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 
Abstract— Path planning is one of the important issues in 

robotics area. There are many ideas to deal with this issue one of 
them is RRT (Rapidly Exploring Random Tree). This method is not 
optimal but it reduces the time needed for obtaining solutions. This 
algorithm is based on portability, the result of this algorithm is a 
tortuous path which has a lot of useless points. In this paper we 
introduce some variants of RRTs and a method for reduce a degree of 
tortuous, making the path shorter and omitting useless points. Also 
because of RRT’s randomizes we make some statistical test on many 
variations of RRT, to make decisions about the best variations. 
 

Keywords— RRT, Rapidly Exploring Random Tree, Path 
Planning, Path optimizing, RRT Statistic. 

 

I. INTRODUCTION 

ath planning is an important issue in robotic movements, it 
focuses on finding the way between two points in given 

space. Many methods was introduced like Potential Field, 
Neural Network, and heuristic algorithm like A* algorithm 
and evolutionary algorithms like GA (Genetic algorithm) and 
Ant Colony system algorithm (ACS) [14]. In this paper we 
will talk about RRT (Rapidly Exploring Random Tree) which 
is a successful method applied in this area, it depends on 
randomized approaches on its work, there are many variations 
of this method [1], and we talk briefly about them in chapter 
2. In this paper we test many variations of RRT using 4 
different types of space all of them have 2D dimensions. We 
developed also an algorithm to shorten the path between the 
Xinit point and the Xtarget point. We also made some statistical 
analysis on test results to ensure and support our contentment 
about them. 

II.  RRT (RAPIDLY EXPLORING RANDOM TREE) 

RRT was introduced as planning algorithm for rapidly 
exploring spaces in two or more dimensions [7], with either 
holonomic or nonholonomic movements, by considering 
kinematics and movement constraints or not. Using this 
algorithm we can model the movement of a car, a robot or any 
other moving machines. RRT is not optimal way because it 
depends on probability of choosing path points. 

 
The tree starts from Xinit point and tries to reach Xtarget point 

(Fig. 1.). It selects a point Xrnd of the space randomly, then it 
chooses the nearest point of the tree Xnear to Xrnd, after that it 
tries to extend a branch from Xnear to the Xrnd by length of  to 
get Xnew, if there are no obstacles in the way to Xnew we 
considers it as new point of the tree. We repeat those steps 
many times until Xnew is the same as Xtarget or very near to it. 

 

 
 

Fig. 1 The principle of RRT expanding by   toward Xrnd. 
 

There have been introduced and developed many variants 
of this algorithm to make it much faster and suitable for many 
types of environments. In [1] are listed some RRT variations 
with more detail in explanations. One of RRT variations 
depending on bias to Xtarget by choosing Xtarget point instead of 
Xrnd and try to extend to it (see Fig. 2.), we choose Xtarget in p 
probability and other points in 1-p probability, usually p is 
small like 5% to avoid the local minimums [4]. 

 

 
Fig. 2 Bias tree to the goal point. 

  

Manuscript received August 3, 2011: Revised version received December 
27, 2011. This work was supported by the research projects of MSM 
0021630529, GACR No.: 102/09/1680 '' Control Algorithm Design Using 
Evolutionary Approach'', and IGA FSI-S-11-31 "Application of AI". 

The second variation depends on extending the tree to Xrnd 
directly if it is possible and this variation is called Connect 
[5]. Another variation is Vlrrt (Variable Length RRT) which 
means we store the length  on every point of the tree and use 
this value when we want to make a new branch from this 
point. 
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The value of  changes from point to point depending on 
the obstacle; if the extension fails because of obstacles then 
we decrease  value, else we increase it and store the new 
value with Xnew information form next extensions [2]. The 
other variation is similar to the pervious one it’s called Dvlrrt 
(Directional Vlrrt) which means the increase or decrease of  
value depends on the direction of the obstacles not only the 
existence of them beside the tree points [2].  

Another approach developed RRT is based on the number 
of trees. Bidirectional trees try to grow two trees, one from 
Xinit and the other from Xtarget. (See Fig. 3.) The two trees try to 
connect to each other; we may grow the trees with bias to 
other trees branches in p probability or without bias [4].  

 
Fig. 3 Connect method with 2 trees. 

 
Many local trees is like pervious variation of RRT, but 

instead of using two trees from the start and goal we use many 
trees two from the start and goal points and other trees grows 
from random point in the space [6].  

RRT-Blossom is a variation of RRT which suppose that the 
Xnew must be far from already existing points of the tree, so the 
new branch is forced to grow to unexplored space and the 
advantage is decrease in number of useless branches [3]. 

III.  SHORTENING THE PATH 

After we apply RRT we get tree path which is tortuous path 
and has a lot of points, we introduce an algorithm to make the 
path shorter in length and as straightforward as possible by 
trying to omit useless points from it (see Fig. 4.). 

Initially Endpnt is last point in the path –could be Xtarget-. 
And Startpnt is first point in the path –could be Xinit -. 

The algorithm (Fig. 5) tries to connect the Endpnt with 
Startpnt in the path. If there are collisions with obstacles, we 
put Startpnt = Startpnt +1 (next point in the path), then we try 
again to connect it with Endpnt, when the connection is 
successful we delete the points between Endpnt and Startpnt 
from the original path, then we put Endpnt = Endpnt -1 and 
repeat above steps, until Endpnt = 2.  

 

 

 
Fig. 4 (above): original RRT Path (38 point, Len =18.13),  

(bottom): shortened path (6 point, Len= 14.2).  
 

1. Endpnt =index of last point in the path; 
2. Startpnt =1; 
3. while (Endpnt  ~= 2 ) 
4. pnt2 = path( Endpnt ); 
5. for ( Startpnt =1 ; Startpnt < Endpnt -1 ; Startpnt ++ ) 
6. pnt1 = path( Startpnt ); 
7. if  ~collisionCheck(p1,p2) 
8. path = path(1 to Startpnt ) 
9.         + path( Endpnt to the end); 
10. Endpnt = index of previous point to Endpnt; 
11. break; 
12. end 
13. end 
14. end 

Fig. 5 Short path algorithm. 
 

After generating path by RRT function collisionCheck() is 
used to check if there are collisions between obstacles and the 
line from point pnt1 to point pnt2.  

Because this algorithm is based on the original path - 
generated by RRT - it is not optimal. The result is a path with 
fewer points. Fig. 4 shows the original path generated by the 
RRT (a) and Shortened path (b) generated by this algorithm. 
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IV. TESTING RESULTS 

We made tests for 13 RRT variations on 4 spaces Fig. 6. 
The first space is low density of obstacles (a). The second is 
T-trap obstacle (b); in (c) high density of obstacle and the last 
obstacles are doors (d). 

 

 
Fig. 6 Testing space for RRT variation. 

a: low density space, b: trip space, c: high density, d : doors 
obstacles. 

 
The test is applied on every space separately; we test 13 

variations of RRT 100 times for each. We suppose the fail 
occurs when RRT variation tried to extend a branch 2000 
times without reaching the goal. The extension length   = 0.5, 
the limit of each space is [10, 10]. We have used PC equipped 
with 2.5 GHz Core2Duo CPU, 2 GB RAM. 

The implementation of RRT variation is in Matlab and the 
statistical result is in Minitab. 

The tests are based on time, success rate of reaching the 
goal and path length. We focus on path length result because 
time testing depends on the power of hardware and algorithms 
implementation, the best implementation, the best result. Time 
tests could be useful for low power hardware. 

A. Time ration of RRT variations 

The tests results show that the best variation in Low obstacles 
space is Vlrrt(2) the mean time of reaching the goal is 0.0467 
second and the median is 0.0418, the second best variation is 
Dvlrrt(2) with 0.0484 second in mean and 0.0407 in median. 
Table 1 shows the result for all testing results in low obstacle 
space and Fig. 7 show boxplots. 
 
 
 
 

 
Table 1: Tests results of the low density of obstacle. 

Variation Mean StDev Variance Median Success

Bias 0.1035 0.0484 0.0023 0.0890 100 
Blossom 0.3552 0.2584 0.0668 0.2714 94 
Blossom(2)0.0615 0.0255 0.0007 0.0564 100 
Con 0.3434 0.2546 0.0648 0.2526 93 
Con(2) 0.0578 0.0198 0.0004 0.0559 100 
ConExt 0.0617 0.0202 0.0004 0.0585 100 
Dvlrrt 0.0893 0.0493 0.0024 0.0734 100 
Dvlrrt(2) 0.0484 0.0259 0.0007 0.0407 100 
Ext 0.2806 0.1991 0.0396 0.2380 95 
Ext(2) 0.0516 0.0249 0.0006 0.0444 100 
ExtCon 0.0637 0.0234 0.0006 0.0621 100 
Vlrrt 0.0840 0.0436 0.0019 0.0698 100 
Vlrrt(2) *0.0467 *0.01754 *0.0003 *0.0418 100 

* is the best result 
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 Fig. 7 Tests results of in the low density obstacles. 
 
In the T obstacle the best result is Vlrrt but with one fail of 

reaching the goal. Mean is 0.3740 and the median is 0.3713. 
The second best result is Vlrrt(2) with mean 0.3984 and 
median 0.3849 without a fail. We make some statistical test on 
the best results to ensure that if we use Vlrrt(2) – the second 
best variation without a fail - it would give the same result in 
confidence level 95%, Fig. 8. Show testing hypothesis.  
 

Two-sample T for Vlrrt vs Vlrrt(2) 
 
            N    Mean   StDev  SE Mean 
Vlrrt      99  0.3740  0.0984   0.0099 
Vlrrt(2)  100   0.398   0.122    0.012 
 
Difference = mu (Vlrrt) - mu (Vlrrt(2)) 
Estimate for difference:  -0.0244 
95% CI for difference:  (-0.0554; 0.0067) 
T-Test of difference = 0  
(vs not =): T-Value = -1.55   
P-Value = 0.123  DF = 189 

 
Fig. 8 T-test for Hypothesis “Vlrrt and Vlrrt(2) not equal” in T. 
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We can infer from the P-Value which is >5% that there is 
no sufficient difference between the two variations, and we 
can use Vlrrt(2) without fail in result instead of Vlrrt , by 
keeping the same result in confidence level 95%. Fig. 9 shows 
boxplot for the results. 
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Fig. 9 Tests results in T obstacle. 

 
In high obstacle the Con(2) is the best variation the mean is 

0.1871 and the median is 0.1844. Fig. 11 shows boxplot for 
results. By statistical tests we get P-Value >5% in T-test, so 
there is no sufficient difference in using Con(2) the best, or 
Vlrrt(2) the 3rd best (Fig. 10) in confidence level 95%. 

 
            N    Mean   StDev  SE Mean 
Con(2)    100  0.1871  0.0712   0.0071 
Vlrrt(2)  100  0.2072  0.0837   0.0084 
 
Difference = mu (Con(2)) - mu (Vlrrt(2)) 
Estimate for difference:  -0.0201 
95% CI for difference:  (-0.0418; 0.0015) 
T-Test of difference = 0  
(vs not =): T-Value = -1.83   
P-Value = 0.068  DF = 193 

 
Fig. 10 T-test for Hypothesis “Con(2) and Vlrrt(2) not equal” in high. 

 

Vlr
rt(

2)Vlr
rt

Ex
tC

on
Ex

t(2
)

Ex
t

Dv
lrrt

(2
)

Dv
lrrt

Co
nE

xt

Co
n(

2)Co
n

Blo
ss

om
(2

)

Blo
ss

omBia
s

1,2

1,0

0,8

0,6

0,4

0,2

0,0

Variations

Ti
m

e

Boxplot of Time/Variations in high

Fig. 11 Tests results in high density obstacles. 

For the last space “Doors obstacle”, the best variations is 
Dvlrrt(2) with mean 0.2961 and median 0.2623. Fig. 13 shows 
the boxplot for all variations. We make a T-test for the 
hypothesis which assume that there is difference between the 
best variation Dvlrrt(2) and the 2nd best variation Vlrrt(2) 
Fig.12. 

              N   Mean  StDev  SE Mean 
Dvlrrt(2)  100  0.296  0.148    0.015 
Vlrrt(2)   100  0.317  0.198    0.020 
 
Difference = mu (Dvlrrt(2)) - mu (Vlrrt(2)) 
Estimate for difference:  -0.0213 
95% CI for difference:  (-0.0702; 0.0275) 
T-Test of difference = 0  
(vs not =): T-Value = -0.86   
P-Value = 0.390  DF = 183 

 
Fig. 12 T-test for Hypothesis “Dvlrrt(2) and Vlrrt(2) not equal” in 

doors obstacle 
 

Based on this test we reject the hypothesis, because we get 
P-Value> 0.05 which mean there is no sufficient difference 
between the two best variations. 
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Fig. 13 Tests results in the doors obstacles.  

 
Form the last result and statistical analysis we can use 

Vlrrt(2) in all spaces without sufficient difference between it 
and the best variations in each space in confidence level 95%. 

Some of variations didn’t reach the goal in our limitations 
so we consider this a fail. From the tests we can get idea about 
the fail in variations. Next chapter discuss this situation.   

B. Successful of Tests 

The tests show some variations fail to reach the goal in the 
obstacles spaces. Table 2 shows success rate of reaching the 
goal in 100 iterations of each variation in the four spaces. In 
each iteration we try to grow the trees 2000 times and we 
consider a fail when the tree didn’t reach the goal within this 
limit. Table 2 shows the successful result of these tests. 

Depending on the result we can see that the fail accrued just 
in one directional algorithm, the bidirectional algorithms 
didn’t have any fail. (Fig. 14, Fig. 15, Fig. 16, Fig. 17) shows 
the unsuccessful in obstacle spaces.  
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Fig. 14 Unsuccessful results in the low density obstacles. 
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Fig. 15 Unsuccessful results in the T obstacle. 
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Fig. 16 Unsuccessful results in the doors obstacles. 
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Fig. 17 Unsuccessful results in the high density obstacles. 

 
 
 

Table 2 Successful results of the variations in obstacles spaces. 
 Low T High Doors 

Bias 100 71 100 100 
Blossom 94 35 82 82 
Blossom(2) 100 100 100 100 
Con 93 81 83 84 
Con(2) 100 100 100 100 
ConExt 100 100 100 100 
Dvlrrt 100 97 99 100 
Dvlrrt(2) 100 100 100 100 
Ext 95 35 80 84 
Ext(2) 100 100 100 100 
ExtCon 100 100 100 100 
Vlrrt 100 99 99 99 
Vlrrt(2) 100 100 100 100 

 
From the last two chapters we infer that the bidirectional 

variations can find a solution in every tested environments and 
execution time is much faster than the unidirectional 
variations.  

C. Path Tests 

As we have mentioned before the time ration results was 
variable because of algorithms’ implementations. So we test 
the variations for the path length. 

The tests results are shown in Table 3, Table 4, Table 5 and 
Table 6 for low, T, High and Doors obstacles respectively. 
Also the boxplot for RRT variations on every space is 
presented for every case. 

 
Table 3: Path length results on the low density of obstacle. 

 Path 
Median

Path 
Min 

S-path 
Median 

S-Path
Min 

Rate 
% 

Bias *14.336 12.770 11.856 11.478 17.30 
Blossom 15.373 13.316 11.817 11.471 23.13 

Blossom(2) 14.644 12.947 11.787 11.490 19.51 
Con 17.359 13.366 14.085 11.553 18.86 

Con(2) 18.880 12.210 14.195 11.532 24.81 
ConExt 16.534 12.796 12.010 11.556 27.36 
Dvlrrt 14.540 12.444 11.834 11.504 18.61 

Dvlrrt(2) 14.773 12.808 11.862 11.499 19.70 
Ext 15.189 13.235 11.831 11.473 22.11 

Ext(2) 14.604 13.155 *11.810 11.496 19.13 
ExtCon 16.929 *12.062 12.058 11.530 *28.77
Vlrrt 14.846 12.565 11.946 11.565 19.53 

Vlrrt(2) 14.545 12.629 11.846 11.476 18.56 
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Fig. 18 Path length Boxplot on the low density of obstacle. 
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In Table 3 we see the best results are for Bias variation. 
This variation has unidirectional tree. So we try to statically 
test for hypnosis which assumes that there is no sufficient 
deference between the Bias variation and the best bidirectional 
variation, in order to get a variation which we can use and 
benefit from its advantages (speed, completeness). 
 
Two-sample T for bias-PLen vs Blossom2-PLen 
           N   Mean  StDev  SE Mean 
b-PLen    100  14.85   1.51     0.15 
Bl2-PLen  100  15.03   1.37     0.14 
 
Difference = mu (b-PLen) - mu (Bl-PLen) 
Estimate for difference:  -0.176 
95% CI for difference:  (-0.579; 0.226) 
T-Test of difference = 0 (vs not =):  
T-Value = -0.86  P-Value = 0.388  DF = 196 
 

Fig 19.T test for testing hypothesis length of path for “blossom(2) 
and Bias variations are not equal”. 

 
For the statistical test P-value = 0.388> 5%, so we reject the 

hypothesis (blossom(2) and Bias not equal) and we infer that 
we can use blossom(2) variation instead of bias variation in 
low obstacle space. Also for the short path the best variation is 
Ext(2). 

For the T obstacle the best result is blossom, we try to find 
another bidirectional variation with similar result in 
confidence level 95%. Table 4 show the testing result. And 
Fig. 21 shows the boxplot for these results. 

 
Table 4: Path length on the T obstacle. 

 Path 
Median 

Path 
Min 

S-Path 
Median 

S-Path 
Min 

Rate 
% 

Bias 30.124 25.814 *24.089 22.309 20.03 
Blossom *29.976 26.635 24.488 22.191 18.31 
Blossom(2)32.166 27.269 24.498 22.643 *23.84 
Con 33.658 26.281 25.934 22.277 22.95 
Con(2) 33.618 26.742 25.831 22.462 23.16 
ConExt 33.170 27.120 25.427 21.740 23.34 
Dvlrrt 31.148 25.324 25.104 22.522 19.40 
Dvlrrt(2) 33.177 26.489 25.831 22.367 22.14 
Ext 30.385 26.432 23.908 22.491 21.32 
Ext(2) 32.562 26.460 25.091 22.127 22.94 
ExtCon 32.815 25.764 25.378 22.050 22.66 
Vlrrt 32.041 *25.318 25.906 22.534 19.15 
Vlrrt(2) 33.436 28.006 26.165 23.233 21.75 

 
We make a T-test for hypothesis the best variation 

“Blossom” and the bidirectional variation Blossom(2) are not 
equal. Fig. 20 shows the result for this test. 
 
Two-sample T for Bl-PLen vs Bl2-PLen 
            N   Mean  StDev  SE Mean 
Bl-PLen    35  30.30   2.14     0.36 
Bl2-PLen  100  32.21   2.53     0.25 
 
Difference = mu (Bl-PLen) - mu (Bl2-PLen) 
Estimate for difference:  -1.917 
95% CI for difference:  (-2.796; -1.038) 
T-Test of difference = 0 (vs not =):  
T-Value = -4.35  P-Value = 0.000  DF = 69 
 

Fig 20.T test for testing hypothesis length of path for “blossom(2) 
and blossom variations are not equal” in T space 
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Fig. 21. Path length Boxplot on the T obstacle. 

 
For the T-test result in Fig. 20 we infer that the hypothesis 

is accepted and there is a difference in the results between the 
two variations. But depending on the short path and the testing 
between the best variation Bias and the best bidirectional 
variation Blossom(2) we see that there is no sufficient 
difference between the two variations Fig. 22. 

 
Two-sample T for Bias-SP vs Bl-SP 
           N   Mean  StDev  SE Mean 
Bias-SP   71  24.43   1.45     0.17 
Bl-SP    100  24.76   1.30     0.13 
Difference = mu (Bias-SP) - mu (Bl-SP) 
Estimate for difference:  -0.328 
95% CI for difference:  (-0.753; 0.098) 
T-Test of difference = 0 (vs not =):  
T-Value = -1.52  P-Value = 0.130  DF = 140 

Fig 22.T test for hypothesis that short path in blossom(2) and bias 
variations are not equal in T space 

 
In the high obstacle space we test the variations and get the 

result in Table 5. The boxplot figure is shown in Fig. 24. 
 

Table 5: Path length of the high density of obstacle. 
 Path 

Median 
Path 
Min 

S-Path 
Median 

S-Path 
Min 

Rate 
% 

Bias 17.911 *14.233 15.045 13.269 16.00
Blossom 17.766 15.349 *14.70 13.353 *17.26
Blossom(2) 19.879 14.977 16.716 13.321 15.91
Con 19.004 15.260 16.697 13.252 12.14
Con(2) 21.144 15.253 17.541 13.498 17.04
ConExt 21.363 15.079 18.164 13.191 14.97
Dvlrrt 18.263 14.415 16.185 13.236 11.38
Dvlrrt(2) 20.350 15.087 17.376 13.479 14.61
Ext 17.752 15.542 14.702 13.286 17.18
Ext(2) 19.947 15.328 17.277 13.222 13.39
ExtCon 20.535 14.613 17.109 13.393 16.68
Vlrrt *17.528 14.846 14.919 13.347 14.88
Vlrrt(2) 20.022 14.730 16.832 13.412 15.93

 
We make some analytical tests in order to find bidirectional 

variation we can use instead of unidirectional variation, 
because as we listed before, the bidirectional is much faster 
than unidirectional and it have found solution in all tested 
environments. Fig. 23 shows T-test for hypothesis 
“blossom(2) and Vlrrt variations are not equal in high space”, 
we infer from this test that the hypothesis is accepted and we 
can’t use blossom(2) instead of Vlrrt. 
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Two-sample T for Bl-PLen vs Vl-Plen Two-sample T for Bl-PLen vs Vl-PLen 
           N   Mean  StDev  SE Mean            N   Mean  StDev  SE Mean 
Bl2-PLen  100  19.60   2.95     0.29 Bl2-PLen  100  17.30   1.57     0.16 
Vl-Plen   99  18.41   2.69     0.27 Vl-PLen   99  17.23   1.85     0.19 
  
Difference = mu (Bl-PLen) - mu (Vl-Plen) Difference = mu (Bl-PLen) - mu (Vl-PLen) 
Estimate for difference:  1.197 Estimate for difference:  0.077 
95% CI for difference:  (0.408; 1.985) 95% CI for difference:  (-0.403; 0.557) 
T-Test of difference = 0 (vs not =):  T-Test of difference = 0 (vs not =): 
T-Value = 2.99  P-Value = 0.003  DF = 195 T-Value = 0.32  P-Value = 0.751  DF = 191 
  

Fig 23. T test for testing hypothesis length of path for “blossom(2) 
and Vlrrt variations are not equal” in high space. 
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Fig. 24. Path length Boxplot on the high density of obstacle. 

 
From the Fig. 23 the statistical analysis for the hypothesis 

blossom(2) and Vlrrt are not equal is accepted and that means 
we have to develop RRT variation in this space or find 
another strategy to improve the results. 

In door obstacle the tests result are in Table 6. And Fig. 26 
shows the boxplot chart for this result. Also in this space we 
test the hypothesis “there is a difference between Vlrrt the best 
variation in path length and the Blossom(2) the best 
bidirectional variation”, Fig. 25 shows the testing result. 

 
Table 6: Path length on doors obstacles. 

 Path 
Median 

Path 
Min 

S-Path 
Median 

S-Path 
Min 

Rate 
% 

Bias 17.089 14.145 14.285 11.826 16.41
Blossom 17.389 13.787 *13.960 11.771 *19.72
Blossom(2) 17.256 14.153 14.127 11.740 18.13
Con 18.072 15.407 14.883 11.869 17.65
Con(2) 17.810 13.757 14.792 11.797 16.95
ConExt 17.422 13.574 14.749 11.930 15.34
Dvlrrt 16.934 13.604 14.250 11.850 15.85
Dvlrrt(2) 17.532 14.104 14.134 11.787 19.38
Ext 17.263 14.872 14.157 11.802 17.99
Ext(2) 17.413 13.685 14.304 11.764 17.85
ExtCon 17.583 *12.278 14.524 11.799 17.40
Vlrrt *16.878 13.957 14.411 11.870 14.62
Vlrrt(2) 17.577 13.046 14.165 11.835 19.41
 

Form the T-test P-Value is 0.751>0.05 so we reject this 
hypothesis, and conclude that there is no sufficient difference 
between the two variations in confidence level 95%. Fig. 27 
shows summary information about this statistical test. 

Fig 25. T test for testing hypothesis length of path for “blossom(2) 
and Vlrrt variations are not equal” in doors space. 
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Fig. 26. Path length Boxplot on the doors obstacle. 

 
Fig. 27.T-test summary for testing hypothesis blossom(2) and Vlrrt 

variations are not equal in the T space 
 

We see that when we care about the path length, the single 
tree variations is better than the double trees variations and 
that because the way of extending the tree depend on grow a 
branch from the nearest node in the tree and that makes the 
path shorter than the path in two tree which is two paths 
connecting to each other. But the successful rate of 
unidirectional variations is low. 
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Fig. 28 shows the short path in bidirectional variation. The 
thick line is the path generated from connecting the two trees. 
And the dashed line is the shortened path. 

 

 

 
Fig.28 Two RRT variation with Path(thick) and short Path(dashed). 

 
From the testing result the advantage of making the path 

shorter in length is varying from 13% – 28% in rate, 
depending on the testing environment, obstacles and variation. 
And we can use this result to use bidirectional variations when 
we care about the path length. 

V. CONCLUSION 

In this paper we introduce an algorithm to shorten RRT 
path in length, number of points and degree of tortuous. Also 
we test many types of RRT variations in 4 different type of 
obstacle and make some statistical analysis on the result to 
ensure and support our decision about using of one variation. 

We conclude that if we care about the time of execution, in 
low density obstacles the best result is Vlrrt(2) with 100% 
successful in the result. For T obstacle the best result is with 
Vlrrt but with one fail in the result. So we choose to use the 
Vlrrt(2) based in the statistical result which show that there is 
no sufficient difference in the two variations with confidence 
level 95%. For high density of obstacle the best variation is 
Con(2) but based on the statistical result we see that we can 
use Vlrrt(2) and Ext(2) with no sufficient.  

The last space is doors obstacle and the results give the best 
variation Dvlrrt(2) and we can use Vlrrt(2) based on statistical 
tests. After all, we conclude that we can use Vlrrt(2) variation 
in all spaces, and it will give good result as the best with 
confidence level 95%. 

But if we care about the length of path, in doors and low 
spaces we can find alternative bidirectional variation but in 
high and T spaces we can’t. For that we should find another 
method or strategy to get solution. One of these strategies is to 
develop the optimization of path and making it shorter and 
smoother. 
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