
 

 

  
Abstract—We modify a mathematical model proposed for 

describing bone resorption and bone formation process based on 
the effect of calcitonin to investigate the effect of time delay on 
bone remodeling process. The model is then analyzed by using 
Hopf bifurcation theorem. The conditions on the system 
parameters are then derived so that a periodic solution can be 
assured. A computer simulation is carried out in order to support 
our theoretical prediction. Moreover, the effects of estrogen 
supplement in different manner are also investigated numerically.    
 

Keywords—Bone remodeling process, Calcitonin, 
Mathematical model, Hopf bifurcation, Estrogen supplement.  

I. INTRODUCTION 
N  postmenopausal women, one of the  most common  
bone diseases is osteoporosis [1]. It occurs from the 

imbalance of bone remodeling process where the net 
increase of bone resorption is over bone deposition [1], [2]. 
Bone remodeling process consists of both bone formation 
process by osteoblastic cells and bone resorption process by 
osteoclastic cells. The process begins with osteoclasts 
appear on an inactive surface of bone, a lacuna on the 
surface of cancellous bone or a resorption tunnel in cortical 
bone is excavated. Osteoclasts are then replaced by 
osteoblasts. Finally, the resorption cavity is then refilled by 
osteoblasts [3], [4]. At the end of the process, if osteoblasts 
fill the resorption cavity incompletely, bone loss will be 
occurred and osteoporosis can then be expected [3], [4]. 
Bone remodeling process involves with several hormones 
such as parathyroid hormone (PTH), calcitonin (CT), 
estrogen, vitamin D and prolactin. There are many attempts 
[5]–[14] to develop mathematical models to describe bone 
remodeling process, however, none of them included the 
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effects of both calcitonin and time delay observed clinically 
in such process. Hence, in this paper, a mathematical model 
of bone remodeling process that incorporates the effects of 
both calcitonin and time delay will be developed.  

II. MODEL MODIFICATION 
 Let us denote the level of CT above the basal level in 
blood at time t by ( )x t , the number of active osteoclasts at 

time t by ( )y t , and the number of active osteoblasts at time 

t by ( )z t . At first we assume that the high levels of 
osteoclast and osteoblast precursors lead to the high levels 
of active osteoclasts and active osteoblasts, respectively, 
resulting from the differentiation, and activation of their 
precursors. 
 In 2011, Rattanakul and Rattanamongkonkul [12] 
proposed a mathematical model to describe bone 
remodeling process based on the effect of calcitonin as in 
(1)-(3): 
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where all parameters 1 2 3 4 5 6 1 2 3, , , , , , , , ,a a a a a a b b b 1 2,k k  and 

3k  are positive constants. (1) represents the rate of change 
of the concentration of CT above the basal level in blood at 
time t. The dynamics of the active osteoclastic population is 
described by (2) while (3) stands for the dynamics of the 
active osteoblastic population. However, the effect of time 
delay observed clinically in the process [5] did not take into 
account.   

 In 2000, Kroll [5] observed that there is a delay time of 1 
hour for differentiation of preosteoblast precursors into 
preosteoblasts and 2 hours for the differentiation of 
preosteoblasts into osteoblasts. We then assume that there is 
also a delay time of 1 hour for differentiation of 
preosteoclast precursors into preosteoclasts and 2 hours for 
the differentiation of preosteoclasts into osteoclasts. 
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Therefore, we modify the model developed in [12] to 
incorporate the effect of time delay in the differentiation of 
osteoclasts and osteoblasts as follows. 
 Firstly, calcitonin (CT) is secreted from the thyroid gland  
by the parafollicular C cells [15]. The release of CT is 
controlled by the level of calcium in blood. When the level 
of calcium in blood rises above the normal range, the 
thyroid gland will release CT in order to counter balance 
the high level of calcium in blood. CT has an inhibiting 
effect on bone resorption by inhibiting activity of 
osteoclastic cells [15]. CT will bind to its receptors on the 
surface of osteoclastic cells and results in the increase of 
cAMP formation immediately, the expanse and activity of 
the ruffled border is then diminished within minutes [15]. 
Osteoclasts pull away from the bone surface and begin to 
dedifferentiate. Synthesis and secretion of lysosomal 
enzymes are inhibited. In less than an hour fewer 
osteoclasts are present, and those that remain have 
decreased bone-resorbing activity [15]. Hence, the equation 
for the rate of change of the level of CT is then assumed to 
have the form 

   1 2
1

1

c c ydx d x
dt m y

 +
= − 

+ 
                                      (4) 

where the first term on the right-hand side of (4) represents 
the secretion rate of CT from parafollicular cells in the 
thyroid gland. The last term is the removal rate constant 1d . 

1 2,c c  and 1m  are positive constants.  
Secondly, osteoclasts are bone resorbing cells that 

derived from hemopoietic stem cells [15]. The 
differentiation and activation of osteoclasts require the 
presence of osteoblasts since osteoclasts lack of the 
necessary receptors for the involving hormone such as PTH 
[5]. Moreover, the cell-to-cell interaction of osteoclast 
precursors and osteoblasts are also necessary for the 
derivation of osteoclasts [16].  Therefore, the dynamics of 
the active osteoclastic population is then assumed to have 
the form 

   ( ) ( )4
3 22

2

c xdy c y t z t d y
dt m x

τ τ
 

= − − − − 
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     (5)   

where the first term on the right-hand side of (5) represents 
the reproduction of active osteoclasts and the inhibitory 
effect of calcitonin on active osteoclasts reproduction. The 
term ( )y t τ−  represents the number of active osteoclasts at 

time t τ−  and the term ( )z t τ−  represents the number of 
active osteoblasts at time t τ− .  The last term represents 
the removal rate of active osteoclasts from the system. 

3 4 2, ,c c d  and 2m  are positive constants. 
 Finally, osteoblasts are bone forming cells that derived 

from the mesenchymal stem cells [17]. The derivation of 
osteoblasts involves many factors such as fibroblast growth 
factor (FGF), Insulin-like growth factor-I (IGF-
I),transforming growth factor-beta (TGF-beta), PTH 
including CT [18]. It has been observed that CT enhances 

osteoblastic bone formation [19], [20]. The dynamics of the 
osteoblastic population is then assume to have the form   

        ( )5 6
3

3

c c xdz z t d z
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= − − 
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                     (6) 

where the first term on the right-hand side of (6) represents 
the stimulating effect of CT on the reproduction of active 
osteoblasts. The last term is the removal rate of active 
osteoblasts from the system. 5 6 3, ,c c d  and 3m  are positive 
constants. Therefore, our delay-differential equations model 
of bone remodeling process, therefore, consists of (4)-(6).
   

III. HOPF BIFURCATION ANALYSIS 
 In order to investigate the possibility of periodic 
dynamics in our system of (4)-(6), we now assume that 
( ), ,S S Sx y z  is a non washout steady state of the system (4)-
(6).  

Letting , ,S Su x x v y y= − = − Sw z z= − , we will be led 
to the following linearized system of (4)-(6)  

                            S

u u
v J v
w w

   
   =   
   
   

     (7)                    

where SJ  is the corresponding Jacobian matrix evaluated at 
( ), ,S S Sx y z , namely  
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For simplicity, we introduce new parameters by letting   
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 Then, the characteristic equation of SJ  can be written 
as 
          ( ) ( )3 2 2 0F a b c e λτλ λ λ λ −≡ + + + =                (9) 

According to the Hopf bifurcation theory, for a periodic 
solution to exist, it is necessary that (9) has a pair of purely 
imaginary complex roots iλ ω= ±  for some value of τ . In 
order that such a pair can be found, one must have 

( ) 0F iω = , that  is,   
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       ( ) ( ) ( ) ( )3 2 2 0ii a i b c i e ω τω ω ω −+ + + =               (10) 
Equating real and imaginary parts on the left of (10) to 

zero, we obtain the following equations: 
                  ( )2 sin 2a b cω ω ωτ− =          (11) 

                          ( )3 cos 2cω ω ωτ=           (12) 
By squaring both sides of (11) and (12), and then 

adding, we obtain 
 ( ) ( )6 2 4 2 2 22 0a ab c bφ ω ω ω ω≡ + − + + =           (13) 

Letting  2β ω= , (13) can be written as 
               ( ) 3 2 0U V Wσ β β β β≡ + + + =                    (14) 

where 2 2 2, 2 ,U a V ab c W b= = − − = . 
Hence, (9) will have a pair of complex solutions, 

iλ ω= ±  provided that (14) has a positive real solution 
2 0β ω= > .  

According to the work of Ruan and Wei [21], for a 
polynomial in the form of (14), the following lemmas are 
obtained and so we state them without proofs. 
 
Lemma 1: The necessary condition for (14) to have a 
positive real root is that 2 3 0.U VΘ ≡ − >  
 
Lemma 2:  If  
                                          0Θ ≥                                     (15) 
then (14) has a positive root if and only if  
                           1 0β >   and    ( )1 0σ β ≤                      (16) 

where  1 3
Uβ − + Θ

≡ . 

Therefore, by the above lemmas, we assume that (15) 
and (16) hold so that (14) has positive roots. Assuming that 
it has three positive roots denoted 1β , 2β  and 3β . Then, 
(13) has three positive roots 
                                    ,    1,2,3.k k kω β= =  
Now, let 0 0τ >  be the smallest of such τ  for which¸ 

.iλ ω= ±  Substituting kω  into (11)-(12) and solving for τ , 
one obtains 

 ( ) ( )2

2

1 21 arcsin
2

j k
k

k kk

jac bc
c

πω
τ

ω ωω
− −

= + 
 

         (17) 

where 1, 2,3,k =  and 1, 2,...j =    
 
Theorem 1: Suppose that 
  
                0,  0a b> >       and      ac b>              (18) 
 
(a) If 0Θ < , then all roots of (9) have nonzero real parts 
for all 0.τ ≥  
 
(b) If             
                 10, 0βΘ ≥ >    and    ( )1 0σ β ≤           (19) 

then all roots of (9) have negative real parts when 
[ )00, ,τ τ∈  where 

                                ( ) ( ){ }0 1 3, 1
min , 0j j

k kk j
τ τ τ

≤ ≤ ≥
= >            (20) 

with ( )j
kτ  defined in (17). 

Proof 
(a) By contradiction, if (9) has a root with zero real part for 
some 0τ ≥ , this implies that (14) has a positive real root. 
By Lemma 1, the necessary condition of this is that 0Θ ≥  
which contradicts the fact that 0Θ < . Therefore, all roots 
of (9) have nonzero real parts for all 0τ ≥ . 
 
(b) For 0τ = , equation (9) is reduced to 
                        3 2 0a c bλ λ λ+ + + =          (21) 
Since the conditions in (18) hold, the Routh-Hurwitz 
criterion then implies that all roots of (9) have negative real 
parts and hence, all roots¸ ( )λ τ  of (9) have negative real 

parts at the point 0τ = . From the continuity of ( )λ τ , all 
roots of (9) will have negative real parts for values of τ  in 
some open interval containing 0τ = . Therefore, all roots of 
(9) have negative real parts for positive values of [ )0, cτ τ∈  
for some 0.cτ >  

However, cτ  is defined by (20) to be the minimum of 

all the positive ( )j
kτ τ=  where ( )j

kτ  is defined as in (17). 
Hence, 0τ  is the minimum of such positive τ 's for which 
the real parts of some roots of (9) vanish, provided that (19) 
holds. Thus, 0cτ τ= , which completes the proof. 

Theorem 1 implies that if (19) is satisfied and (18) 
holds, the steady state ( ), ,S S Sx y z  of our system of (4)-(6) 

is stable for some values of [ )00,τ τ∈ . At 0τ τ= , 

( )( )Re 0λ τ =  by the definition of  0τ  and hence the 

stability of the steady state ( ), ,S S Sx y z  is lost at 0τ τ= . In 
order for a Hopf bifurcation to occur, and hence a periodic 
solution of our system of (4)-(6) may be expected, we still 
need to show that  

                        
( )( )

( )
0

Re
0

d
d

τ τ

λ τ
τ

=

≠  

which is done in the next theorem. 
 
Theorem 2 Suppose that condition (19) in Theorem 1 
holds, then iλ ω= ±  is a pair of purely imaginary roots of 
(9). Moreover, 
 

                              
( )( )

( )
0

Re
0

d
d

τ τ

λ τ
τ

=

≠          (22) 

provided that 
                                      ( )0 0σ β′ ≠           (23) 

where  
0

2
0 0 0,  .k τ τβ ω ω ω == =  
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Proof 
The first part of this theorem is an immediate consequence 
of Theorem 1 and the definition of 0τ . In order to prove 

that 
( )( )

( )
0

Re
0

d
d

τ τ

λ τ
τ

=

≠ , let us consider (9),  

                ( ) 3 2 2 0F a b c e λτλ λ λ λ −= + + + =  
Then,  
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(13) implies that                            
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Hence, 
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Re 0d
d

τ τ

λ
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−
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 and the proof is complete. We 

thus have the following result. 

Theorem 3 If (19) holds, then a periodic solution occurs in 
our model equations (4)-(6) for a positive time delay 0τ τ=  
given by (20) provided (23) holds. 

IV. NUMERICAL INVESTIGATION 
 In order to support our theoretical prediction, a 
computer simulation of the system (4)-(6) is carried out 
here by using the Runge-Kutta-Fehlberg Method. By 
choosing parameters to satisfy the conditions in Theorem 3, 
the solution trajectory projected onto the (x,y)-plane, (x,z)-
plane and (y,z)-plane are as shown in Fig. 1 tends to a limit 
cycle as theoretically predicted. The corresponding time 
courses of the CT concentration, the number of active 
osteoclasts and the number of active osteoblasts are as 
shown in Fig. 2, showing a periodic behavior as 
theoretically predicted.  

V. EFFECT OF ESTROGEN SUPPLEMENTS 
Estrogen is a primary female sex hormone which is 

mainly produced by the ovary. It plays an important role in 
woman’s reproductive process, the growth and maturation 
of bone, the regulation of bone turnover as well as 
maintaining the balance between the activities of 
osteoclasts and osteoblasts in bone remodeling process 
[22].  

In postmenopausal women, estrogen deficiency is 
expected. Several researchers found that when estrogen 
deficiency occurs there is an increase in the activation 
frequency of new bone remodeling units and an increase in 
remodeling imbalance, resulting from the increase of 
osteoclastic formation which enhances bone resorption, 
leading to osteoporosis [23]-[27]. 

Estrogen replacement therapy has been accepted that it 
can prevent menopausal bone loss and reduces the risk of 
fracture [23]-[26]. In 1998, Kanatani [24] and Riggs [26] 
found that estrogen inhibits the activity of osteoclastic cells. 
Moreover, Prestwood et al. [23] and Albright et al. [25] 
observed the decrease in the values of biochemical markers 
of bone turnover due to the short-term estrogen supplement. 
We then investigate the effects of estrogen therapy by 
modify the model (4)-(6). Assuming that estrogen remains 
effective in the human body accumulatively over a long 
enough period so that daily intake of estrogen can be taken 
as equivalent to continuous application of the steroid, all 
through the time period T∆ , during which time the model 
equations then become 

1 2
1

1

c c ydx d x
dt m y

 +
= − 

+ 
                     (24)  

( ) ( )4
3 22

2
C

c xdy c y t z t d y m y
dt m x

τ τ
  

= − − − − −  
+   

      (25) 

( )5 6
3

3

c c xdz z t d z
dt m x

τ
 +

= − − 
+ 

                                      (26)  
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Fig.1 A computer simulation of the system (4)-(6) with 1 2 3 4 5 6 1 2 30.1, 0.5, 0.04, 0.07, 0.014, 0.0017, 3, 5, 2,c c c c c c m m m= = = = = = = = =  

( )1 2 30.1, 0.02, 0.004, 3, 0 0.5,d d d xτ= = = = = ( )0 0.5,y =  and ( )0 0.5z = . The solution trajectory projected onto the (x,y)-plane, (x,z)-
plane and (y,z)-plane showing a periodic behavior as theoretically predicted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 The corresponding time course of a) CT concentration (x) above the basal level, b) the number of active osteoclasts and c) the number of 
active osteoblasts of the system (4)-(6) with 1 2 3 4 5 6 1 2 30.1, 0.5, 0.04, 0.07, 0.014, 0.0017, 3, 5, 2,c c c c c c m m m= = = = = = = = =  

( )1 2 30.1, 0.02, 0.004, 3, 0 0.5,d d d xτ= = = = = ( )0 0.5,y =  and ( )0 0.5z =  showing a periodic behavior as theoretically predicted.
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Fig. 4 shows a computer simulation of the system (24)-
(26) where the term Cm y−  is kept in (25) as a single pulse 
every period of 28 days.  

Fig. 5 shows a computer simulation of the system (24)-
(26) where the term Cm y−  is kept in (25) for a duration of 

T∆ = 2 days, every period of 28 days.  

Fig. 5 shows a computer simulation where the term 
Cm y−  is kept in (25) for a duration of T∆  = 4 days, every 

period of 28 days.  
      
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 A computer simulation of the system (24)-(26) with 1 2 3 4 5 6 1 2 30.1, 0.5, 0.04, 0.07, 0.014, 0.0017, 3, 5, 2,c c c c c c m m m= = = = = = = = =  

( )1 2 30.1, 0.02, 0.004, 5, 0 0.5,d d d xτ= = = = = ( )0 0.5,y = ( )0 0.5z = , with the effect of estrogen administration 0.005Cm = , administered 
every 28 days with as  a single burst initiated at the time t = 10,000. 
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Fig.4 A computer simulation of the system (24)-(26) with 1 2 3 4 5 6 1 2 30.1, 0.5, 0.04, 0.07, 0.014, 0.0017, 3, 5, 2,c c c c c c m m m= = = = = = = = =  

( )1 2 30.1, 0.02, 0.004, 5, 0 0.5,d d d xτ= = = = = ( )0 0.5,y = ( )0 0.5z = , with the effect of estrogen administration 0.005Cm = , administered 

every 28 days with 2T∆ =  days initiated at the time t = 10,000.  
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Fig.5 A computer simulation of the system (24)-(26) with 1 2 3 4 5 6 1 2 30.1, 0.5, 0.04, 0.07, 0.014, 0.0017, 3, 5, 2,c c c c c c m m m= = = = = = = = =  

( )1 2 30.1, 0.02, 0.004, 5, 0 0.5,d d d xτ= = = = = ( )0 0.5,y = ( )0 0.5z = , with the effect of estrogen administration 0.005Cm = , administered 

every 28 days with 4T∆ =  days initiated at the time t = 10,000. 
 
 

VI. CONCLUSION 
The model developed by Rattanakul and 

Rattanamongkonkul [12] is modified to incorporate the 
time delay which has been observed in the clinical 

evidences [5]. The model is then analyzed by using Hopf 
bifurcation theorem [28]-[33]. The conditions on the system 
parameters for which a periodic behavior observed in the 
pulsatile secretion of CT [34] exists are then derived. 
Computer simulation of the model is then carried out. Both 
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theoretical and numerical results show that the periodic 
behaviour can be exhibited by our model which closely 
resembles to the serum level of CT that has been observed 
clinically in [34]. Moreover, the effects of estrogen 
supplements are then investigated numerically.  
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