is given below: 
 

1. Generating s positions uniformly and randomly in search 

space; 

2. cycle = 0; 

3. Repeat 

4. For i = 1 to s do 

Computing )iter(id ;   

Computing )iter(i ;   

Updating each seeker’s position using Eq. (3); 

5. End of For 

6. Evaluating all the seekers and saving the historical best 

position; 

7. Implementing the inter-subpopulation learning operation; 

8. cycle = cycle+1; 

Until the termination criterion is satisfied 
 

Since its invention, SOA has been applied to solve the other 

kinds of problems beside numerical function optimization. In 

[36], the application of the SOA to tuning the structures and 

parameters of artificial neural networks is presented, while in 

[37] SOA-based evolutionary method is proposed for digital 

IIR filter design. Also, a new optimized model of proton 

exchange membrane fuel cell (PEMFC) was proposed by using 

SOA [38]. 

IV. MODIFIED SEEKER OPTIMIZATION ALGORITHM FOR 

MULTILEVEL THRESHOLDING PROBLEM 

SOA was analyzed with a challenging set of benchmark 

problems for function optimization. The simulation results 

showed that the proposed algorithm is a promising candidate 

of swarm algorithms for numerical function optimization. For 

multimodal test functions the results were not very satisfactory 

because it was noticed that for this type of problems SOA may 

be stuck at a local optimum. In order to enhance the 

performance of SOA, the modified seeker optimization (MSO) 

algorithm is developed [35]. MSO algorithm uses two search 

equations for producing new population: search equation of 

artificial bee colony (ABC) algorithm [18] and the search 

equation of seeker optimization algorithm. Also, MSO 

algorithm implements the modified inter-subpopulation 

learning using the binomial crossover operator.  

The proposed MSO algorithm based on maximum entropy 

criterion tries to obtain this optimum K-dimensional vector 

[ kttt ,...,, 21 ] which can maximize Eq.(1) in the case of 

Kapur's method Eq.(2) in the case of Tsallis' method. The 

details of the developed approach are introduced as follows.   
 

Step 1. Initialize population 
 

MSO algorithm generates a randomly distributed initial 

population of SN solutions or seekers it  (i = 1, 2, ..., SN ) with 

K dimensions denoted by matrix T. 
 

],...,[ 21 SNtttT   and ),...,( ,2,1, Kiiii tttt          (4) 
 

where ijt  is the  j
th

 component value that is restricted into 

[0,…,L-1] and the 1 ijij tt  for all j. Each seeker it  (i = 1, 2, 

..., SN ) is generated by: 
 

)()1,0( minmaxmin, ttrandtt ji            (5) 
 

where mint  and maxt  are the minimum and the maximum gray 

values in the image, the rand(0, 1) is a random number 

between 0 and 1. In MSO algorithm, as in SOA, the total 

population is categorized into N subpopulations according to 

the indexes of the seekers.  Each seeker it , beside of its 

current position and its objective function value, has the 

following attributes: the personal best position ibestp  so far 

and the neighborhood best position bestg  so far. 
 

Step 2. Evaluate population 
 

For each seeker it  (i = 1, 2 ..., SN) evaluate the objective 

function values by Eq.(1) or Eq.(2). 
 

Step 3. Record the best solution 
 

In this step, the best solution vector, i.e. the solution vector 

with the highest objective function value is recorded.  
 

Step 4. is repeated a fixed number of iterations. It consists of 

three parts. The details of each part are described as follows.   
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Part 1. Calculate new population 
 

Perform an update process for each solution in the search 

population using a randomly selected search  equation. The 

MSO included a new control parameter which is called 

behaviour rate (BR) in order to select the search equation in 

the following way: If a uniformly distributed real random 

number  between [0,1) is less then BR, the SOA search 

equation is used, otherwise the search  equation  of ABC 

algorithm is performed.  

The variant of ABC search equation for producing a new 

solution iv ,  i { 1, 2, ..., SN}  which is used in MSO 

algorithm is: 
 

otherwise
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where k is a randomly chosen index of a solution from the 

subpopulation to which the i
th

 seeker belongs, k has to be 

different from i, Kj ,...,2,1  , i  is a uniformly distributed 

real random number between [-1, 1) and jR  is a uniformly 

random real number within [0, 1). 

The SOA search solution equation uses search direction 

jid , and step length ji,  for producing a new solution iv ,  i 

{ 1, 2, ..., SN} . It can be described by: 
 

jijijiji dtv ,,,,    ,  Kj ,...2,1           (7) 
 

A search direction jid ,  and a step length ji,  are separately 

computed for each individual i on each dimension j at each 

iteration. The calculation of the search direction is based on a 

compromise among egotistic behavior, altruistic behavior and 

pro-activeness behavior. The egotistic behavior of each seeker 

it  may be modeled by vector called egotistic direction iegod  

by: 
 

jijibestjiego tpd ,,,  , Kj ,...2,1             (8) 
 

The altruistic behavior of each seeker it  may be modeled by 

vector called altruistic direction ialtd  by: 
 

jijbestjialt tgd ,,,  , Kj ,...2,1             (9) 

 

where bestg  represents the neighbourhood best position so far. 

The pro-active behavior of each seeker it  may be modeled by 

vector called pro-activeness direction iprod  by: 

 

)()( 2,1,, itertitertd jijijipro  , Kj ,...2,1         (10) 

 

where }2,1,{, 21  iteriteriteriteriter , )( 1iterti  and 

)( 2iterti  are the best and the worst positions in the set 

)}(),1(),2({ itertitertitert iii  respectively. Here, iter 

denotes the current iteration, while  1iter  and 2iter  

denote the previous two iterations.  

The expression of search direction for the i
th

 seeker is set to 

the stochastic combination of egotistic direction, altruistic 

direction and pro-activeness direction by: 

 

)( ,2,1, jialtjiegojiproij dddwsignd         (11) 
 

where Kj ,...2,1  , the function sign (·) is a signum function 

on each dimension of the input vector, w  is the inertia weight  

and 1  and 2  are real numbers chosen uniformly and 

randomly in the range [0,1]. Inertia weight is used to gradually 

reduce the local search effect of pro-activeness direction iprod  

and provide a balance between global and local exploration 

and exploitation. Inertia weight is linearly decreased from 0.9 

to 0.1 during a run. 

Fuzzy reasoning is used to generate the step length because 

the uncertain reasoning of human searching. From the view 

point of human searching behavior, it may be assumed that 

better points are likely to be found in the neighborhood of 

families of good points. For calculating the step length of i
th

 

seeker we need to calculate vector i  by: 
 

)(
1

minmaxmax  





S

IS i
i                       (12) 

 

where S denotes the size of the subpopulation to which the 

seekers belong, iI  is the sequence number of it  after sorting 

the objective function values in ascending order, max  is the 

maximum membership degree value which is equal to or a 

little less than 1.0, min is set to 0.0111. Beside of vector i , 

we need to calculate vector i  by : 
 

)( minmax ttabswi     (13) 
 

In Eq.(11), the absolute value of the input vector as the 

corresponding output vector is represented by the symbol abs 

(⋅), maxt  and mint  are the positions of the best and the worst 

seeker in the subpopulation to which the i
th

 seeker belongs, 

respectively. In order to introduce the randomness in each 

variable and to improve the local search capability, the 

following equation is introduced to convert i  into a vector 

with elements as given by: 
 

)1,( iij rand   , Kj ,...2,1   (14) 
 

The equation used for generating the step length ji,  for i
th 

seeker is : 
 

)ln( ,,, jijiji   , Kj ,...2,1   (15) 

 

For each seeker it  (i = 1, 2, ..., SN) evaluate the objective 

function values. 
 

Part 2. Evaluating all the seekers and saving the historical 

best position. 
 

Part 3. Apply the modified inter-subpopulation learning 

operation 
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The modified inter-subpopulation learning is implemented as 

follows: The positions of seekers with the lowest objective 

function values of each subpopulation l are combined with the 

positions of seekers with the highest objective function values 

of (l+z) mod N subpopulations respectively, where z=1,2,.. 

NSC.  NSC denotes the number of the worst seekers of each 

population which are combined  with the best seekers. The 

appropriate seekers are combined using the following binomial 

crossover operator as expressed in: 
 

otherwise
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where jR  is a uniformly random real number within [0, 1), 

worstjln
t ,  is denoted as the  j

th
 variable of the n

th
 worst position 

in the l
th

 subpopulation, besti j
t  is the j

th
 variable of the best 

position in the ith subpopulation. Additionally, we  included a 

new parameter which we named inter-subpopulation learning 

increase period (ILIP). After ILIP iterations the number of the 

worst seekers of each subpopulation which are combined  with 

the best seekers is increased to NSC2 . 
 

Step 5.  Output best recorded solution 
 

After a predefined number of iterations the positions of the 

best recorded solution are the optimal threshold values. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The MSO and PSO algorithms have been implemented in Java 

programming language. Four well-known images, namely 

Lena, Peppers, Cameraman and Boats with 256 gray levels are 

taken as the test images. All the images are of size (512 x 512). 

These original images with their histograms are shown in Fig 

2.  Tests were done on a PC with Intel® Core™ i3-2310M 

processor @2,10 GHz with 2GB of RAM and Windows 7 x64 

Professional operating system. 

 In all experiments for both algorithms the same size of 

population (SP) of 40 is used and the same size of maximum 

number of iterations (MCN) of 100 is taken. In proposed MSO 

algorithm the number of subpopulations (N) is 5, the behavior 

rate (BR) is 0.4, the number of seekers of each subpopulation 

for combination (NSC) is 1 and the inter-subpopulation 

learning increase period (ILIP) is MCN4.0 . Parameters of 

PSO algorithm are: inertia weight (w) is 0.5, minimum velocity 

( minv ) is -5, maximum velocity ( maxv ) is 5 , min  is 0 and 

max  is 2. Since MSO and PSO algorithms are of stochastic 

type and therefore the results of experiments are not absolutely 

the same in each run of algorithm, each experiment was 

repeated 50 times.  

Table 1 shows the optimal thresholds, the optimal objective 

function values and the processing time provided by the 

exhaustive search method for Kapur’s and Tsallis' method.  

Table 2 and Table 3 present the mean values, standard 

deviations and average processing time over 50 runs provided 

by both algorithms for each image with a threshold numbers 

from 1 to 5 for Kapur's and Tsallis' method respectively. 

 

 

 

    
Lena Peppers 

    
Cameraman Boats 
 

Fig 2: Test images and their histograms 
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TABLE I 
 

 

THRESHOLDS, OBJECTIVE FUNCTION VALUES AND TIME PROCESSING PROVIDED BY THE EXHAUSTIVE SEARCH 

FOR KAPUR’S AND TSALLIS’ METHOD 
 

 

 

 

 

 

TABLE II 
 

 

MEAN VALUES, STANDARD DEVIATIONS AND AVERAGE PROCESSING TIME OVER 50 RUNS FOR KAPUR’S METHOD 
 

 

Image k 
PSO MSO 

Mean value St. Dev. Time(s) Mean value St. Dev. Time(s) 

Lena 

1 8.941944 1.24E-14 0.0631 8.941944 1.24E-14 0.1781 

2 12.347015 5.33E-15 0.0635 12.347015 5.33E-15 0.1769 

3 15.318053 1.24E-14 0.0656 15.318053 1.24E-14 0.1829 

4 18.000658 1.02E-02 0.0618 18.008059 6.98E-03 0.1826 

 5 20.610531 1.40E-04 0.0682 20.610500 1.98E-04 0.1856 

Pepper 

1 9.118984 7.11E-15 0.0551 9.118984 7.11E-15 0.1923 

2 12.557434 1.07E-14 0.0568 12.557434 1.07E-14 0.1934 

3 15.621959 1.42E-14 0.0668 15.621959 1.42E-14 0.1926 

4 18.392850 2.42E-02 0.0719 18.400501 1.24E-04 0.1920 

 5 21.037588 2.17E-02  0.0686 21.052916 1.92E-03 0.2013 

Cameraman 

1 8.786829 8.88E-15 0.0606 8.786829 8.88E-15 0.1954 

2 12.286490 5.33E-15 0.0657 12.286490 5.33E-15 0.2078 

3 15.392280 1.39E-02 0.0661 15.394271 1.07E-14 0.2102 

4 18.556636 1.35E-04 0.0691 18.556655 2.13E-14 0.2132 

 5 21.294869 3.68E-02 0.0656 21.310750 2.67E-02 0.2149 

Boats 

1 8.964219 5.33E-15 0.0642 8.964219 5.33E-15 0.2010 

2 12.574798 1.42E-14 0.0648 12.574798 1.42E-14 0.2058 

3 15.820754 7.29E-04 0.0679 15.820828 5.21E-04 0.2091 

4 18.624686 3.77E-02 0.0706 18.652739 1.38E-02 0.2110 

 5 21.384345 5.88E-02 0.0752 21.400989 1.74E-03 0.2104 

Image k 

Kapur Tsallis 

Threshold values 
Objective 

function 

Time (s) 
Threshold values 

Objective 

function 

Time (s) 

Lena 

1 123 8.941944 0.015 164 0.333333 0.031 

2 97, 164 12.347015 0.827 104, 164 0. 888885 2.291 

3 82, 126, 175 15.318053 30.576 84, 126, 173 1.296279 203.582 

4 64, 97, 138, 179 18.012432 1873.643 NA NA NA 

Pepper 

1 97 9.118984 0.015 94 0.333333 0.035 

2 74, 149 12.557434 0.773 72, 153 0.888885 5.266 

3 69, 119, 167 15.621959 28.461 66, 120, 166 1.296281 223.095 

4 55, 94, 134, 177 18.400522 1881.104 NA NA NA 

Cameraman 

1 196 8.786829 0.022 201 0.333333 0.042 

2 125, 196 12.286490 0.847 145, 201 0.888877 6.523 

3 44, 102, 196 15.394271 27.311 124, 155, 203 1.296252 250.41 

4 42, 96, 145, 198 18.556655 1900.083 NA NA NA 

Boats 

1 115 8.964219 0.024 119 0.333333 0.045 

2 107, 176 12.574798 0.846 64, 119 0.888882 6.446 

3 64, 119, 176 15.820903 30.687 64, 119, 186 1.296281 246.327 

4 48, 88, 128, 181 18.655734 1856.990 NA NA NA 
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TABLE III 
 

 

MEAN VALUES, STANDARD DEVIATIONS AND AVERAGE PROCESSING TIME OVER 50 RUNS FOR TSALLIS’ METHOD 
 

 
 
 

Image k 
PSO MSO 

Mean value St. Dev. Time(s) Mean value St. Dev. Time(s) 

Lena 

1 0.333333 4.44E-16 0.3035 0.333333 3.02E-15 1.2168 

2 0.888885 3.33E-16 0.3101 0.888885 3.33E-16 1.2287 

3 1.296279 1.65E-08 0.3111 1.296279 1.37E-09 1.2253 

4 1.654273 1.28E-06 0.3163 1.654273 3.16E-08 1.2494 

 5 1.995795 1.67E-06 0.3229 1.995796 8.32E-07 1.2944 

Pepper 

1 0.333333 5.55E-17 0.3405 0.333333 5.55E-17 1.3112 

2 0.888885 6.66E-16 0.3413 0.888885 6.66E-16 1.3120 

3 1.296281 1.33E-15 0.3432 1.296281 1.33E-15 1.3750 

4 1.654282 1.03E-06 0.3491 1.654283 7.97E-10 1.3802 

 5 1.995809 7.31E-06 0.3531 1.995811 6.89E-08 1.3942 

Cameraman 

1 0.333333 5.55E-17 0.3593 0.333333 5.55E-17 1.3897 

2 0.888877 6.66E-16 0.3616 0.888877 6.66E-16 1.3095 

3 1.296252 1.55E-15 0.3646 1.296252 1.55E-15 1.3241 

4 1.654207 1.16E-05 0.3846 1.654210 1.11E-05 1.3386 

 5 1.995700 1.02E-05 0.3890 1.995701 1.00E-05 1.3674 

Boats 

1 0.333333 2.22E-16 0.3563 0.333333 2.22E-16 1.3470 

2 0.888882 7.97E-08 0.3617 0.888882 6.35E-08 1.3610 

3 1.296280 1.76E-08 0.3647 1.296281 6.66E-16 1.3717 

4 1.654283 2.66E-06 0.3708 1.654283 5.94E-08 1.3738 

 5 1.995800 2.72E-06 0.3709 1.995802 9.69E-07 1.3909 

 
 

The mean values and standard deviations obtained by MSO 

and PSO algorithms can be compared to the optimal 

objective function values derived by the exhaustive search 

method. From Table 1 we found that the computation times 

of exhaustive search method is exponential. For Kapur 

function in the case k  5 and for Tsallis function in the case 

k  4 and k  5, the optimal thresholds and objective 

function values aren’t counted because the time needed to 

find these values was unacceptable.  

From Table 2 it can be seen that both algorithms give 

good results both in terms of accuracy (mean fitness) and 

robustness (similar results of repeated runs or small 

standard deviation), for the threshold numbers from 1 to 2. 

For each image, for the threshold numbers from 1 to 2, 

MSO and PSO algorithms converged consistently to the 

same solution which is equal to the optimal solution. In this 

case, the standard deviations provided by both algorithms 

are very low. In the case when the number of thresholds is 

higher or equal to 3, the MSO algorithm performs better 

than PSO algorithm for each image, except for the image 

Lena (k=5). We can see that for the threshold numbers from 

3 to 5, the mean values of MSO are closer to the optimal 

ones than the same of PSO. Also, in that case, the standard 

deviations obtained by MSO are lower than the standard 

deviations obtained by PSO, which is specially noticeable 

for the image Cameraman.  It can be concluded that MSO 

algorithm is superior to PSO in terms of precision and 

robustness of the results for the Kapur’s method. 

From Table 3 it is observed that for the threshold 

numbers from 1 to 5, the MSO algorithm perform well as 

compared with the PSO algorithm. The mean results show 

that MSO algorithm performs slightly better than PSO 

algorithm for each image. Also, MSO algorithm gives 

smaller standard deviations than the same of PSO. It can be 

concluded that MSO algorithm is more stable than PSO 

algorithm for the Tsallis' method. 

The reported results from these tables show that as for 

the exhaustive search, for both algorithms, the number of 

iterations and the run time increase with the threshold 

number, but not in the same manner. The convergence times 

of the MSO and PSO are faster than those of the exhaustive 

search, except for k 1 for both methods. From Table 2 and 

Table 3, for the threshold numbers from 1 to 5, for each 

image, we can see that PSO is more efficient in terms of 

time execution than MSO. It is also observed that the 

computation time of Tsallis-based PSO is higher than the 

Kapur-based MSO. 

VI. CONCLUSION 

In this paper, the modified seeker optimization (MSO) 

algorithm based on simulating the act of human searching is 

proposed for multilevel thresholds selection. In order to 

verify the effectiveness of the proposed MSO approach, 
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four standard test images are investigated. Particle swarm 

optimization (PSO) algorithm is also implemented for 

comparison. The experimental results show that MSO 

algorithm performs better than PSO algorithm with respect 

to precision and robustness, while in term of execution time 

the PSO is more efficient than MSO. Even though the 

Tsallis-based MSO gives lower standard deviation values, 

compared with all the cases, the Kapur-based MSO 

converges faster than the Tsallis-based MSO and the 

Tsallis-based PSO. Therefore, the proposed Kapur-based 

MSO method is a promising approach for image 

segmentation due to quality of its segmentation results and 

computational efficiency. 
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