
 

 

  

Abstract—The contribution studies prediction of the given semi-

batch reactor using multilayer feed-forward neural networks. The two 

prediction approaches are tested – signal prediction approach and 

system prediction methodology. The first approach is commonly 

applied in time series prediction, while the input-output models in the 

second methodology are used for example in the control tasks. 

Furthermore, the resulting predictor is used for the model predictive 

control of the reactor in order to test performance of the developed 

method. 

 

Keywords— Artificial neural network, chemical reactor, 

prediction, predictive control.  

I. INTRODUCTION 

REDICTION of nonlinear and complex systems can be 

performed by various methods. One of them is 

simplification and linearization that leads to linear models [1, 

2]. Some authors use wavelet filtering in order to divide 

stochastic and deterministic parts that are modeled separately 

[4, 5].  Javadi et al. and Phaiboon present successful 

application of fuzzy logic to prediction [6, 7]. However, 

probably the most popular approach in these cases is based on 

artificial neural networks. 

Artificial neural networks are commonly used in various 

fields, for example weather forecasting [8], time series 

prediction of financial data [9, 10], biology and medicine [11, 

12], power engineering [13] and process control [14, 15]. 

There is lot of types of artificial neural networks, but not all of 

them are usable for prediction. The most common are 

multilayer feed-forward neural networks [8, 11, 16, 17]. Fairly 

wide group of artificial neural networks belongs to recurrent 

neural networks [18, 19]. Very popular due to their fast 

training are radial basis function neural networks [18, 19]. Al-

Shayea and El-Refae use generalized regression neural 

network for prediction of Spanish banks data [16]. There are 
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also other less frequent methods such as fuzzy-neural networks 

[20], adaptive linear networks [21], unsupervised Kohonen 

neural networks [22, 23]. Interesting generalization of neural 

networks, which is achieved by using multi-argument and 

learnable functions, bring functional networks [24]. 

Generally, it can be distinguished between two main 

approaches in the prediction. The first approach deals with the 

predicted signal only. It means that the predicted value must be 

predicted from known older values of the same signal. This 

approach is very common in financial engineering and it is 

usually denoted as a signal prediction or time series prediction 

(in case of time series). 

The second approach uses other signals (usually system 

inputs) for the prediction and it is commonly called system or 

process prediction. This approach is widely used in the process 

industry, especially in the control (predictive control). 

In this contribution both approaches to prediction are 

studied and the multilayer feed-forward neural networks are 

tested on the prediction of temperature in the chemical semi-

batch reactor. The motivation of this work comes from our 

long time research focused on predictive control of chemical 

reactors. Usually, the predictor must be adapted during the 

function, because of its inaccuracy or changing parameters of 

the system to be controlled. The goal of the presented work is 

to design and test the proper predictor based on multilayer 

feed-forward neural network that would not require adaptation 

during control of the given reactor. 

The paper is structured along these lines: First, the chemical 

semi-batch reactor is introduced. After that, artificial 

multilayer feed-forward neural networks are explained briefly. 

The following part describes the predictors design, their 

testing and validation. Then, the resulting predictors are 

compared and discussed. This chapter is followed by the 

explanation of the model predictive control of the given semi-

batch reactor. The final part of the paper contains few 

concluding remarks. 

II. CHEMICAL SEMI-BATCH REACTOR 

In this paper, a semi-batch reactor model is used to study the 

prediction abilities of multilayer feed-forward neural networks 

and their applicability in the model predictive control. The 

model input data comes from a real process - the chromium 

waste recycling process [15]. The task of the predictor is to 
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predict the in-reactor temperature. 

Let us consider a single input – single output (SISO) system 

of the chemical exothermic semi-batch reactor, which is 

described by the following mathematical model: 
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where m is the total weight of the reaction components in 

the reactor, a is the mass concentration of the reaction 

component in the reactor, c = 4500 J
.
kg

.
K

-1
 is the specific heat 

capacity of the reactor content, T is the temperature of the 

reactor content. FI, TI = 293.15 K and cI = 4400 J
.
kg

.
K

-1
 is the 

reaction component input mass flow rate, the temperature and 

the specific heat capacity. FC = 1 kg
.
s

-1
, TCI = 288.15 K, TC, cC 

= 4118 J
.
kg

.
K

-1
 and mC = 220 kg is the cooling water mass 

flow rate, the input temperature, the output temperature, the 

specific heat capacity and the weight of the cooling water in 

the cooling system of the reactor, respectively. 

Other constants: A = 219.588 s
-1

, E  =  29967.5087  J
.
mol

-1
, 

R  =  8.314  J
.
mol

-1.
K

-1
, ∆Hr = 1392350 J

.
kg

-1
, K = 

200 kg
.
s

-3.
K

-1
 and S = 7.36 m

2
 is the effective heat-transfer area 

[15]. 

 

III. MULTILAYER FEED-FORWARD NEURAL NETWORKS  

Multilayer feed-forward neural networks (MFFNNs) are 

very often called backpropagation networks because of the 

typical training algorithm. Some authors prefer name 

multilayer perceptrons (MLP) [25, 26], because MFFNNs 

have been developed by generalization from Rosenblatt’s 

perceptron with binary transfer function. This structure is 

depicted in the Fig. 1. The uin stands for input value, the N is 

number of inputs and y is the output of the Rosenblatt’s 

perceptron. 

 

 
Fig. 1 Rosenblatt’s perceptron  

 

In MFFNN the signals flow only in the one direction (from 

the input to the output). All neurons are structured into layers 

and, typically, all neurons in the specific layer use same 

transfer function. In contrast to Rosenblatt’s perceptron 

multilayer feed-forward neural networks use various transfer 

functions, usually continuous (e.g. linear, hyperbolic tangent, 

sigmoidal functions, etc.). Example of the two-layer feed-

forward neural network is shown in the Fig. 2. The uin is the 

input data vector, W is weighting matrix, b stands for bias 

vector, S is transfer function and x is output of internal layer. 

 

 
Fig. 2 Example of the two-layer feed-forward neural network 

 

By applying of Kolmogorov theorem it has been proved 

[27] that two-layer MFFNN (with one hidden layer) can 

approximate any function with certain accuracy while non-

polynomial transfer function in the hidden layer is used. This 

methodology is adopted in the paper. 

IV. PREDICTION 

As was already mention hereinbefore, there were studied 

two approaches of the prediction: signal prediction and system 

prediction. For all simulations in this paper MATLAB with 

Neural Network Toolbox, Optimization Toolbox and Simulink 

were used. 

In the first case the artificial neural network used five past 

values of the predicted signal as the input vector and predicted 

only one step ahead. In other words, when it was needed the 

MFFNN repeatedly used its own predictions as inputs. Thus, 

in the input (zero) layer of the artificial network were five 

neurons and the output layer consisted one neuron. 
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Fig. 3 Scheme of MFFNN with 5 input neurons (net1) 

 

As is depicted in the Fig. 3, the network had five neurons in 

the hidden layer. This number was obtained by many 

experiments as sufficient for this case. The hidden layer used 

hyperbolic tangent sigmoid as the transfer function, while the 

output layer employed linear transfer function. 

Three simulation results from our previous work [15] were 

chosen as the training and testing data. Only one simulation 

data were used for training (furthermore they will be 

symbolized as data1), whilst the rest two simulation results 

served as testing group (data2 and data3). The training was 

performed using built-in Matlab/Neural Network Toolbox 

Levenberg-Marquardt backpropagation algorithm. This 

artificial neural network will be in the following text denoted 

as net1. 

After the network training, the obtained predictor was tested 

to all three signals (Fig. 5, 7, 9). For better comparability the 

prediction error for all testing signals was computed (Fig 6, 8, 

10). 

In order to compare influence of the input signal knowledge 

to the prediction quality, the second predictor was also tested. 

This predictor used not only the predicted signal old values but 

also old values of the system input. In this case it was the 

chromium sludge dosing speed. Thus the multilayer feed-

forward neural network involved ten neurons in the input layer 

(see Fig. 4). As well as in the previous approach, the hidden 

layer used hyperbolic tangent sigmoid as the transfer function, 

while the output layer employed linear transfer function. This 

artificial neural network will be in the following text denoted 

as net2. 

With the intention of obtaining comparable results the same 

methodology as in case of net1 was used. It means that same 

training data, the same training algorithm and same testing 

data were applied. Results are depicted in Fig. 11-16. 

 

 
Fig. 4 Scheme of MFFNN with 10 input neurons (net2)  
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Fig. 5 Net1 test on the training data (data1) 
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Fig. 6 Prediction error of net1 for the training data (data1)  
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Fig. 7 Net1 test on the testing data (data2)  
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Fig. 8 Prediction error of net1 for the testing data (data2) 
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Fig. 9 Net1 test on the testing data (data3) 
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Fig. 10 Prediction error of net1 for the testing data (data3) 
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Fig. 11 Net2 test on the training data (data1) 
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Fig. 12 Prediction error of net2 for the training data (data1) 
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Fig. 13 Net2 test on the testing data (data2) 
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Fig. 14 Prediction error of net2 for the testing data (data2) 
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Fig. 15 Net2 test on the testing data (data3) 
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Fig. 16 Prediction error of net2 for the testing data (data3) 

 

V. COMPARISON OF PREDICTORS 

For better comparison two prediction quality criterions were 

defined. The first criterion C1 describes total sum of absolute 

values of prediction errors relative to number predictions, 

whilst the second criterion function C2 characterizes total sum 

of squares of prediction errors relative to number predictions. 

The C1 criterion gives same importance to all errors. On the 

other hand C2 emphasizes higher errors and lower prediction 

errors are suppressed. 
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N stands for number of predictions (length of the predicted 

signal), t is target (original) signal, p denotes predicted signal 

and i is number of the prediction. 

 

Table I. Prediction quality criterions 

 net1 net2 

 C1 C2 C1 C2 

data1 0.0024 4.529e-05 9.828e-05 2.218e-06 

data2 0.0133 0.0013 0.0115 0.0107 

data3 0.0565 0.0806 0.0155 0.0080 

 

As can be seen from the results, the prediction is in both 

cases very good. However, if the best method should be 

judged, the second approach (net2) must be chosen, because it 

provided much better results with the one and only exception 

(criterion C2 for data2). Therefore, this predictor will be tested 

in the model predictive controller of the given reactor in the 

following text. 

VI. MODEL PREDICTIVE CONTROL 

The selected predictor net2 was applied into model 

predictive controller (MPC) introduced in our previous paper 

[15]. The controller uses explicit predictor and optimization 

box based on the Levenberg-Marquart method. The criterion 

function J to be optimized is defined along these lines: 
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ckk γγγ −−= )1()(  (8) 

 

where the λ, ρ and γ parameters determine the contribution 

that the particular sum has on the performance index. The γ 

parameter is decreasing during the control. The speed of the 

change is defined by the (8) using parameter γc. In other 
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words, the third sum in the beginning of the control has the 

maximum value, and after initial phase it equals to zero. The 

N1, N2 and Nu define horizons over which the tracking error 

and the control increments are evaluated. The ut variable is the 

tentative control signal; yr is the desired response and ŷ  is the 

predicted value of the temperature. Index k symbolizes step of 

the control (sample time of the control was 60s). 

The settings of the controller are adopted from the [15] in 

order to obtain comparable result (see Table II). These settings 

will be in the following text denoted as controller1. However, 

with the intention of revealing the net2 predictor abilities the 

other controller settings were tested. The all controllers used 

same horizons N2 = Nu = 8 and parameter N1, = 1.  

As can be seen from Fig. 17, the net2 predictor based MPC 

controller successfully controls temperature in the given 

chemical reactor. The dosing time was 3060 s and maximum 

in-reactor temperature reached 370.5 K. The decreasing 

temperature of the reaction mixture after the time 3060 s is 

caused by the fact that the reactor works in semi-batch cycle. 

In other words, after consumption of the all dosing batch 

(chromium sludge), the control is finished and the operator 

must wait until the reactor content cools down. The Fig. 18 

shows course of the control signal (the dosing speed of the 

chromium sludge). The Fig. 19 depicts the development of the 

total mass of the in-reactor mixture. The speed of the reaction 

is illustrated in the Fig. 20, where can be seen steep changes of 

the chromium sludge concentration. The temperature of the 

cooling water in the cooling system was also observed in our 

simulations (Fig. 21). 

 

Table II. MPC controller settings 

 λ ρ γ γc 

controller1 1000 100000 10000 200 

controller2 1000 100000 10000 100 

controller3 1000 1 600000 10000 

controller4 1000 100000 600000 10000 

controller5 1000 100000 600000 18000 
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Fig. 17 The in-reactor temperature obtained using controller1 
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Fig. 18 The chromium-sludge dosing obtained using controller1 
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Fig. 19 The mass of the reaction mixture obtained using controller1 
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Fig. 20 The in-reactor chromium sludge concentration obtained using 

controller1 

 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 38



 

 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

290

295

300

305

310

315

320

time [s]

T
c
 [
K
]

 
Fig. 21 The temperature in the cooling system obtained using 

controller1 
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Fig. 22 The in-reactor temperature obtained using controller2 
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Fig. 23 The chromium-sludge dosing obtained using controller2 
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Fig. 24 The in-reactor temperature obtained using controller3 
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Fig. 25 The chromium-sludge dosing obtained using controller3 
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Fig. 26 The in-reactor temperature obtained using controller4 
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Fig. 27 The chromium-sludge dosing obtained using controller4 
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Fig. 28 The in-reactor temperature using controller5 
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Fig. 29 The chromium-sludge dosing obtained using controller5 

 

The Fig. 22 – 29 show the influence of various settings of 

the controller to the control result. Fig. 22 - 23 demonstrate 

that even small change of one parameter leads to 

unsatisfactory overshoot of the temperature. This behavior 

needs to be removed, but it leads to longer dosing times (Fig. 

24 - 29). The controller3 had the dosing time 3180 s and 

oscillating control signal FI (Fig. 24 - 25). By increasing the ρ 

parameter of the controller the control signal becomes 

smoother, however the temperature is still fluctuating around 

the reference value and the dosing times are still longer (Fig. 

26 and 29).   

VII. CONCLUSION 

This paper continues and advances our previous work 

published in [28] and [15]. The artificial neural network based 

predictor developed in this paper offers comparable results as 

three-layer feed forward neural network used earlier. The 

proposed predictor is simpler and faster with equivalent 

accuracy. The simulations of the various settings of the model 

predictive controller showed that even good and exact 

predictor may suffer when the controller is not properly set.  
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