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Abstract—An approach to schedule development in project man-
agement is developed within the framework of idempotent algebra.
The approach offers a way to represent precedence relationships
among activities in projects as linear vector equations in terms of an
idempotent semiring. As a result, many issues in project scheduling
reduce to solving computational problems in the idempotent alge-
bra setting, including linear equations and eigenvalue-eigenvector
problems. The solutions to the problems are given in a compact
vector form that provides the basis for the development of efficient
computation procedures and related software applications.
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I. INTRODUCTION

The problem of scheduling a large-scale set of activities
is a key issue in project management [1], [2]. There is a
variety of project scheduling techniques developed to handle
different aspects of the problem. The techniques range
from the classical Critical Path Method and the Program
Evaluation and Review Technique marked the beginning of
the active research in the area in 1950s, to more recent
approaches including methods and techniques of idempotent
algebra (see, e.g., [3]–[9] and references therein).

We describe a new computational approach to project
scheduling problems, which is based on implementation and
further development of models and methods of idempotent
algebra in [8]–[11]. The approach offers a useful way to
represent different types of precedence relationships among
activities in a project as linear vector equations written in
terms of an idempotent semiring. As a result, many issues in
project scheduling reduce to solving computational problems
in the idempotent algebra setting, including linear equations
and eigenvalue-eigenvector problems. We give solutions to
the problems in a compact vector form that provides a basis
for the development of efficient computation algorithms and
related software applications.

The paper extends previous research presented in [12]
and is organized as follows. We start with a brief introduc-
tion to idempotent algebra, that provides main definitions
and notation, and then outlines basic results underlying
subsequent applications. Furthermore, examples of actual
problems in project scheduling are considered. We show how
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to formulate the problems in terms of idempotent algebra,
and present related algebraic solutions. To illustrate the
application of the results, numerical examples are given.

II. DEFINITIONS AND NOTATION

We start with a brief introduction to idempotent algebra
based on [8]–[11]. Further details on the topic can be found
in [3]–[7], [13]–[16].

A. Idempotent Semifield

Consider a set X that is equipped with two operations ⊕
and ⊗ called addition and multiplication, and that has neutral
elements 0 and 1 called zero and identity. We suppose that
〈X,0, 1,⊕,⊗〉 is a commutative semiring, where addition
is idempotent and multiplication is invertible. Since the
nonzero elements in X form a group under multiplication,
this semiring is often referred to as the idempotent semifield.

The idempotent property is given by the equality

x⊕ x = x

that is true for all x ∈ X. Let X+ = X \ {0}. For each
x ∈ X+, there exists its inverse x−1 such that x⊗ x−1 = 1.

The power notation is defined as usual. For any x ∈ X+

and integer p > 0, we have x0 = 1, 0p = 0, and

xp = xp−1 ⊗ x = x⊗ xp−1, x−p = (x−1)p.

It is assumed that in the semiring, the integer power can
naturally be extended to the case of rational exponents.

In what follows, the multiplication sign ⊗ is omitted
as is usual in conventional algebra. The power notation
is thought of as defined in terms of idempotent algebra.
However, when writing exponents, we routinely use ordinary
arithmetic operations.

Since the addition is idempotent, it induces a partial order
≤ on X according to the rule: x ≤ y if and only if x⊕y = y.
With this definition, it is easy to verify that both addition and
multiplication are isotonic, and that

x ≤ x⊕ y, y ≤ x⊕ y.

The relation symbols are understood below in the sense
of this partial order. Note that according to the order, we
have x ≥ 0 for any x ∈ X.

As an example of the semirings under study, one can
consider the idempotent semifield of real numbers

Rmax,+ = 〈R ∪ {−∞},−∞, 0,max,+〉.
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The semiring has neutral elements 0 = −∞ and 1 = 0.
For each x ∈ R, there exists its inverse x−1, which is equal
to −x in ordinary arithmetics. For any x, y ∈ R, the power
xy is equivalent to the arithmetic product xy. The partial
order coincides with the natural linear order on R.

We use this semiring as the basis for the development
of algebraic solutions to project scheduling problems in the
subsequent sections.

B. Vector and Matrix Algebra

Vector and matrix operations are routinely introduced on
the basis of the scalar operations. Consider a Cartesian
product Xn with its elements represented as column vectors.
For any two vectors a = (ai) and b = (bi) from X

n, and
a scalar x ∈ X, vector addition and scalar multiplication
follow the rules

{a⊕ b}i = ai ⊕ bi, {xa}i = xai.

A vector with all entries equal to zero is called the zero
vector and denoted by 0.

A vector is regular if it has no zero elements.
With the above operations, the set of vectors Xn forms a

semimodule over an idempotent semifield.
A geometric illustration for the operations in R

2
max,+ is

given in Fig. 1.
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Fig. 1. Vector addition (top) and scalar multiplication (bottom) in
R
2
max,+.

Idempotent addition of two vectors in R
2
max,+ follows

the “rectangle rule” that defines the sum as a diagonal of
a rectangle formed by the coordinate axes together with

lines drawn through the end points of the vectors. Scalar
multiplication of a vector is equivalent to shifting the end
point of the vector in the direction at 45◦ to the axes.

As usual, a vector b ∈ X
n is said to be linearly de-

pendent on vectors a1, . . . ,am ∈ X
n if there are scalars

x1, . . . , xm ∈ X such that

b = x1a1 ⊕ · · · ⊕ xmam.

In particular, b is collinear with a when b = xa.
Consider a set of vectors a1, . . . ,am ∈ Xn. The set of all

linear combinations

A = {x1a1 ⊕ · · · ⊕ xmam|x1, . . . , xm ∈ X}

is referred to as the linear span of the vectors.
Specifically, the linear span of vectors a1 and a2 in

R
2
max,+ has the form of a strip bounded by the lines drawn

through the end points of the vectors (see Fig. 2).
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Fig. 2. A linear span of two vectors in R2
max,+.

For any column vector x = (xi) ∈ X
n
+, we introduce

a row vector x− = (x−i ) with elements x−i = x−1i when
xi 6= 0, and x−i = 0 otherwise.

We define the distance between any two regular vectors
a and b with a metric

ρ(a, b) = b−a⊕ a−b.

When b = a we have ρ(a, b) = 1, where 1 is the
minimum value the metric ρ can take.

Specifically, in R
n
max,+, we have 1 = 0, whereas the

metric takes the form

ρ(x,y) = max
1≤i≤n

|xi − yi|,

and thus coincides with the classical Chebyshev metric.
For any conforming matrices A = (aij), B = (bij),

and C = (cij) with entries in X, matrix addition and
multiplication together with multiplication by a scalar x ∈ X
are performed in accordance with the formulas

{A⊕B}ij = aij ⊕ bij , {BC}ij =
⊕
k

bikckj ,

{xA}ij = xaij .

A matrix with all entries equal to zero is called the zero
matrix and denoted by 0.
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A matrix is regular if it has no zero rows.
Consider the set of square matrices X

n×n. A matrix is
diagonal if its off-diagonal entries are zero. The diagonal
matrix I = diag(1, . . . ,1) is the identity matrix.

A matrix is reducible if it can be put in a block triangular
form by simultaneous permutations of rows and columns.
Otherwise, the matrix is irreducible.

For any matrix A 6= 0 and integer p > 0, we have

A0 = I, Ap = Ap−1A = AAp−1.

The trace of a matrix A = (aij) is defined as

trA =
n⊕
i=1

aii.

C. Linear Operators and Linear Equations

Any matrix A ∈ X
m×n defines a mapping from the

semimodule Xn to the semimodule Xm. Since for any vectors
x,y ∈ Xn and scalar α ∈ X, it holds that

A(x⊕ y) = Ax⊕Ay, A(αx) = αAx,

the mapping possesses the property of linear operators.
Suppose A,C ∈ Xm×n are given matrices, and b,d ∈ Xm

are given vectors. A general linear equation in the unknown
vector x ∈ Xn is written in the form

Ax⊕ b = Cx⊕ d.

Note that due to the lack of additive inverse, one cannot
put the equation in the form where all terms involving the
unknown x are brought to one side of the equation while
those without x go to another side.

Many practical problems reduce to solution of the follow-
ing particular cases of the general equation

Ax = d, Ax⊕ b = x.

By analogy with linear integral equations, the above two
equations are respectively referred to as that of the first kind
and that of the second kind. The second-kind equations

Ax = x Ax⊕ b = x

are also known in the literature as homogeneous and non-
homogeneous Bellman equations.

Some actual problems involve solution of inequalities of
the first and second kinds in the form

Ax ≤ d Ax⊕ b ≤ x.

III. PRELIMINARY RESULTS

Now we outline some recent results from [8]–[11] that
underlie subsequent applications of idempotent algebra to
project scheduling problems.

A. The First-Kind Equation and Inequality

Given a matrix A ∈ X
m×n and a vector d ∈ X

m, the
problem is to find all solutions x ∈ Xn of the equation and
inequality given by

Ax = d, (1)
Ax ≤ d. (2)

A solution x0 to equation (1) is maximal if x0 ≥ x for
all solutions x of (1).

We present solution of equation (1) based on the analysis
of the distance between vectors in Xm. The solution involves
the introduction of a new symbol

∆ = (A(d−A)−)−d

to represent a residual quantity associated with (1).
We start with a result that gives the distance from the

vector d to the linear span of columns in the matrix A

A = {Ax|x ∈ Xn}.

Lemma 1: Suppose A ∈ X
m×n and d ∈ X

m are regular
matrix and vector. Then it holds that

min
x∈Xn

ρ(Ax,d) = ∆1/2

with the minimum attained at

x = ∆1/2(d−A)−.

Fig. 3 presents examples of mutual arrangement of a
vector d and the linear span A of columns a1 and a2 in
a matrix A. In the case when ∆ > 1, the minimum distance
to A is attained at the vector

y = ∆1/2A(d−A)−.

Furthermore, we consider sets

A1 = {Ax|Ax ≤ d,x ∈ Xn},
A2 = {Ax|Ax ≥ d,x ∈ Xn}.

Lemma 2: Suppose A ∈ X
m×n and d ∈ X

m are regular
matrix and vector. Then it holds that

min
Ax≤d

ρ(Ax,d) = min
Ax≥d

ρ(Ax,d) = ∆,

where the minimums are respectively attained at

x1 = (d−A)−, x2 = ∆(d−A)−.

A geometric interpretation in R
2
max,+ is given in Fig. 4.

Note that if ∆ > 1 then the minimum distance from d to
A1 and A2 is attained at respective vectors

y1 = A(d−A)−, y2 = ∆A(d−A)−.

The next statement is a consequence of the above results.
Theorem 1: Suppose A ∈ Xm×n and d ∈ Xm are regular

matrix and vector. Then the following statements hold.
(a) A solution of equation (1) exists if and only if ∆ = 1.
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Fig. 3. A linear span A and a vector d in R2
max,+ when ∆ = 1 (top)

and ∆ > 1 (bottom).

(b) If solvable, the equation has the maximum solution

x = (d−A)−.

Suppose that ∆ > 1. In this case equation (1) has no
solution. However, we can define a quasi-solution to (1) as
a solution of the equation

Ax = ∆1/2A(d−A)−,

which is always exists and takes the form

x0 = ∆1/2(d−A)−.

The quasi-solution yields the minimum deviation between
the vectors y = Ax and the vector d in the sense of
the metric ρ. When ∆ = 1, the quasi-solution obviously
coincides with the maximum solution.

Consider the problem of finding two vectors x1 and x2

that provide the minimum deviation between both sides of
(1), while satisfying the respective inequalities

Ax ≤ d, Ax ≥ d.

A solution to the problem is readily given by Lemma 2.
Finally, we present the following statement.
Lemma 3: For any matrix A ∈ Xm×n and vector d ∈ Xm,

the solution to inequality (2) is given by

x ≤ (d−A)−.
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The general solution to equation (1) with arbitrary matrix
A and vector d is considered in [8], [9].

B. Second-Kind Equations and Inequalities

Suppose a matrix A ∈ X
n×n and a vector b ∈ X

n are
given, whereas x ∈ Xn is an unknown vector. We examine
the equation and inequality that have the form

Ax⊕ b = x, (3)
Ax⊕ b ≤ x. (4)

To solve equation (3) we propose an approach based on
the use of a function Tr(A) that takes each square matrix A
to a scalar according to the definition

Tr(A) =
n⊕

m=1

trAm.

The function is exploited to examine whether the equation
has a unique solution, many solutions, or no solution, and
so may play the role of the determinant.

The solution involves evaluation of matrices A∗, A×, and
A+. The matrices A∗ and A× are given by

A∗ = I ⊕A⊕ · · · ⊕An−1, A× = A⊕ · · · ⊕An.

Let a×i be column i in A×, and a×ii be its diagonal
element, i = 1, . . . , n. To construct the matrix A+ we take
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the set of columns a×i such that a×ii = 1, and then reduce
it by removing those columns that are linearly dependent
on others. Finally, the columns in the reduced set are put
together to form a matrix A+.

We start with the solution of the homogeneous equation
and inequality in the form

Ax = x, (5)
Ax ≤ x. (6)

The general solutions to the problems in the case of
irreducible matrices are given by the following results.

Lemma 4: Let x be the solution of equation (5) with an
irreducible matrix A. Then the following statements hold.

(a) If Tr(A) = 1, then x = A+v for any vector v.
(b) If Tr(A) 6= 1, then there is only the trivial solution

x = 0.
Fig. 5 gives examples of solutions to homogeneous equa-

tions in R
2
max,+ for some particular matrices A = (a1,a2)

under the condition Tr(A) = 1. On the left picture, the
solution is shown with a thick line drawn through the end
point of the vector a2. The right picture demonstrates the
case when the solution coincides with the linear span of both
columns in the matrix A.

-

6

�
�
�
�
�
�
�
��

�
�
�
�
�
��
�
�
�
�
�
�
���

�
�
�
�
��

a2

a1

x

x1

x2

0
-

6

�
�
�
�
�
�
�
��

?

�
�
�
�
�
�
�











�

a2

a1

x

x1

x2

0

Fig. 5. Examples of solutions for homogeneous equations in R2
max,+.

Lemma 5: Let x be the solution of inequality (6) with an
irreducible matrix A. Then the following statements hold.

(a) If Tr(A) ≤ 1, then x = A∗v for any vector v.
(b) If Tr(A) > 1, then there is only the trivial solution

x = 0.
Fig 6 demonstrates solutions of homogeneous equation (5)

and inequality (6) with a common matrix A.
In the general case of the nonhomogeneous equation and

inequality, we have the following results.
Theorem 2: Let x be the solution of equation (3) with an

irreducible matrix A. Then the following statements hold.
(a) If Tr(A) < 1, then x = A∗b.
(b) If Tr(A) = 1, then x = A∗b⊕A+v for any vector v.
(c) If Tr(A) > 1, then x = 0 provided that b = 0, and

there is no solution otherwise.
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Fig. 6. Examples of solutions for a homogeneous equation (left) and
inequality (right) in R2

max,+.

Lemma 6: Let x be the solution of inequality (4) with an
irreducible matrix A. Then the following statements hold.

(a) If Tr(A) ≤ 1, then x = A∗(b⊕ v) for any vector v.
(b) If Tr(A) > 1, then x = 0 provided that b = 0, and

there is no solution otherwise.

A graphical illustration of the solution to the nonhomo-
geneous equations is given in Fig. 7.
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Related results for the case of arbitrary matrices can be
found in [8]–[10].
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C. Eigenvalues and Eigenvectors

A scalar λ is an eigenvalue of a matrix A ∈ Xn×n if there
is a nonzero vector x ∈ Xn such that

Ax = λx.

Any vector x 6= 0 that satisfies the above equality is an
eigenvector of A, corresponding to λ.

If the matrix A ∈ X
n×n is irreducible, then it has only

one eigenvalue given by

λ =
n⊕

m=1

tr1/m(Am). (7)

The corresponding eigenvectors of A have no zero entries
and take the form

x = A+
λ v,

where Aλ = λ−1A and v is any nonzero vector.
An example of an eigenvalue λ and eigenvector x for a

matrix A = (a1,a2) in R
2
max,+ is given in Fig. 8.
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Fig. 8. An eigenvector x and eigenvalue λ of a matrix A in R2
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We conclude with an extremal property of the eigenvalue
and eigenvectors of irreducible matrices.

Lemma 7: Suppose A is an irreducible matrix with an
eigenvalue λ. Then it holds that

min
x∈Xn

+

ρ(Ax,x) = λ⊕ λ−1

with the minimum attained at any eigenvector of A.
The eigenvalue-eigenvector problem and the above ex-

tremal property in the case of arbitrary matrices are exam-
ined in [8], [9], [11].

IV. APPLICATIONS TO PROJECT SCHEDULING

In this section we show how to apply results presented
above to solve scheduling problems under various constraints
(for further details on the schedule development in project
management see, e.g., [1], [2]).

As the underlying idempotent semiring, we use Rmax,+

in all examples under discussion.

A. Start-to-Finish Precedence Constraints

Consider a project that involves n activities. Activity de-
pendencies are assumed the form of Start-to-Finish relations
that do not allow an activity to complete until some prede-
fined time after initiation of other activities. The scheduling
problem of interest consists in finding the latest initiation
time for all activities subject to given constraints on their
completion time.

For each activity i = 1, . . . , n, denote by xi its initiation
time, and by yi its completion time. Let di be a due date,
and aij be a minimum possible time lag between initiation
of activity j = 1, . . . , n and completion of i.

Given aij and di, the completion time of activity i must
satisfy the relations

yi = di, xj + aij ≤ yi, j = 1, . . . , n.

When aij is not actually given for some j, it is assumed
to be 0 = −∞.

The relations can be combined into one equation in the
unknown variables x1, . . . , xn,

max(x1 + ai1, . . . , xn + ain) = di.

By replacing the ordinary operations with those in Rmax,+

in all equations, we get

ai1x1 ⊕ · · · ⊕ ainxn = di, i = 1, . . . , n.

Furthermore, we introduce a matrix

A =

 a11 . . . a1n
...

. . .
...

an1 . . . ann

 ,

and vectors

d =

 d1
...
dn

 , x =

 x1
...
xn

 .

The scheduling problem under the Start-to-Finish con-
straints leads us to the solution of the equation

Ax = d.

Consider the residual ∆ = (A(d−A)−)−d and suppose
that ∆ = 1 = 0. According to Theorem 1, the equation has
a maximum solution

x = (d−A)−.

If it appears that ∆ > 0, then one can compute approxi-
mate solutions together with corresponding completion times
as follows

x0 = ∆1/2(d−A)−, y0 = Ax0;

x1 = (d−A)−, y1 = Ax1 ≤ d;

x2 = ∆(d−A)−, y2 = Ax2 ≥ d.
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Note that the completion times have their deviation from
the due dates bounded with

ρ(y0,d) = ∆1/2, ρ(y1,d) = ρ(y2,d) = ∆.

Suppose that the due date constraints are not mandatory
and may be adjusted to some extent. As a vector of new due
dates, it is natural to take d′ such that y1 ≤ d′ ≤ y2. In
this case, deviation of the new due dates from the original
ones does not exceed ∆. The minimum deviation ∆1/2 is
achieved when d′ = y0.

As an example, consider a project with a constraint matrix

A =


8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12

 ,

and two due date vectors given by

d1 =


14
11
16
15

 , d2 =


15
15
15
15

 .

Fig. 9 demonstrates a network representation of the pro-
ceedings relations for activities in the project.
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Fig. 9. An activity network with Start-to-Finish precedence relations.

First we examine the equation Ax = d1. We have

(d−1 A)− =


6
4
5
3

 , A(d−1 A)− =


14
11
16
15

 .

Since ∆1 = (A(d−1 A)−)−d1 = 0, the equation has
solutions including the maximum solution

x = (d−1 A)− = (6, 4, 5, 3)T .

Now consider the equation Ax = d2. In this case we get
∆2 = (A(d−2 A)−)−d2 = 4 > 0 and then conclude that
the equation has no exact solutions. However, approximate
solutions can be found as follows

x0 = (9, 5, 6, 5)T , y0 = (17, 13, 17, 17)T ,

x1 = (7, 3, 4, 3)T , y1 = (15, 11, 15, 15)T ,

x2 = (11, 7, 8, 7)T , y2 = (19, 15, 19, 19)T .

B. Start-to-Start Precedence Constraints

Suppose there is a project consisting of n activities and
operating under Start-to-Start precedence constraints that
determine the minimum allowed time intervals between
initiation of activities. The problem is to find the earliest
initiation time for each activity that does not violate these
constraints.

For each activity i = 1, . . . , n, let bi be an early possible
initiation time, and let aij be a minimum possible time lag
between initiation of activity j = 1, . . . , n and initiation of i.
The initiation time xi for activity i is subject to the relations

bi ≤ xi, aij + xj ≤ xi, j = 1, . . . , n,

where at least one must hold as an equality.
We can replace the relations with one equation

max(x1 + ai1, . . . , xn + ain, bi) = xi.

Representation in terms of Rmax,+, gives the scalar equa-
tions

ai1x1 ⊕ · · · ⊕ ainxn ⊕ bi = xi, i = 1, . . . , n.

With the matrix-vector notation

A = (aij), b = (b1, . . . , bn)T , x = (x1, . . . , xn)T

we arrive at a problem that is to solve the equation

Ax⊕ b = x.

Assume the matrix A to be irreducible. It follows from
Theorem 2 that if Tr(A) ≤ 1 = 0 then the equation has a
solution given by

x = A∗b⊕A+v,

where v is any vector of appropriate size.
Consider a project with Start-to-Start relations and ex-

amine two cases, with and without early initiation time
constraints. Let us define a matrix

A =


0 −2 0 0

0 0 3 −1
−1 0 0 −4

2 0 0 0

 ,

and two vectors

b1 = 0, b2 = (1, 1, 2, 1)T .

A graph representation of the precedence relations in-
volved in the project is depicted in Fig. 10.

Let us first calculate the initiation time of activities in
the project when b = b1 = 0 (that is, without early
initiation time constraints imposed). Under this assumption,
the equation becomes homogeneous and takes the form

Ax = x.

The matrix A is irreducible and Tr(A) = 0. Therefore,
the equation has a solution.
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Fig. 10. An activity network with Start-to-Start precedence relations.

Simple algebra gives

A∗ = A× =


0 −2 1 −3
2 0 3 −1
−1 −3 0 −4

2 0 3 0

 .

Note that all diagonal entries in A× are equal to 1 = 0.
However, considering that the first three columns are pro-
portional, we take only one of them to form the matrix

A+ =


−2 −3

0 −1
−3 −4

0 0

 .

The solution to the equation is given by

x = A+v =


−2 −3

0 −1
−3 −4

0 0

v, v ∈ R2
max,+.

Consider the case of the nonhomogeneous equation

Ax⊕ b2 = x.

We calculate the vector

A∗b2 = (3, 5, 2, 5)T ,

and then get

x =


3
5
2
5

⊕

−2 −3

0 −1
−3 −4

0 0

v, v ∈ R2
max,+.

C. Mixed Precedence Relations

Consider a project that has both Start-to-Finish and Start-
to-Start constraints. Let A1 be a given Start-to-Finish con-
straint matrix, d a vector of due dates, and x an unknown
vector of activity latest initiation time. To meet the con-
straints, the vector x must satisfy the inequality

A1x ≤ d.

Furthermore, there are also Start-to-Start constraints de-
fined by a constraint matrix A2. This leads to the equation

A2x = x.

Suppose the equation has a solution x = A+
2 v. Substitu-

tion into the inequality yields

A1A
+
2 v ≤ d.

Application of Theorem 1 gives the maximum solution
to the last inequality in the form v = (d−A1A

+
2 )−. The

solution to the whole problem is then written as

x = A+
2 (d−A1A

+
2 )−.

As an illustration, we evaluate the solution to the problem
under the condition that

A1 =


8 10 0 0

0 5 4 8
6 12 11 7
0 0 0 12

 ,

A2 =


0 −2 0 0

0 0 3 −1
−1 0 0 −4

2 0 0 0

 ,

and
d = (13, 11, 15, 15)T .

By using results of previous examples, we successively
get

A1A
+
2 =


10 9
8 8
12 11
12 12

 , (d−A1A
+
2 )− =

(
3
3

)
.

Finally, we have

x = A+
2 (d−A1A

+
2 )− = (1, 3, 0, 3)T .

D. Minimization of Maximum Flow Time

Assume that a project has n activities and operates under
Start-to-Finish constraints. For each activity, consider the
time interval between its initiation and completion, which is
usually referred to as the flow time, the turnaround time or
the processing time. The problem is to construct a schedule
that minimizes the maximum flow time over all activities.

Let A be an irreducible constraint matrix, x a vector of
initiation time, and y = Ax a vector of completion time
for the project. The problem can be formulated as that of
finding a vector x that minimize

max(|y1 − x1|, . . . , |yn − xn|) = ρ(y,x).

In terms of Rmax,+ we have

ρ(y,x) = ρ(Ax,x).

The problem of interest takes the form

min
x∈Rn

ρ(Ax,x)

and can be solved by the application of Lemma 7.
Let d be a given vector of activity due dates. Consider a

problem of finding the latest initiation time for all activities
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so as to provide both the condition of minimum for the
maximum flow time and the due date constraints in the form

Ax ≤ d.

By Lemma 7, the first condition is satisfied when x is
an eigenvector that corresponds to the eigenvalue λ for the
matrix A. The eigenvectors take the form x = A+

λ v, where
Aλ = λ−1A and v is any vector of appropriate size.

By combining this result with the due date constraints, we
get the inequality

AA+
λ v ≤ d.

With the maximum solution v = (d−AA+
λ )− of the

inequality, we arrive at the solution to the whole problem

x = A+
λ (d−AA+

λ )−.

Let us evaluate the solution with the constraint matrix and
due date vector defined as

A =

 2 4 4
2 3 5
3 2 3

 , d =

 9
8
9

 .

First we get λ = 4 with (7), and define the matrix

Aλ = λ−1A =

 −2 0 0
−2 −1 1
−1 −2 −1

 .

Furthermore, we have the matrices

A∗λ = A×λ =

 0 0 1
0 0 1
−1 −1 0

 , A+
λ =

 1
1
0

 ,

and then calculate

AA+
λ =

 5
5
4

 , (d−AA+
λ )− = 3.

Finally, we arrive at the solution

x = A+
λ (d−AA+

λ )− = (4, 4, 3)T .

V. CONCLUSION

We have presented an approach that exploits idempotent
algebra to solve computational problems in project schedul-
ing. The approach allows to handle and combine different
constraints and objectives that appear in actual problems in
an easy and unified way. It is shown how to reformulate
the problems in the algebraic setting, and then find related
solutions based on recent results in the idempotent algebra
theory. The solutions are given in a compact vector form that
provides a basis for the development of efficient computation
algorithms and software applications, including those in-
tended for implementation on parallel and vector computers.
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